Data Modeling
Using Oracle
(Barker Notations)

data modeling

- Entity Definition and Relations
- Defining Attributes and Unique Identifiers
- Normalizing Data Model
- Understanding Advanced Relations
- Transform Data Model to Database (Designing Database from Data Model)
• **Defining Entities**

• **Understanding Relations**
• Starting point in developing a good data model is a good set of data requirements.

These requirements might be in forms of
* interview notes,
* verbal conversations with the user and,
* formal requirements specification document (RSD).

• These requirements may include information about just data, or about the data and the business functions * which use this data.

* Functions required to be implemented in a business without regarding the knowledge of how to do it.
First step is to digest information and then to find the entities* about which the business needs to store data.

* Entity: A thing of significance, whether concrete or abstract, about which information needs to be known or held.
An entity is a thing of significance about which information needs to be stored. In other words, an entity is something important enough to your organization so the organization is willing to spend money to keep records about it: CUSTOMERs, EMPLOYEEs etc.

An entity is a class or category of thing. A single employee is not an entity, but the general category EMPLOYEE is an entity.
Defining Entities

- An entity is a named thing. It may be a tangible thing, such as a TRUCK, or a concept, such as a COST CENTER.

Entity Examples

We have already seen some examples of entities, some more examples are as follows:

TRUCK
Entity Examples
We have already seen some examples of entities,
Some more examples are as follows:-

BANK ACCOUNT

PROJECT
Entity Examples

We have already seen some examples of entities,
Some more examples are as follows:-

CONTRACTOR

PART
Entity Examples

We have already seen some examples of entities,
Some more examples are as follows:-

INSURANCE POLICY

DEFENDANT
Entity Examples

We have already seen some examples of entities,
Some more examples are as follows:-

CUSTOMER

Diagramming Entities

Entities are drawn in diagram as soon as they are identified.
Defining Entities

For now, we just draw boxes to represent entities. You can choose some conventions for drawing entities on E-R Diagrams.

* Boxes are soft, i.e. with rounded corners.

For example;

![Diagram](image)

Understanding Relations

- **Beginning**
- Identify Relationships
- Relationship Sentences
- Relationship Names
- Optionality in Relationships
- Relationship Degree
- Diagramming Relationships
- Relationship Types
- Validating Relationships
Relationship Sentences

Even though the E-R Diagram consists of boxes and lines just a few words, you as the analyst should be able to “read” it to either a technical Database Administrator or a non-technical business person.

E-R Diagrams are essential for communicating data requirements in business.

The key to make your E-R Diagram “readable” is the Relationship Sentence. It is a complete sentence and can be constructed in any language.
Suppose you have two entities: CUSTOMER and ORDER. We can describe how customers and orders are related with two sentences:

“Each CUSTOMER may be the originator of one or more ORDERs.”

“Each ORDER must be placed by one and only one CUSTOMER.”

Understanding Relations

Let’s divide one of these sentences.

“Each ORDER must be placed by one and only one CUSTOMER.”

The formal syntax of the sentence is:

Each ENTITY1 {must be} or name {one or more} or ENTITY2

{may be}

So, ORDER and CUSTOMER are the entities, and “placed by” is the name of the relationship.
The statement “must be” or “may be” describes whether the relationship is mandatory or optional.

The statement “one or more” or “one and only one” describes the cardinality (degree) of relationship.

We will look at each of these parts of the sentence in detail.

Let’s look at the following sentence:

“Each ORDER must be made by one and only one CUSTOMER”

The choice of term “must be” indicates that an order cannot exist without a customer to place it. This relationship is mandatory.

If there is ORDER then there must be CUSTOMER who made.
Let’s look at the other half of the relationship sentence.

“Each CUSTOMER may be the originator of one or more ORDERs”

The choice of the term “may be” indicates that a customer may exist in our database without ever placing an order.

Think of a CUSTOMER who has been sent a CATALOG but never bought anything yet.

Is the relationship mandatory or optional?

