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ABSTRACT
We investigate Gene Ontology (GO) Molecular Func-
tion prediction using alignment scores between protein se-
quences. We introduce a binary classification algorithm
called Double Threshold Classifier (DTC). The parameters
of the algorithm are two alignment score thresholds. In or-
der to classify a sequence, DTC uses the alignment scores
between the sequence and sequences in the training set. The
algorithm decides on the class of the sequence based on the
score distribution of positive and negative training examples
with respect to the upper and lower thresholds.
We compare the DTC algorithm’s performance to k-Nearest
Neighbor Classifier (KNN) and Nearest Mean Classifier
(NMC). As feature vectors, both KNN and NMC use the
alignment scores between a sequence and the training se-
quences. On a GO Molecular Function dataset consisting
of 1890 proteins and 7 classes, DTC outperforms both KNN
and NMC. The 10-fold cross validation accuracy of DTC al-
gorithm is around 83.40%, while the accuracies for KNN and
NMC are 68.44% and 71.00% respectively. The total (train-
ing + test) running time of the DTC is also better than both
KNN and NMC.

1. INTRODUCTION
The protein sequence databases have been growing with
great speed, while the amount of proteins whose function are
known does not increase as fast, because determining protein
function experimentally is an expensive and time consuming
process. On the other hand, determining functions of pro-
teins is crucial in a number of fields, such as cancer detection
and personalized drug design. Hence, automatic prediction
of protein function becomes an important research area.
One of the most used protein function annotation databases
is the Gene Ontology (GO) [2, 10] database. In this study
we investigate prediction of GO Molecular Function of pro-
teins, based on the sequence alignment scores of proteins.
GO Molecular Function data have been used in a number
of studies. For example, Protein Function Prediction (PFP)
[13], ProtFun [15], Proteome Analyst (PA) [22].

In order to predict function, some studies have used the
features extracted from the sequences, SVMProt [12] us-
ing PROFEAT features [17] is an example of this approach.
Using sequence alignment scores as features is another ap-
proach followed in, for example, [18]. With these and other
features, machine learning methods, such as Support Vector
Machines (SVMs) [12, 23] and neural networks [16] have
been used for function prediction.

There has been a link between sequence identity and func-
tion and this link has been interpreted in different ways in dif-
ferent studies. [8] mentions that sequence alignment meth-
ods, such as Needleman-Wunsch or Smith-Waterman, are
known to be good at detecting homologs whose sequence
identity is greater than 40%. According to [20] “for about 40
to 60% of all sequences from current genome projects, se-
quence homology suggests some aspects of function. How-
ever, a firm conclusion about function is not always clear”.
On the other hand [24] claims that “for pairs of domains that
share the same fold, precise function appears to be conserved
down to ∼40% sequence identity, whereas broad functional
class is conserved to ∼25%. Interestingly, percent identity
is more effective at quantifying functional conservation than
the more modern scores (e.g. Pvalues).”

One of the goals of this paper is to shed some more light on
the sequence alignment scores and thresholds on them within
the framework of GO Molecular Function classes.

In addition to determining thresholds, we also introduce the
Double Threshold Classifier (DTC) Algorithm, which uses
these thresholds to predict whether a sequence belongs to a
certain function class or not.

The rest of the paper is organized as follows: In section 2
we introduce the DTC algorithm. Section 3 reviews the other
classification algorithms that we compare DTC against. The
dataset we use is explained in Section 4. Section 5 goes
through the alignment method that we use. Section 6 con-
tains the results of our experiments and Section 7 concludes
the paper.



2. DOUBLE THRESHOLD CLASSIFIER
ALGORITHM

Based on the idea that, strong homology could point to func-
tion identity we wanted to base our classification algorithm
on sequence alignment scores.
The classification algorithm that we introduce, Double
Threshold Classifier (DTC), is a binary (one-against-all)
classifier. In other words, it considers the members of a spe-
cific class as positive examples and the rest of the examples
as negative examples. Therefore, for each molecular function
class, there will be a separate classifier. It is also possible to
combine the results of these individual classifiers to make an
exact decision on the class, but we do not concentrate on this
problem in our work.
Formally, let Pos denote the set of all positive examples in
the training set and s(x, y) be the pairwise alignment score
of two protein sequences x and y. We define four predicates
for each test example x:

Pstrong(x) : ∀y ∈ Pos s(x, y) > tupper

Pweak(x) : ∃y ∈ Pos s(x, y) > tupper

Nstrong(x) : ∀y /∈ Pos s(x, y) > tlower

Nweak(x) : ∃y /∈ Pos s(x, y) > tlower (1)

where tupper and tlower are the score threshold parameters
of the classifier. Accordingly, we decide that x is a positive
example if:

Pstrong(x)∨¬Nweak(x)∨(Pweak(x)∧¬Nstrong(x)). (2)

In equation (1), Pstrong(x) and Pweak(x) corresponds to
strong and weak belief that sequence x is a positive instance
respectively. Similarly, Nstrong(x) and Nweak(x) corre-
sponds to strong and weak belief that sequence x is a nega-
tive instance. Equation (2) classifies x as a positive example
if any of the following holds, x is strongly positive or x is not
weakly negative or x is both weakly positive and not strongly
negative.
We experimented to find the best values of tupper and tlower.
Based on those experiments (Figure 1), the score thresh-
olds tupper and tlower are optimized between 30% and 40%.
When we use the whole data set to optimize these param-
eters, the accuracy is maximized when tupper = 39% and
tlower = 26%. However, to avoid using apriori knowledge
about the data, the experiments are done for constant values
of tupper = 40% and tlower = 30%. We think that it is
interesting that the threshold values pointed out by [24], 25
and 40%, are quite close to the ones we found for the GO
Molecular Function classes.

3. OTHER CLASSIFICATION ALGORITHMS
Each feature vector we consider consists of more than 1000
dimensions (i.e. alignment scores of the sequence to all
training sequences). Not all classification algorithms were
suitable such a high dimensional input space. For example,
according to our experiments, both Support Vector Classi-
fier (SVC) and Linear Discriminant Classifier (LDC) failed

Figure 1: Prediction accuracy while tupper and tlower change
at the same time.

to generate reasonable (i.e. significantly more than 50%
accurate) results. We found out that k-Nearest Neighbor
(KNN) and Nearest Mean Classification (NMC) algorithms
produced better results and hence, in this paper, we chose to
compare DTC to these two algorithms.

3.1 KNN
k-Nearest Neighbor Classifiers (KNN) have been used in
many pattern recognition applications and are very simple
and intuitive. KNN needs very small training time, because
it does not really need to learn any parameters, but only need
to store the training data. In prediction (testing) mode, KNN
decides on the class label based on the majority label of the
closest training data. Closest is according to a distance or
similarity metric. In this study, we use the Euclidean distance
between the feature vectors as the distance metric. Since the
distance between the test input and all training data needs to
be computed, KNN suffers from long prediction times.

3.2 NMC
Nearest Mean Classifier (NMC) represents each class using
the mean of the training data in that class. NMC algorithm
is also known as centroid based classification and has been
known to produce very good results for document catego-
rization [11]. NMC labels a given example with the closest
class label, hence it is very fast in recognition phase.

4. DATA SET
Protein function prediction differs from protein domain clas-
sification. Usually SCOP [7, 21] database is used for domain
classification and chains (domains) instead of the whole pro-
tein needs to be classified as belonging to (possibly multi-
ple) domains. For GO function prediction, which proteins
exhibit which function is available through the Protein Data
Bank PDB [4, 6] database. However, we do not know which
chain(s) in the protein are responsible for the function.
In order to compare different function prediction methods,



abbr. GO Molecular Function # proteins
bin binding 907

(GOID:5488)
cat catalytic act. 665

(GOID:3824)
enz enzyme regulator act. 54

(GOID:30234)
sig signal transducer act. 54

(GOID:4871)
str structural mol. act. 40

(GOID:5198)
trc transcription reg. act. 97

(GOID:30528)
trp transporter act. 73

(GOID:5215)
total 1890

Table 1: Number of proteins in each GO Molecular Function
Class we considered.

we use the function categories under GO Molecular Func-
tion. We find out the PDB ID’s of protein sequences that
exhibit those functions through the PDB database. We only
consider proteins whose chains contain between 50 to 150
amino acids.

Table 1 shows the molecular functions we consider and the
number of proteins. We choose only proteins with a single
chain because then we are sure that the function is exhibited
by that specific chain. Note that we do not consider other

categories since they contain less than 40 proteins.

