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Abstract. Collective classification algorithms have been used to improve clas-
sification performance when network training data with content, link and label
information and test data with content and link information are available. Col-
lective classification algorithms use a base classifier which is trained on training
content and link data. The base classifier inputs usually consist of the content vec-
tor concatenated with an aggregation vector of neighborhood class information.
In this paper, instead of using a single base classifier, we propose using different
types of base classifiers for content and link. We then combine the content and
link classifier outputs using different classifier combination methods. Our experi-
ments show that using heterogeneous classifiers for link and content classification
and combining their outputs gives accuracies as good as collective classification.
Our method can also be extended to collective classification scenarios with mul-
tiple types of content and link.

1 Introduction

In most pattern recognition applications, the observed and unobserved instances are as-
sumed to be drawn independently from the same distribution. Classification problems
are solved using instances’ features (content) and labels. Connections/dependencies/relations
between instances are not taken into consideration. On the other hand, learning prob-
lems with network information, where for each node its features and relations with
other nodes are available, become more common in our lives. Examples include social
[33], semantic [31], financial [1], communication [8] and gene regulatory [3] networks.
Classification of nodes or links in the network, discovery of links or nodes which are
not yet observed or identification of essential nodes or links, are some of the research
areas on networked data.

While in the traditional classification problems the instances/nodes are usually inde-
pendent and identically distributed, networked data contain instances which are depen-
dent on each other. Link-based classification takes into consideration the links between
the objects in order to improve the classification performance. Attributes of objects and
links together can be considered as node features. However, when two linked samples
are not yet classified, they require each other’s labels to decide on their own label. Col-
lective classification methods have been devised to classify test instances in a network
simultaneously, based on each other as well as training data.

Collective classification [6, 15, 27] algorithms aim to classify networked data when
the test nodes and their links to other test nodes and training nodes are known. In collec-



tive classification, first a base classifier is trained using both content and link informa-
tion in training data. Then, using a collective inference method, test nodes are iteratively
labeled, based on their content and neighbor information. Especially when there is class
autocorrelation among the neighboring nodes in the network, test nodes are able take
advantage of their neighbors’ class information and collective classification improves
classification accuracy [11]. Iterative Classification Algorithm (ICA), Gibbs Sampling
and Relaxation Labeling [15, 27] are common methods of collective inference. Collec-
tive inference methods have been studied in detail in the works of [15] and [27].

Different choices of base classifiers that are able to use content and neighbors’ link
information, such as naive Bayes, logistic regression, decision trees, k-nearest neigh-
bors, have been used in the literature [27, 21, 11, 19, 17]. The base classifier takes as
input, usually, the content features of the node being classified and relational features,
which are usually an aggregation of the class labels of the other linked instances [27,
19, 17]. However, when content and relational features show different characteristics it
may not be optimal to have a single classifier to combine all of those features. Also, if
there are multiple content types, such as text, images and audio on a web page or link
types such as direct or co-citation links on a web page, citation or bibliography links
on scientific papers, SMS or call links in call detailed record (CDR) data or family,
work, friend links on a social web site, it is hard to input all those features into a single
classifier while still obtaining a good generalization performance. Certain content or
link types may be better suited to identify certain classes and putting all of them into a
single feature vector would harm that discrimination ability. Moreover, for certain types
of content, certain choices of local classifier may be known to perform better, for exam-
ple SVMs have been known to perform well for text categorization [12], while hidden
Markov models are used for speech [24], and therefore it could be better to use different
choices of classifiers for each content type.

In this paper, we investigate different methodologies of base classifier construction
for collective classification. First of all, in order to be able to handle multiple content
or link types or content types that require a certain classifier, we suggest that a different
classifier is trained for each content type and link type. Then, we investigate different
methods of combining these classifiers, namely taking the average, maximum and lo-
cally weighted averaging, in order to get good training and test accuracies. We show
that, classifier combination increases classification accuracy and can achieve results as
good as ICA. We investigate the performance of our algorithms and the performance
of content only, link only classification and the traditional ICA algorithm which uses
content appended by the aggregated neighbor labels. For performance comparison, we
use both real and synthetic datasets.