“Each EMPLOYEE ____ assigned to one and only one DEPARTMENT”

A. must be
B. may be
Is the relationship mandatory or optional? Choose “must be” or “may be”

“Each PROJECT _______ carried out by one or more EMPLOYEES”

A. must be
B. may be

Understanding Relations

Is the relationship mandatory or optional? Choose “must be” or “may be”

“Each RESERVATION _______ made by one and only one EMPLOYEE”

A. must be
B. may be.
Relationship Degree

Now let’s look at the other end of the Relationship Sentences;

“Each ORDER must be made by one and only one CUSTOMER.”

“Each CUSTOMER may be the originator of one or more ORDERs.”

The degree of relationship is stated as either “one and only one” or “one or more”. The “one and only one” is known as a “single-valued” relationship.

“Each ORDER must be made by one and only one CUSTOMER.”
“One or more” means “one, or any number”. “One or more” usually used in optional relations. “One or more” allows the CUSTOMER to place one ORDER, a hundred or a thousand. The CUSTOMER may also be in database with zero orders.

This relation is called “many-valued relationship”.

“Each CUSTOMER may be the originator of one or more ORDERs.”

Choose the relationship degree using one of the options.

“Each ORDER must be made up of ______ ORDER LINE ITEMS”

A. “one and only one”
B. “between one and twelve”
C. “one or more”
D. “any number except zero”
Choose the relationship degree using one of the options.

“Each ORDER LINE ITEM must be contained in ______ ORDER”

A. “one and only one”
B. “one or more”
C. “zero, or one or more”
D. “none of the above”

Diagramming Relationships

Now it is time to represent all these in an E-R Diagram.

This diagram indicates how relationship names, optionality and degree are indicated.
Each half of the line is either dashed (---) to indicate an optional relationship, or solid (---) to indicate a mandatory one.

The “crow’s foot” indicates “one or more” or “multi-valued” condition. If there is not a crow’s foot then the relationship degree is “one and only one”.

Understanding Relations

name

Mandatory Relationship

name

Optional Relationship

Multi-valued condition

name

one and only one

name
“Each ORDER must be made by one and only one CUSTOMER”

sentence is mandatory and single-valued. Therefore, we draw a solid line from ORDER to CUSTOMER and write the relation name as \textit{made by}.

Absence of crow-foot shows single-valued relation.

Each ORDER must be made by one and only one CUSTOMER

Read the sentence in the following order;

Each ORDER must be made by one and only one CUSTOMER
Other sentence,
“Each CUSTOMER may be the originator of one or more ORDERs”
Optional and multi-valued. Therefore, a dashed line is drawn from CUSTOMER to ORDER and the relation sentence ‘originator of’ is written below this line. A crow-foot is drawn next to ORDER entity to show the multi-valued relation.

Understanding Relations

You can read this part in the following order;

Each CUSTOMER may be the originator of one or more ORDERs

made by

the originator of

1 2 3 4 5

ORDER

made by

the originator of

CUSTOMER
We construct 2 sentences for each pair of entities. The following type of relation is called one-to-many (or many-to-one).

Find the correct E-R Diagram for the following sentences.

“Each PAYCHECK must be for one and only one EMPLOYEE.”
“Each EMPLOYEE may be given one or more PAYCHECKs.”
Show the diagram for STUDENT and COURSE entities according to following sentences.

“Each STUDENT may be enrolled to one or more COURSEs.”
“Each COURSE may be taken by one or more STUDENTs.”

Types of relations

There are 3 types of relations.
The relation between PAYCHECK and EMPLOYEE is a one-to-many relation. It is also called many-to-one relation.

When finished ER Diagram usually consists of this type of relations.

The relation between STUDENT and COURSE is many-valued in both sides. This kind of relation is called many-to-many relation.
3rd type of relation is single-valued in both sides. For example, COMPUTER and MAINBOARD entities might have this type of relation.

“Each COMPUTER must be the host for one-and-only one MAINBOARD.”