5. SEQUENCE ALIGNMENT SCORES

We obtained the similarity scores between all sequences un-
der the categories in Table 1 using ClustalW [3, 14] algo-
rithm, which is a multiple alignment algorithm.

ClustalW is a well documented and open source program
that can run on many platforms. It has been used in many
studies and is very easy to use. We considered other align-
ment programs also. For example palign [9, 19] was reported
to give more informative scores than ClustalW in [8]. How-
ever we could find very little documentation on the program.
We also used blastpgp [1, 5], howevever we found out that we
could not obtain any results at all for some of our sequences
and we also found out that the order in which the sequences
were given could make a big impact on the score obtained
from blastpgp.

We used ClustalW in slow mode to get the exact pairwise
alignment scores. Each score represents the number of iden-
tities in the best alignment divided by the number of residues
compared (gap positions are excluded) times 100. The pair-
wise score is calculated independently of the substitution ma-
trix (such as PAM, Dayhoff, Gonet) and gaps chosen.

GO Mol.Fn. DTC KNN NMC DTC % better
bin 68.29 57.03 58.20 19
cat 74.12 60.29 62.87 21
enz 93.12 80.31 76.19 16
sig 92.23 83.14 77.61 11
str 91.88 68.86 71.21 32
trc 78.78 64.97 73.05 19
trp 85.38 64.45 77.85 27

Avg 83.40 68.44 71.00 21
Std 3.12 3.11 2.42

Table 2: Average 10-fold cross validation accuracies of DTC
(Double Threshold Classifier), KNN (K-Nearest Neighbor)
and NMC (Nearest Mean Classifier). The last two rows show
the average and standard deviation of the accuracies for all
the molecular function classes.

6. RESULTS
DTC can only be used for binary classification. Therefore,
we train a classifier per GO Molecular Function in Table 1.
We use the sequences that belong to the Molecular Function
category as positive examples and all the other sequences as
negative examples.
In order to evaluate the performance of the algorithms, we
use 10-fold cross validation. We partition the training data
into 10 different partitions. For i=1. . . 10, we use the ith par-
tition for validation and the rest of the data for training. We
report the average of the validation accuracies.
Table 2 shows the average prediction accuracies for each
Molecular Function and classification algorithm. The er-
rorbars on these averages are on the order of 1 to at most
4. According to Table 2, DTC is always better than NMC
and KNN. The last column shows the percentage difference
between DTC accuracy and best of NMC and KNN for the
Molecular Function for each row. DTC is 11 to 32 % better
than DTC and NMC for different Molecular Function cate-
gories and it is 21 % better on the average.
In table 3 confusion matrix entries for DTC are shown. The
number of TN and FP entries are large because there are
more negative examples than positive examples for each of
the binary classification problems.
Finally, Table 4 shows the time it takes to train and test each
of the classifiers for all of the 10-fold cross validation runs.
As expected, KNN is fast to train and and slow to test and
NMC is slower to train and fast to test. DTC is faster than
KNN to train and it is almost as fast as NMC to test. Hence
when the sum of train and test times are considered, DTC is
faster than both algorithms.

7. CONCLUSIONS AND FUTURE WORK
We have introduced the DTC (Double Threshold Algorithm)
which is a fast and accurate method that can be used for
GO Molecular Function prediction. We have also found out
that 30% and 40% sequence alignment score thresholds are



GO Mol.Fn. TP TN FP FN
bin 835 437 546 72
cat 620 673 552 45
enz 53 1624 212 1
sig 52 1626 210 2
str 38 1640 210 2
trc 70 1535 258 27
trp 62 1568 249 11

Table 3: Confusion Matrix entries of DTC (Double Thresh-
old Classifier). TP: True Positive, TN: True Negative, FP:
False Positive, FN: False Negative.

DTC KNN NMC
Training time (sec) 0.02 2.05 624.08
Testing time (sec) 1.72 103.24 1.32
Total time (sec) 1.73 105.28 625.40

Table 4: The training, test and total time (in seconds) of DTC,
KNN and NMC algorithms to process all 1890 proteins for
10 cross validation runs.

important for functional identity in GO Molecular Function
classes.
We are planning to continue our work using a bigger data
set than the one we used here. We also intend to extend DTC
so it can be used not only for binary but also for multiway
classification. Finally we are planning to compare the per-
formance of DTC to other function prediction methods, such
as using PROFEAT features and SVM for example.
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