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Abstract— Receiver Operating Characteristics (ROC)
curves have long been used to evaluate classifier perfor-
mance in many fields (e.g. signal detection and machine
learning). The ROC curve provides information on the
tradeoff between the hit rate (true positives) and the false
alarm rates (false positives). In order to draw the ROC
curve both positive and negative examples are needed.

In some applications, for example, machine condition
monitoring, cancer detection, there are plenty of negative
examples. However the positive examples are either rare,
or do not fully describe the overall set of the possible pos-
itive examples. However, instead of the positive examples,
some rules about the positive examples are available. For
example, in machine condition monitoring, if a sensor drifts
off from the set of observed states by a certain amount, we
know that a fault has occurred.

In order to use the ROC curve to evaluate classifiers, we
artificially create the positive examples based on the appli-
cation dependent rules and the existing negative examples.
Then we draw the ROC curve using this set of positive and
negative examples.

I. INTRODUCTION

Receiver Operating Characteristics (ROC) curves have
long been used to evaluate classifier performance in many
fields [2, 5, 9] The ROC curve provides information on the
tradeoff between the hit rate (true positives) and the false
alarm rates (recalls or false positives).

After a classifier is trained using the training set, it is
tested on a test set. Let the test inputs be xi ∈ Rk and
the test outputs be ti,∈ {True, False}, i = 1 . . . ,M . Let
the classifier (model) outputs for the ith test input be and
yi ∈ {True, False}. Then the true positive (TP) rate (or
sensitivity) is defined as:

TP rate =
∑M

i=1
ti= True AND yi=True

∑M

i=1
ti= True

The false positive (FP) rate (or 1-specificity) is:

FP rate =
∑M

i=1
ti= False AND yi=True

∑M

i=1
ti= False

The ROC curve is produced by showing the FP rate on
the x axis and the TP rate on the y axis. A classifier with
a single TP and FP rate corresponds to a point on the ROC
curve.

Most classifiers have internal threshold parameters that
affect whether the output is True or False. By moving the
threshold parameter an ROC curve is obtained for a classi-
fier for different threshold values.

Area under the ROC curve (AUC) (for example [1, 4]) is
the sum of the ROC values for a classifier when the thresh-
old value changes between certain two values. Area under
the ROC is between 0.5 (random guessing) and 1.0 (per-
fect classifier). AUC can be used to compare performance
of different classifiers.
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Fig. 1. Classifier 1 is better than 2 and 2 is better than 3. Clas-
sifier 3 has an AUC of 0.5.

Recently ROC area has been investigated by different
authors. In [7] Provost et.al. showed that for comparison
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of different classifiers, ROC is better than classification ac-
curacy. In [8] Provost et.al. used the ROC convex hull
(ROCCH) method to compare classifiers under different
cost and class distributions. They also investigated meth-
ods of combining classifiers to end up with a robust hybrid
classifier. In [6] Mozer et.al. worked on designing a clas-
sifier that achieves a certain TP and FP rate based on the
domain requirements. In [3] Fawcett investigated differ-
ent strategies for evaluating rule sets when the goal is to
maximize the ROC performance.

The rest of the paper is organized as follows: In section
2 we describe the machine condition monitoring problem
and describe how to extend it so that the ROC analysis
can be used to compare different models. In section 3
we describe our algorithm for producing positive exam-
ples based on a clean (all negative) data set and user deter-
mined rules (thresholds per sensor). In section 4 we show
the ROC curves computed this way for a two sensor ma-
chine condition monitoring problem for different nearest
neighbor classifiers. We concluse the paper with discus-
sions in section 5.

II. MACHINE CONDITION MONITORING

In machine condition monitoring, the machine are op-
erated under normal conditions and sensor data are col-
lected. This sensor data is used for training and calibrat-
ing (testing) a model that best describes the data set. Any
future sensor reading significantly different from the train-
ing/calibration set needs to be caught up as early as possi-
ble. (Please see figure 2.)

Although the goal is to be notified if the sensor readings
(∈ Rk) are not normal, it is also very important to know
which sensor reading is not normal. Hence, instead of a
Rk → R mapping, the model needs to do an Rk → Rk

(auto-associative) mapping, indicating which sensor went
wrong. Hence, the ROC analysis for a model consists of
k ROC curves, one curve per sensor. When comparing
different models, a weighted sum of the cost of these ROC
curves can be used. We define cost at a certain TP, FP value
as Cost(FP, TP ) = Cn ∗ (1−TP )+Cp ∗FP where Cn

and Cp are the costs of false negatives and false positives
respectively. In machine condition monitoring we are in-
terested not on the whole ROC area, but only area around
the TP values that correspond to the thresholds given by
the analyst.