“Each MOTHERBOARD may be installed in one and only one COMPUTER.”

This relationship is a fairly unusual relationship. They are not seen during analysis and design stages. But may appear in a finished database.
An attribute is a fact about an entity, for example:

- **name and address** are facts about **EMPLOYEE**
- **altitude** and **mean January temperature** are facts about **CITY**
- **name and first enrollment date** are facts about **STUDENT**

Some possible sources are:

- Headings from existing printed reports
Some possible sources are:

- Headings from existing printed reports
- Fields stored in existing files and databases
- Captions from screens
Some possible sources are:

- Headings from existing printed reports
- Fields stored in existing files and databases
- Captions from screens
- Nouns that business people use in everyday conversations
- Values used for sorting reports
Identify Attributes

Some possible sources are:

- Headings from existing printed reports
- Fields stored in existing files and databases
- Captions from screens
- Nouns that business people use in everyday conversations
- Values used for sorting reports

When collecting requirements from existing procedures or software, BEWARE OF DERIVED DATA.

Derived data are not attributes

Identify Attributes

Name Attributes

Names of attributes should be the names that people in the business use every day when they discuss this item of information.
Identify Attributes

For example, if you think of an attribute called *Record number* for an entity called *EMPLOYEE*, but the people in business call it *Employee ID* then you should use *Employee ID* for the attribute name.

Name Attributes: Uniqueness

Attribute names must, at least, be unique within a single entity.

If possible, they should be unique across the entire E-R Diagram. That is hard to do, but it is a good goal to aim for.
Identify Attributes

For example;

EMPLOYEE
* id
* name
* last name
 o title
* sex
 o weight

The “asterisks” indicate that an EMPLOYEE must include values for id, last name, first name and sex.

The “circles” show that there may or may not be a title or weight known for each EMPLOYEE.

cetinerg@itu.edu.tr

Identify Attributes

For the entity SHIP, the attributes name, country of origin, registration number, length, width, and class have been identified. Width and class are often unknown, but the other attributes are required. Which of the following diagrams correctly models SHIP and its attributes?

A

SHIP
 o name
 o country of origin
 o registration number
 * length
 o width
 * class

B

SHIP
 * name
 * country of origin
 * registration number
 * length
 # width
 # class

C

SHIP
 * name
 * country of origin
 * registration number
 * length
 o width
 o class

D

SHIP
 * name
 * country of origin
 * registration number
 o length
 o width
 o class
cetinerg@itu.edu.tr
Assoc.Prof.Dr.B.Gültekin Çetiner
Distinguishing Attributes and Entities

Sometimes it is not exactly clear whether a piece of information is an attribute of entity, or an entity itself. A noun might be an entity or an attribute, depending on the business requirements.

If you are in doubt, ask this question about the thing:

“Do we need to store any facts about this thing?”

If the answer is YES, then it is an ENTITY.

If the answer is NO, then it is an ATTRIBUTE of an entity.
Unique Identifiers (UID) and Primary Keys

Identifying UIDs

Diagram UIDs in E-R Diagram

UIDs via Relationships

Composite UIDs

Artificial UIDs

Candidate UIDs

Assigning Unique Identifiers
Assigning Unique Identifiers

UIDs and Primary Keys

If you have worked with almost any kind of files or databases, you are probably familiar with Primary Keys. UIDs and Primary Keys are not exactly the same thing.

When our logical data model is converted into a physical database design, the UIDs will become the Primary Keys of the files, segments, or tables.

Unique Identifier is the term for Data Model
Primary Key is the term for Physical Database

Identify UIDs

Usually, all you have to do to find a UID is to ask a business person,

“How do you uniquely identify/differentiate a customer/part/course/student/employee/truck?”
Assigning Unique Identifiers

Diagram UIDs

Now let's consider the EMPLOYEE entity. Each employee has a unique badge number. So the attribute “badge number” should be the UID for the EMPLOYEE entity.