The rest of the paper is organized as follows. In Section 2, we introduce the notation
used in the paper and also the collective classification algorithms in general and ICA
(Iterative Classification Algorithm) algorithm in particular. Section 3 gives details on
the classification and classifier combination methods we introduce in this paper. Related
work is given in Section 4. Section 5 describes the real and synthetic datasets used in the
experiments and their properties and experimental setup. The results of the experiments
are given in Section 6. The discussions are in Section 7.



2 Background

2.1 Notation

Before we give details of the algorithms we use for classification of networked data, in
this section, we first give the notation.

We assume that we are given a networked dataset represented by a graph G =
(V,E) with nodes (vertices) V and undirected and unit weight links (edges) L =
{u, v}, u, v ∈ V .

We assume that there is a classification problem with C classes. Each node u has
a C dimensional label vector r(u) ∈ {0, 1}C which uses 1-of-K representation and
shows the class of the node. Some of the vertices are in the training set Vtrain whose
labels are known, while the rest are in the test set Vtest whose labels will be predicted.
Note that, Vtrain ∩ Vtest = ∅ and Vtrain ∪ Vtest = V . Ltrain ⊂ L contains the links
which are between two training nodes, while Ltest contains links between test nodes as
well as links between training and test nodes.

Each node u ∈ V (whether it is in the training or test set) also has anm dimensional
feature vector x(u) ∈ {0, 1}m.

In traditional machine learning, the classification problem to be solved would be:
Given the independent and identically distributed feature vectors of the training nodes
and their labels, x(u) and r(u), u ∈ Vtrain, find a mapping g(x(u)) : {0, 1}m →
{0, 1}C , which best approximates the relationship between feature vectors and labels
so that the expected accuracy (acc) of g on any unseen test node v is maximized. It
is assumed that both the inputs for training data and the test data come from the same
distribution and they are independent. Since the classifier g(x(u)) uses only the input
features, we will call it the content only classifier g(x(u)) = gCO(x(u)).

On the other hand, in transductive learning [32], we assume that we are given a
specific test set and our goal is to perform as well as possible on that specific test set
and not necessarily on all possible test inputs. The goal of transductive learning can be
stated as the maximization of the test classification accuracy:

acc(g, Vtest) =
1

|Vtest|
∑

v∈Vtest

1− δ[gCO(x(v)), r(v)]. (1)

Here δ[p, q] returns 1 if two vectors p and q differ in at least one position. Transductive
learning algorithms try to find the test output assignments that minimize the accuracy on
the test set, which is a simpler problem than computing a target function that minimizes
the expected test accuracy for all possible test inputs [32]. Note that, in transductive
learning, we do not need a classifier gCO but only the estimated labels for the test set.

When not only the training node features, but also links between them are given,
the link information can be used for classification. Usually link information of not the
whole graph but only the neighbors of a specific node are taken into account, therefore
we need to define the concept of a neighborhood. Let SPG(u, v) denote the number
of edges (hops) on the shortest path between two nodes u and v ∈ V , and assign
SPG(u, u) = 0 and if u and v are not connected, then SPG(u, v) =∞. For each node
u ∈ V , the h-neighborhood function Nh(u) returns a set of nodes which according to



the links L are neighbors of the node u that are at most h hops away from u:

Nh(u) = {v : SPG(u, v) ≤ h}. (2)

We use the shortened notation of N(u) when h = 1 or is specified in advance. The
neighborhood function returns a set of nodes which may be empty. We also define a
label aggregation function that takes the set of labels of neighbors of the node and
returns a C dimensional real vector. Among different aggregation functions available,
in this paper, we use the count aggregation and define the aggregated labels of a node
u’s neighbors as:

rNh
(u) =

∑
v∈Nh(u)

r(v). (3)

Based on the labels of the neighbors only, a classifier, which we call the link only
(LO) classifier gLO(rNh

(u)) can be trained on the training data. Since the training
nodes’ labels and links are given, the aggregated labels can be computed for the whole
training data. On the other hand, when the test nodes need to be classified, the actual test
labels are not known. Collective classification algorithms such as Iterative Classification
Algorithm (ICA) or Gibbs Sampling [15, 27] let test nodes iteratively label and relabel
each other until a stable solution is achieved.