Machine condition monitoring data is very unbalanced,
in the sense that the positive (faulty sensor) data is actually
not in the training data. The analyst tries to assess the per-
formance of a model by adding disturbances to the training
data and noting if the model can recognize the added dis-
turbance early enough. Early enough is usually expressed
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Fig. 2. Sensor readings in time 1:80 are used as training data.
There are faults in the test data. Sensor2 drifts off.

in terms of a threshold per sensor.
The ROC curve can not be produced unless both nega-

tive (clean) and positive (faulty) sensor data is available.
In the next section, we give an algorithm to produce the

faulty data based on the analyst specified sensor thresholds
and the training data.

III. ROC IN THE ABSENCE OF POSITIVE EXAMPLES

In order to be able to use the ROC curve, we first set
aside a portion of the original training set as the validation
set. The training and validation sets (for a specific parti-
tion) will be denoted by:

Xtrain = {x′
1, . . . , x

′
Ntrain

} (1)

Xvalidation = {x′′
1 , . . . , x′′

Nvalidation
} (2)

Xtest = {x1, . . . , xM} (3)

where Ntrain + Nvalidation = N which was the original
training set.

The labels Ttrain and Tvalidation are all False, because
the training data is clean. The labels for the test set Ttest
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may contain positives. Let the threshold for each input
coordinate be di, i = 1, . . . , k, where k is the input di-
mensionality. Let Di denote a vector with 0 s everywhere
except di at the ith coordinate.

Given positive thresholds per sensor di ∈ R, i =
1, . . . , k, in order to compare any two classifiers C1 and
C2 we use the following algorithm:

Train both classifiers on the training data.
Extend the validation set based on each validation input

and sensor thresholds as follows:
for each input coordinate i (1, . . . , k)
for each original validation input x′j (1, . . . , Nvalidation)
u = x′

j + Di

includeOK = true
for each original validation input x′jj (1, . . . , Nvalidation)
if |u − x′

jj| < [d1, . . . , dk] for all input coordinates
includeOK = false
if includeOK == true, add u and True to the validation

set.

u = x′
j − Di

includeOK = true
for each original validation input x′jj (1, . . . , Nvalidation)
if |u − x′

jj| < [d1, . . . , dk] for all input coordinates
includeOK = false
if includeOK == true, add u and True to the validation

set.
Compute the ROC curve for each classifier using the ex-

tended validation set.
The classifier with less cost average (with respect to sen-

sors) around the thresholds di is better classifier.
The extended validation set contains both negative

(from the original validation set) and positive (from the
disturbed validation set) inputs. If sensors show variety in
terms of likelihood of faults, direction of faults, or if faults
come in multiple sensors, the above extension of the vali-
dation set should be modified accordingly.

The positives in the extended validation set form an en-
velope around the validation inputs. (See figure 3 for ex-
ample.)
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Fig. 3. Positive examples created for hypothetical data.

curve, Radiology, 143, pp. 29-36.
[5] Metz, C. E. (1978) Basic principles of ROC analysis, Sem-

inars in Nuclear Medicine, 8, pp. 283-298.
[6] Mozer, M. C., Dodier, R., Colagrosso, M. D., Guerra-

Salcedo, C., & Wolniewicz, R. (2002) Prodding the ROC curve:
Constrained optimization of classifier performance, In T. Diet-
terich, S. Becker, & Z. Ghahramani (Eds.), Advances in neu-
ral information processing systems XIV, Cambridge, MA: MIT
Press , pp. 1409-1415.

[7] Provost, F., Fawcett, T. and Kohavi, R. (1998) The case
against accuracy estimation for comparing induction algorithms,
Proc. 15th International Conf. on Machine Learning, Morgan
Kaufmann, San Francisco, CA, pp. 445–453.

[8] Provost, F., Fawcett, T. (2001) Robust Classification for
Imprecise Environments, Machine Learning, vol. 42, no. 3, pp.
203–231.

[9] Zweig, M.H., Campbell, G. (1993) Receiver-operating
characteristic (ROC) plots: a fundamental evaluation tool in
clinical medicine, Clinical Chemistry, 39, pp. 561-577.


