
Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

BIL104E: Introduction to Scientific and
Engineering Computing

Lecture 3

vReading from and Writing to Standart I/O
vManuplating Data With Operators

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Readin from and Writint to Standart I/O
The input from the user or print the output to the screen:

• The getc() function
• The putc() function
• The getchar() function
• The putchar() function

For the time being just memorize the followings:

• stdin–The standard input for reading (usually keyboard)
• stdout–The standard output for writing. (usually monitor)
• stderr–The standard error for writing error messages.

(always monitor)

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Using the getc() Function
The getc() function reads the next character from a file stream, and returns the

character as an integer. The syntax for the getc() function is

include <stdio.h>
int getc(FILE *stream);

EXMAPLE

#include <stdio.h>
main() {
int ch;
printf("Please type in one character:\n");
ch = getc(stdin);
printf("The character you just entered is: %c\n", ch);
return 0;
}

Please type in one character:
H
The character you just entered is: H

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Using the getchar() Function
The C language provides another function, getchar(), to perform a similar

operation to getc(). More precisely, the getchar() function is equivalent to
getc(stdin). The syntax for the getchar() function is

#include <stdio.h>
int getchar(void);
EXAMPLE:
#include <stdio.h>
main() {
int ch1, ch2;
printf("Please type in two characters together:\n");
ch1 = getc(stdin);
ch2 = getchar();
printf("The first character you just entered is: %c\n", ch1);
printf("The second character you just entered is: %c\n", ch2);
return 0;
}

Please type in two characters together:
Hi
The first character you just entered is: H
The second character you just entered is: i

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Printing the Output on the Screen putc()
Like putc(), putchar() can also be used to put a character on the screen.

The only difference between the two functions is that putchar() needs
only one argument to contain the character. You don't need to specify
the file stream, because the standard output (stdout) is the default file
stream to putchar(). The syntax for the putchar() function is

– #include <stdio.h>
– int putchar(int c);

EXAMPLE:

#include <stdio.h>
main() { putchar(65); putchar(10);
putchar(66); putchar(10); putchar(67); putchar(10);

return 0;
}

A
B
C

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Another Function for Writing putchar()
Besides getc() and getchar() for reading, the C language also provides two

functions, putc() and putchar(), for writing. The putc() function writes a
character to the specified file stream, which, in our case, is the standard output
pointing to your screen. The syntax for the putc() function is

– #include <stdio.h>
– int putc(int c, FILE *stream);
EXAMPLE:
#include <stdio.h>
main() {
int ch;
ch = 65; /* the numeric value of A */
printf("The character that has numeric value of 65 is:\n");
putc(ch, stdout);
return 0;
}

The character that has numeric value of 65 is:
A

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

• The printf() function is the first C library function you used in
this course to print out messages on the screen. printf() is a
very important function in C, so it's worth it to spend more time on
it.

• The syntax for the printf() function is

– #include <stdio.h>
– int printf(const char *format-string, ...);

• Here const char *format-string is the first argument that contains
the format specifier(s); ... indicates the expression section that
contains the expression(s) to be formatted according to the format
specifiers. The number of expressions is determined by the
number of the format

Revisiting the printf()Function

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Revisiting the printf()Function
The following are all the format specifiers that can be used in printf():

• %c The character format specifier.
• %d The integer format specifier.
• %i The integer format specifier (same as %d).
• %f The floating-point format specifier.
• %e The scientific notation format specifier (note the lowercase e).
• %E The scientific notation format specifier (note the uppercase E).
• %g Uses %f or %e, whichever result is shorter.
• %G Uses %f or %E, whichever result is shorter.
• %o The unsigned octal format specifier.
• %s The string format specifier.
• %u The unsigned integer format specifier.
• %x The unsigned hexadecimal format specifier (note the lowercase x).
• %X The unsigned hexadecimal format specifier (note the uppercase X).
• %p Displays the corresponding argument that is a pointer.
• %n Records the number of characters written so far.
• %% Outputs a percent sign (%).

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Revisiting the printf()Function
#include <stdio.h>
main()
{

printf("Hex(uppercase) Hex(lowercase) Decimal\n");
printf("%X %x %d\n", 0, 0, 0);
printf("%X %x %d\n", 1, 1, 1);
printf("%X %x %d\n", 2, 2, 2);
printf("%X %x %d\n", 3, 3, 3);
printf("%X %x %d\n", 4, 4, 4);
return 0

}
Hex(uppercase) Hex(lowercase) Decimal
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Revisiting the printf()Function

Adding the Minimum Field Width

• The C language allows you to add an integer between the percent
sign (%) and the letter in a format specifier. The integer is called
the minimum field width specifier because it specifies the minimum
field width and ensures that the output reaches the minimum width.
For example, in %10f, 10 is a minimum field width specifier that
ensures that the output is at least 10 character spaces wide.

• The example below shows how to use the minimum field width
specifier.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Revisiting the printf()Function

#include <stdio.h>
main(){
int num1, num2; num1 = 12; num2 = 12345;
printf("%d\n", num1);
printf("%d\n", num2);
printf("%5d\n", num1);
printf("%05d\n", num1);
printf("%2d\n", num2);
return 0;
}

12
12345

12
00012
12345

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Revisiting the printf()Function

Aligning Output

• As you might have noticed in the previous example, all output is
right-justified. In other words, by default, all output is placed on the
right edge of the field, as long as the field width is longer than the
width of the output.

• You can change this and force output to be left- justified. To do so,
you need to prefix the minimum field specifier with the minus sign
(-). For example, %-12d specifies the minimum field width as 12,
and justifies the output from the left edge of the field.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Aligning Output
#include <stdio.h>

main(){
int num1, num2, num3, num4, num5;
num1 = 1;
num2 = 12;
num3 = 123;
num4 = 1234;
num5 = 12345;
printf("%8d %-8d\n", num1, num1);
printf("%8d %-8d\n", num2, num2);
printf("%8d %-8d\n", num3, num3);
printf("%8d %-8d\n", num4, num4);
printf("%8d %-8d\n", num5, num5);
return 0;
}

1 1
12 12
123 123

1234 1234
12345 12345

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Assignment Operators
Assignment operators abbreviate assignment expressions
c = c + 3;
can be abbreviated as c += 3; using the addition assignment operator
•
Statements of the form
variable = variable operator expression;
can be rewritten as
variable operator= expression;

• Examples of other assignment operators:
d -= 4 (d = d - 4) e *= 5
(e = e * 5) f /= 3 (f = f / 3)
g %= 9 (g = g % 9)

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Increment and Decrement Operators
• Increment operator (++):
– Can be used instead of c+=1
• Decrement operator (--):
– Can be used instead of c-=1
• Preincrement:
– Operator is used before the variable (++c or --c)
– Variable is changed before the expression it is in is evaluated
• Postincrement:
– Operator is used after the variable (c++ or c--)
– Expression executes before the variable is changed

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Increment and Decrement Operators
• If c equals 5, then

printf("%d", ++c);
– Prints 6

printf("%d", c++);
– Prints 5
– In either case, c now has the value of 6

• When variable not in an expression
– Pre-incrementing and post-incrementing have the same effect

++c;
printf(“%d”, c);

– Has the same effect as
c++;
printf(“%d”, c);