When both node features and links are known, a classifier that uses both the content
features of the node and labels of the neighbors have been used in [27]. We will call
this classifier the content and link classifier gCO,LO([x(u) rNh

(u)]) which has m+ C
features consisting of the m node features and the C dimensional aggregated label
vector of the neighbors.

2.2 Collective Classification

In order to determine a node’s label, collective classification uses three types of in-
formation about it: The node’s observed attributes (content), observed attributes of the
node’s neighbors, observed labels of the node’s neighbors [27]. First of all a base clas-
sifier using link (relational) and content features is trained on training data. In order
to create fixed size feature vector, content features are appended with an aggregation
of link features around the node (usually labels of neighbors) and used as input to the
base classifier. Test nodes are first labeled using the content information. Then they are
relabeled using the base classifier and predicted labels for their neighbors, until labels
converge.

Iterative classification algorithm (ICA) is a popular and simple approximate col-
lective inference algorithm [27, 15]. Despite its simplicity, ICA was shown to perform
as well as the other algorithms such as Gibbs Sampling [26]. Pseudocode for the ICA
algorithm (based on [27]) is given in Algorithm 1. In the pseudo code, r̃(u) stands
for temporary label assignment of instance u in the test set. gCO,LO([x(u) rNh

(u)]) is
the base classifier which is first trained on training nodes and their neighbors from the
training set. The base classifier uses the estimated labels of the neighbors if they are test
nodes. O is a random ordering of test nodes.



Algorithm 1 r̃(Vtest) = ICA(G,Vtrain, Vtest, gCO,LO())

for all u ∈ Vtest do
Compute r̃Nh(u) using only neighbors in Vtrain

Set r̃(u)← gCO,LO([x(u) r̃Nh(u)])
end for
repeat

Generate ordering O over nodes in Vtest

for all u ∈ O do
Compute r̃Nh(u) using current label assignments to nodes in Nh(u)
Set r̃(u)← gCO,LO([x(u) r̃Nh(u)])

end for
until all labels are stabilized or threshold number of iterations

3 Collective Classification Using Heterogeneous Classifiers

Collective classification algorithms use a base classifier which is trained on training
content and link data. The base classifier inputs usually consist of the content vector
concatenated with an aggregation vector of neighborhood class information. In this
paper, we evaluate different methodologies of base classifier construction for collective
classification.

These methodologies are summarized in Table 1. In Table 1, gCO, gLO, gCO,LO are
classifiers (such as logistic regression, kNN, SVM) which return the estimated class
labels for a given input node. In Content Only (CO) classification gCO classifier and in
link only (LO) classification gLO classifier are trained only on content and link infor-
mation respectively. gCO,LO is the classifier frequently used [27] for ICA which takes
the content features of the node appended by its aggregated neighbor classes as inputs.
gCO,LO is just one of the possibilities of using both content and link information in
classification. Especially when content and link features are classified better by differ-
ent classifiers, it may not make sense to just join the feature vectors and give them as
input to a single classifier as in ICA.

We propose that the content (gCO) and link (gLO) classifiers should be first trained
on training data. The link only classifier (gLO) uses an aggregation of neighbor labels,
which may not be available for the test nodes. Therefore, we perform ICA using gLO

only and obtain estimates for the test node labels using the link information. Test node
labels can also be directly estimated using the content only classifier gCO. These two
estimates can now be combined using different classifier combination [14] techniques.

In this paper we use three different classifier combination methods:

– wAV E (weighted Average) method computes a weighted average of the classi-
fier gCO and gLO’s outputs. Different classifers may perform better for different
neighborhood (in link or content) of nodes. In order to be able to take into account
classifier’s performance for each node separately, we introduce αCO(u) ∈ R and
αLO(u) ∈ R which are local classifier weights for content and link only classifiers.
The weights αLO(u) can be determined locally, based on the correct classification
rate of the gLO classifier in the neighborhood of u according to edges in the link
graph GLO = G. In order to compute αLO(u), we first find nodes which are in the



h-neighborhood of u in graph GLO, Nh,GLO
(u). (See Equation 2. We introduce

GLO in Nh,GLO
(u), so that it is clear that the neighborhood is according to the

GLO graph.) Then we compute the local average accuracy of the classifier gLO

within Nh,GLO
(u) as:

αLO(u) = acc(gLO, u) =
1

|Nh,GLO,train(u)|
∑

v∈Nh,GLO,train(u)

acc(gLO, v). (4)

HereNh,GLO,train(u) denotes nodes from training data which are in h-neighborhood
of node u in GLO graph.
Similarly, in order to determine αCO(u), we first create a graph GCO based on
the content similarities of the nodes. We use cosine similarity and match similarity
in this work, however other similarity measures could also be used. In the content
graph, we join nodes whose similarity are above a threshold whose value is chosen
so that the average degree of the content graph GCO is as close as possible to
the average degree of the link only graph G. Once the content graph is produced,
αCO(u) = acc(gCO, u) is produced similar to Equation 4, but usingGCO and gCO

instead of their LO counterparts.
If a test node is too far away from training data in G there may not be any training
nodes within its h neighborhood. The same could happen for a test node too far
away from training data in the content graph GCO. When that is the case, instead
of the local weights αCO(u) or αLO(u), their averages over the whole GCO and G
graphs are used.
In order to compute the αCO(u) and αLO(u) estimates, we need to determine the
values the number of hops, h∗CO and h∗LO, that will be examined in αCO(u) and
αLO(u) computations. We can determine these values based on the training data
as follows: We compute the correlation (Pearson Correlation Coefficient, to be pre-
cise) between accuracy of a classifier on a node and also the local average accuracy
of the classifier within the h neighborhood of the node. We choose the number of
hops to be examined as the number of hops which maximizes this correlation.

– AV E (Average) method returns the average of the outputs of the gCO and gLO

classifiers on a node.
– MAX (Maximum) method takes the maximum of the class probabilities produced

by gCO and gLO for each class to be the probability of that class. The class which
has the maximum among these combined estimates is chosen as the label for a
node.

Table 1: Base Classifier Construction Methods
Method Abbreviation Formula

Content Only CO gCO(x(u))

Link Only LO gLO(rNh(u)(u))

Iterative Classification Alg. ICA g([x(u) rNh(u)(u)])

Average AVE AV E(gCO(x(u)), gLO(A(N(u)))

Maximum MAX MAX(gCO(x(u)), gLO(A(N(u)))

Local Average wAVE AV E(αCO(u)gCO(x(u)), αLO(u)(rNh(u)(u)))



4 Related Work

There have been studies, mostly using relational classifiers, that combine a number of
classifiers for collective classification.

A local (content) classifier together with an ensemble of relational classifiers have
been used by [23]. The aim of [23] is to produce a generic relational ensemble model
that can incorporate both relational and local attributes for learning. They address issues
related to heterogeneity, sparsity and multiple relations. They introduce a new method
called PRNMultiHop which tries to handle the sparsity problem. Instead of consider-
ing only the directly linked nodes, they consider two nodes as linked if they can be
reached at most in a certain threshold number of hops. They compare their results with
RBC, RPT and RDN. On Cora and CompuScience datasets they show that their method
PRN2MultiHop outperforms those three methods. Ensemble classification works as fol-
lows: They train a base classifier using the local features and a relational classifier for
each type of relational feature (link type), then they combine the results of these classi-
fiers using stacking or voting. Stacking gives better results than voting.

Local methods of classifier evaluation have been used to improve collective clas-
sification in a number of studies. [2] points out the fact that label autocorrelation may
be different in different regions of the graph. They compute the global and node neigh-
borhood autocorrelation using Pearson’s corrected contingency coefficient. They also
compute the probability of each label (output) for a node given the neighborhood of a
node globally on the whole graph and locally around the specific node for which a label
will be computed. They use a linear combination of these two probabilities as the label
probabilities. In order to compute the weight of the local model, they use the number of
labeled neighbors of the node. [16] utilize local and global relevance of a node in order
to identify functionally important nodes. For global relevance they use the distribution
of the shortest path lengths averaged over destination persons from a source person.
Clustering coefficient of a node is used to compute its local relevance.

Stacked graphical models [9, 13] which use a different method of base classifier con-
struction is also related to our work. In stacked graphical models, first a base classifier
is trained using content features, then the content features are appended with relational
features which are produced using class estimates for the related instances using the
learned model. In [9] it is shown that stacked graphical models perform better than tra-
ditional collective classification local models, because instead of using aggregation of
actual labels they use predicted labels and have smaller bias.