You indicate this with a # (pound sign) before the attribute name and optionality tag. Each instance of EMPLOYEE is uniquely identified by the attribute “badge number.”
Assigning Unique Identifiers

How do you model the UID for the entity DEPARTMENT.

A

DEPARTMENT

o name
 o function
 * number
 * description

B

DEPARTMENT

o name
 o function
 #* number
 * description

C

DEPARTMENT

o name
 o function
 #o number
 * description

D

DEPARTMENT

#o name
 o function
 # number
 * description

Assigning Unique Identifiers

UIDs via Relationships

Suppose we have two related entities, BANK and ACCOUNT. Let's determine the UID for each entity. Banks have unique numbers assigned by some government body; let's call this attribute “number” and let it be the UID of BANK.

ACCOUNT

* number
 * current balance

managed by the manager of BANK

* number
 * name

cetinerg@itu.edu.tr

Assoc.Prof.Dr.B.Gültekin Çetiner
Assigning Unique Identifiers

So we tag the BANK’s attribute “number” with a “.” Now what is the UID of ACCOUNT? The problem is that accounts do not necessarily have unique numbers across all banks in the world or even in the country. The account number is usually just a number that is unique within a single bank.

In other words, different BANKs may use the same ACCOUNT numbers. Therefore, “number” in ACCOUNT cannot uniquely identify all instances of ACCOUNT.

In data modeling terms, an account is uniquely identified by its number, plus its relationship to BANK.

The UID for ACCOUNT is composed of both the attribute “number” and the BANK that manages the ACCOUNT.
Assigning Unique Identifiers

In an E-R Diagram, a relationship which is part of a UID is indicated by a bar across the relationship line, like this:

ACCOUNT
#* number
* current balance

managed by

the manager of

ACCOUNT

BANK
#* number
* name

The bar across the relationship from ACCOUNT to BANK indicates that the relationship is part of the UID of ACCOUNT.

Assigning Unique Identifiers

What is the UID of the entity PAYCHECK?

PAYCHECK
#* date of issue
* gross amount
* net amount

for

the Receiver of

EMPLOYEE
#* badge number
* first name
* surname
* job title

A. “date of issue”
B. the EMPLOYEE that the PAYCHECK is for
C. “badge number”
D. “date of issue” and the EMPLOYEE that the PAYCHECK is for
Composite UIDs

In the previous example, a bank account is identified by its own number, plus the number of the bank the ACCOUNT is managed by.

This illustrates a very common situation: the UID of an entity may consist of any number of attributes and/or relationships. These are called “compound” UIDs, or “composite” UIDs.
In a many-to-many relationship, relationship is multi-valued at both ends.

For example:

“Each STUDENT may be enrolled in one or more COURSEs”
“Each COURSE may be taken by one or more STUDENTs”
Resolving Many-to-many Relations

Resolving Many-to-many Relationships

To accommodate these facts about the relationship we “resolve” a many-to-many relationship by adding a third entity, ENROLLMENT, which will associate the two entities.

The facts about the relationship between STUDENT and COURSE now become attributes of the entity ENROLLMENT.
A new entity added to resolve a many-to-many relationship is called an intersection entity. We also call this entity “association entity” and “junction entity”.

Note that any intersection entity will be on the many-valued end of the relationships to the two original entities.
Resolving Many-to-many Relations

And the Unique Identifier of an intersection entity will usually be its relationships to the two original entities, not any of its attributes.

ENROLLMENT
- date enrolled
- date completed
- grade

STUDENT **COURSE**

If one DOCTOR may be the examiner of many PATIENTs, and a PATIENT may be seen by many DOCTORs over time, what is the most likely intersection entity to connect them?

A. patient number B. clinic address
C. VISIT D. DOCTOR NUMBER
What is the likely intersection entity between PRODUCT and VENDOR if there is many-to-many relationship?

A. CATALOG B. CUSTOMER
C. PRICE D. DATE OF DELIVERY