McDowell and colleagues’ work on ICA with meta classifier (ICAMC)[18] is also
related to our work. In (ICAMC), first a single (node) classifier is trained for collective
classification. Then meta-features that try to capture the classifier performance for each
node are produced and another meta-classifier is trained on these features. Using feature
selection on meta-features, [18] obtains better accuracies than ICA.



5 Experimental Setup

5.1 Datasets

In this section, we give details on the CoRA and CiteSeer scientific publication datasets
and synthetic datasets which are used in the experiments below.

Cora and Citeseer Datasets The Cora and Citeseer datasets have been used in collec-
tive classification literature [27]. These datasets are downloaded from the Statistical Re-
lational Learning Group web site (http://www.cs.umd.edu/projects/linqs/projects/lbc) at
the University of Maryland. Both datasets consist of information on scientific papers.
As features, the words that occur at least 10 times are used. For each paper, whether
or not it contains a specific word, which class it belongs to, which papers it cites and
which papers it is cited by are known.

Synthetic Datasets In order to create synthetic networked data for collective classifi-
cation, we propose a method that allows varying content and link relevances with the
class label and varying dependence (redundancy) between content and link. As in the
”content based” networks of [4], we generate content and link bits, and based on their
link similarity we connect the nodes in the network.

We assume that the data generated consist of a graph G = (V,E) with nodes V and
vertices E. For any node in V, class label is assigned based on the complete knowledge
of a vector of length m with elements from a certain set U = {1, 2, . . . , C} where
C ≥ 2 is the number of classes. For a certain node u ∈ V , the complete m-element
feature vector is denoted by z(u) and its ith element is denoted by z(u, i). Based on
the complete feature vector each node is assigned to one of C classes according to the
mode of the complete feature vector, i.e. r(u) = k where k = mode z(u, i), ties broken
randomly if there are multiple modes.

A number of elements, 0 ≤ mc,ml,ms ≤ m are designated for content, link and
shared (between content and link) features respectively and these satisfy mc + ml −
ms = m. Content features x(u) are the first mc elements of z(u). Link features are
determined as l(u) = [z(u,mc)z(u,mc + 1), . . . , z(u,m− 1)]. (Please see Figure 1.)
The lengths of content and link feature vectors determine their relevance. Note that by
using different portions of z(u) for different content and link features, the synthetic data
generation algorithm can be extended to multiple views.

Content features x(u) are produced for each node u. In order to produce links be-
tween nodes, a similarity measure between their link features is needed. In this paper
an integer power of inverse normalized hamming distance is used. For any two nodes
u, v ∈ V , their link feature similarity is defined as:

siml(u, v) =

(
1−

∑ml

i=1[l(u, i) = l(v, i)]

ml

)a

(5)

where a > 0 is an integer which is used to control the degree distribution of the graph
produced, and [TRUE] = 1 and [FALSE] = 0.



Fig. 1: Partitioning of the elements of the complete feature vector for synthetic data
generation.

In order to create a networked dataset with N nodes we use Algorithm 2. In the
RandomizeElements() algorithm, each bit is chosen as 1 with probability Pbias and 0
with probability 1−Pbias. Different values of Pbias can be used to control the difficulty
of the classification problem.

Algorithm 2 G = Build(N)

V ← {}
for i← 1 . . . N do
v ← CreateVertex()
v ← RandomizeElements(v)
v ← DetermineLabel(v)
V ← V ∪ {v}

end for
E ← {}
for all (v, w) ∈ V × V, v 6= w do

if Random() < Similarity(v, w) then
E ← E ∪ {(v, w)}

end if
end for
G← (V,E)

For the synthetic datasets used in this paper, elements come from U = {1, 2} and
hence there are two classes. The number of content and link bits are all chosen to be
mc = ml = 32. For three different synthetic datasets (Synthms0, Synthms16, Syn-
thms32), the number of shared bits are ms = 0, 16, 32, resulting in the total number
of bits of m = mc + ml − ms = 64, 48, 32 respectively. Datasets produced have
N = |V | = 1000 nodes and |E| = 3000 links. The value of Pbias used was 0.75.

Table 2 shows the total number of features, nodes, links and classes for each dataset.
We also compute different graph properties for both the original G = GLO graph and
the constructed GCOgraph.

5.2 Sampling

Class distribution based random sampling, which tries to preserve class distribution of
the dataset as much as possible, is used during sampling of training, validation and test
sets in the experiments.



5.3 Classification Methods

A base classifier which is trained on node features and local connectivity information is
needed for collective classification. In this paper, we use logistic regression (LR), Sup-
port Vector Machine (SVM), Naive Bayes (NB), Bayes Net (BN), k-Nearest Neighbor
(kNN, k=3) for the gCO, gLO and gCO,LO classifiers. For all of the methods Weka
implementations with default parameters (unless otherwise noted) have been used.

6 Experimental Results

6.1 Analysis of Average Local Accuracy Values

In Figure 2, we show the correlation between the accuracy acc(u) of a node u and the
average accuracy of its neighbors α(u) for the Cora dataset. Since accuracy depends
on the classifier used, we show the correlations when logistic regression and Bayes net
classifiers are used. For link only classification, the average local accuracy values are
more correlated with accuracy for logistic regression classifier. On the other hand, for
content only classification, the correlation is higher for the Bayes net classifier. As it
can be seen in the figures, usually the correlation between the accuracy of a node and
its neighbors decreases as the size of the neighborhood (h in Nh(u)) increases. Except,
with the content only classifier, the correlation is maximized for a neighborhood of size
2.
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Fig. 2: Correlation between accuracy of the classifier at a node and its accuracy within
the h-hop-neighborhood of the node for Cora dataset and using logistic regression clas-
sifier.

6.2 Performance of Different Classifiers

First of all, we conducted experiments on the synthetic datasets Synthms0, Synthms16,
Synthms32, using Logistic Regression (LR), Support Vector Machine (SVM), Naive
Bayes (NB), Bayes Net (BN), k-Nearest Neighbor (kNN) classifiers. Table 3 shows
the accuracies obtained when content only (CO), link only (LO) classifiers and ICA



are used with a specific classification method for each dataset. For these experiments,
for αCO and αLO computations the number of hops to explore for neighborhood was
chosen to be h∗CO = h∗LO = 2.

For CO classification, while LR, SVM, BN and NB give similar accuracies, kNN
usually gives worse accuracies. On the other hand, for LO all classifiers perform simi-
larly.

As the number of shared bits (ms) increases the total number of bits m decreases
and the information in content and link views increase. For this reason as ms increases,
classification accuracies of both CO and LO methods increase. The LO classifier per-
forms usually worse than the CO classifier, because instead of all ml bits, it has access
to only the aggregated neighbor labels as input. We also see how ICA is affected from
the dependency between CO and LO views in Table 3. For the Synthms0 dataset, the
number of shared bits is zero and therefore those two views have minimum correlation.
Therefore, ICA performs better than both CO and LO classification. Using ICA with
LR and SVM still results in some accuracy increase for Synthms16 and no less accu-
racy than CO or LO for Synthms32. However, with the other classifiers ICA does not
necessarily result in an accuracy increase. Therefore, we conclude that, in addition to
as recognized by other authors, homophily, correlation between CO and LO views are
also an important factor in determining the success of ICA. The less correlated the CO
and LO views, the more chances of ICA resulting in better classification accuracy.

Table 4 shows the accuracies obtained when different classifiers are used on Cora
and CiteSeer datasets. While for the synthetic datasets the number of input bits m was
low and most classifiers performed similarly, this is not the case for the Cora and Cite-
Seer datasets, whose input dimensionalities are in the thousands (see Table 2). For the
CO classification, SVM, NB and BN classifiers usually performed better than the oth-
ers. We think that this is due to the high input dimensionality of the content features.
On the other hand, for LO classification LR outperformed the other methods. Since
the LO homophily of Cora dataset is higher than the CiteSeer, the LO accuracies are
also higher. For the Cora dataset, instead of using thousands of features in CO clas-
sifier, simply using the aggregated class neighbors in LO classifier results in a better
accuracy. This is expected since both datasets have high homophily and LO (and ICA)
benefits from homophily. For both real datasets, BN method gives the best results for
ICA and ICA performs better than CO methods. However, again due to high link graph
homophily, ICA performs just a little better than LO accuracies.

6.3 Performance of Classifier Combination

For the synthetic dataset, classification accuracies for the same type of CO and LO
classifiers and using the three different classifier combination methods are given in the
last three columns of Table 3. All three combination methods result in accuracies at
least as good and mostly better than ICA.

For the Cora and Citeseer datasets, some classifiers were shown to be better than
the others for CO and LO classification. Therefore, classifier combination results for
different types of classifiers and for each classification method are given in Table 5
for the Cora dataset. In the first row of the table, when the best performing classifiers
for CO and LO classification, BN and LR respectively, are used, classifier combination



results in as good accuracy as that of ICA. When the LO classifier is changed to BN
(second row of the table), classifier combination accuracies are still close to that of
ICA. In the last row of the table, classifier combination results when the GCO graph
is produced according to match similarity (instead of cosine) are shown. The wAV E
method performance is significantly reduced when the content graph is produced using
the match similarity, which points out to the fact that the similarity measure used for
content graph construction affects the graph produced and neighbors found for each
node, therefore content similarity measure is quite important for the performance of the
wAVE classifier combination method.

Table 2: Graph Properties for Synthetic Data, Citeseer and Cora
Synthms0 Synthms16 Synthms32 Cora Citeseer

Dataset Size 1000 1000 1000 2708 3312
# of Content Features 32 32 32 1433 3703
# of Classes 2 2 2 7 6
# of Links(Link) 2072 2207 2230 5429 4591
# of Links(Content) 2065 2070 2230 31873 21212
Average Degree(Link) 4,14 4,41 4,46 3,898 2,7391
Average Degree(Content) 4,13 4,14 4,46 23,54 12,809
Homophily(Link) 0,732 0,757 0,803 0,8252 0,7099
Homophily(Content) 0,75 0,751 0,803 0,0787 0,2719
Clustering Coefficient(Link) 0,0967 0,1024 0,1136 0,2931 0,2429
Clustering Coefficient(Content) 0,0873 0,0961 0,1136 0,884 0,8805

Table 3: Accuracies Obtained on Synthetic Datasets using Different Classifiers
DataSet-Cls CO LO ICA AVE MAX wAVE

Synthms0-LR 0,88 ± 0,01 0,79 ± 0,02 0,93 ± 0,01 0,93 ± 0,01 0,93 ± 0,01 0,93 ± 0,01
Synthms0-SVM 0,88 ± 0,01 0,80 ± 0,02 0,93 ± 0,01 0,94 ± 0,01 0,94 ± 0,01 0,93 ± 0,01
Synthms0-NB 0,88 ± 0,01 0,78 ± 0,02 0,92 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,94 ± 0,01
Synthms0-BN 0,87 ± 0,01 0,78 ± 0,02 0,92 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,93 ± 0,01

Synthms0-kNN 0,82 ± 0,01 0,79 ± 0,02 0,84 ± 0,01 0,89 ± 0,01 0,89 ± 0,01 0,89 ± 0,01
Synthms16-LR 0,92 ± 0,01 0,80 ± 0,01 0,94 ± 0,01 0,95 ± 0,01 0,95 ± 0,01 0,94 ± 0,01

Synthms16-SVM 0,92 ± 0,01 0,81 ± 0,01 0,93 ± 0,00 0,95 ± 0,01 0,95 ± 0,01 0,94 ± 0,01
Synthms16-NB 0,93 ± 0,01 0,81 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,94 ± 0,01
Synthms16-BN 0,93 ± 0,01 0,81 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,92 ± 0,01 0,94 ± 0,01

Synthms16-kNN 0,85 ± 0,01 0,81 ± 0,01 0,85 ± 0,01 0,90 ± 0,01 0,89 ± 0,01 0,89 ± 0,01
Synthms32-LR 0,97 ± 0,01 0,87 ± 0,01 0,97 ± 0,01 0,97 ± 0,01 0,97 ± 0,01 0,97 ± 0,01

Synthms32-SVM 0,97 ± 0,01 0,88 ± 0,01 0,97 ± 0,01 0,97 ± 0,01 0,97 ± 0,01 0,97 ± 0,01
Synthms32-NB 0,97 ± 0,01 0,86 ± 0,01 0,94 ± 0,01 0,94 ± 0,01 0,94 ± 0,01 0,95 ± 0,01
Synthms32-BN 0,97 ± 0,01 0,86 ± 0,01 0,93 ± 0,01 0,93 ± 0,01 0,93 ± 0,01 0,95 ± 0,01

Synthms32-kNN 0,90 ± 0,01 0,87 ± 0,01 0,87 ± 0,01 0,89 ± 0,01 0,89 ± 0,01 0,89 ± 0,01

7 Discussion

In this paper, we have shown that for link only or content only classification, based on
the characteristics of inputs, different classifiers may perform better than the others for



either link or content. We have also shown that instead of using ICA on a classifier
trained with content features appended by link features, simply combining the content
only and link only classifiers may result in as good or sometimes better performance.

We experimented with local evaluation of content and link only classifiers and deter-
mining how they should be combined. Local average neighbor accuracy is one possible
method of classifier assessment. We have seen that the similarity measure used in con-
tent graph generation plays an important role in weighted average combination result.
Determinining the optimal similarity measure, the one that maximizes the homophily
in the content only graph, is an interesting problem that we are planning to investigate
in the near future.

Synthetic data experiments have shown that, in addition to homophily, correlation
between content and link views also plays an important role in the collective classifi-
cation performance. Just like classifier combination [14] which benefits from diversity
and accuracy of classifiers, both collective classification and combination of content
only and link only classifiers also benefit from both accuracy and diversity of content
only and link only views. We have seen that when content and link are not correlated,
both collective classification and classifier combination gave better results than using
link only or content only classifiers. On the other hand, when both content and link
views carried the same information, ICA actually resulted in worse accuracies.

Generation of synthetic graphs which exhibit different graph properties (such as
degree distribution, clustering coefficient, homophily) using different content genera-
tion mechanisms and similarity computations and determining performance of different
learning algorithms on them is another important future research direction.

Finally, when there are a number of different types of content or link, training sepa-
rate classifiers for them and then combining them would allow efficient use of multiple
link and content types for classification. Experimenting on real multiview and multilink
data is another possible future research direction.

Table 4: Accuracies Obtained on Cora and CiteSeer Datasets Using Different Classifiers
D. No Acc(CO) Acc(LO) Acc(ICA)

Cora-LR 0,63 ± 0,01 0,85 ± 0,01 0,72 ± 0,01
Cora-SVM 0,73 ± 0,01 0,64 ± 0,02 0,76 ± 0,01
Cora-NB 0,73 ± 0,01 0,70 ± 0,02 0,80 ± 0,01
Cora-BN 0,73 ± 0,01 0,78 ± 0,01 0,86 ± 0,01

Cora-KNN 0,50 ± 0,01 0,81 ± 0,01 0,57 ± 0,01
Citeseer-LR 0,58 ± 0,02 0,68 ± 0,02 0,61 ± 0,02

Citeseer-SVM 0,75 ± 0,01 0,66 ± 0,02 0,75 ± 0,01
Citeseer-NB 0,71 ± 0,01 0,59 ± 0,03 0,74 ± 0,01
Citeseer-BN 0,71 ± 0,01 0,65 ± 0,02 0,77 ± 0,01

Citeseer-KNN 0,35 ± 0,02 0,65 ± 0,02 0,37 ± 0,02



Table 5: Cora Dataset Classifier Combination Accuracies for different experiments.
Experiment CO LO ICA AVE MAX wAVE

CO-BN,LO-LR, cos BN LR BN
h∗
CO = h∗

LO = 2 0,73 ± 0,01 0,78 ± 0,02 0,86 ± 0,02 0,87 ± 0,01 0,86 ± 0,00 0,87 ± 0,01
CO-BN,LO-BN, cos BN BN BN
h∗
CO = h∗

LO = 1 0,73 ± 0,01 0,78 ± 0,01 0,86 ± 0,01 0,84 ± 0,01 0,83 ± 0,01 0,82 ± 0,01
CO-BN,LO-BN, match BN BN BN
h∗
CO = h∗

LO = 1 0,73 ± 0,01 0,79 ± 0,01 0,86 ± 0,01 0,85 ± 0,01 0,83 ± 0,01 0,78 ± 0,01
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