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INTRODUCTION
The North Anatolian fault is a major 

(~1500 km long) continental strike-slip fault 
characterized by large earthquake ruptures 
(Fig. 1; Barka and Kadinsky-Cade, 1988). The 
North Anatolian fault in the Sea of Marmara 
region (western Turkey) underwent the 1912 
Mürefte earthquake (Ms 7.3 ± 0.35; Ambraseys 
and Jackson, 2000) and the 1999 Izmit earth-
quake (Mw 7.4; Barka et al., 2002) at the west-
ern and eastern ends of the Sea of Marmara, 
respectively (Fig. 1). At least 250 km of the 
North Anatolian fault might have ruptured dur-
ing these 2 events, leaving a 70–150-km-long 
seismic gap in the Sea of Marmara (Ambraseys 
and Finkel, 1987; Barka et al., 2002). This large 
uncertainty is mostly due to the poorly known 
eastern extension of the 1912 earthquake rup-
ture in the Sea of Marmara. Previous studies of 
the 1912 earthquake suggest 56–160 km of rup-
ture length (Ambraseys and Jackson, 2000; Alti-
nok et al., 2003; Le Pichon et al., 2003; Altunel 
et al., 2004; Armijo et al., 2005; Karabulut et 
al., 2006) leaving the eastern end of rupture as 
a matter of debate. Therefore, a better constraint 
of the 1912 fault rupture termination and related 
seismic characteristics is critical for seismic 
hazard assessments in Istanbul and surrounding 
regions (Hubert-Ferrari et al., 2000).

We present here the 1912 earthquake fault 
geometry and slip distribution based on aerial 
photographs, satellite imagery, digital elevation 
models, bathymetry, and fi eld measurements. 

We combine on-land investigations with the off-
shore fault section mapped in previous studies. 
The detailed fault geometry and related 1912 
slip distribution on land provide hints for the 
fault extension offshore. The analog seismic 

records allow us to deduce a focal mechanism 
solution and a rupture duration model. The total 
fault length, related geometrical complexities, 
and seismic characteristics are discussed to 
determine the Sea of Marmara seismic gap.

GANOS FAULT SEGMENT
The ENE-WSW–trending Ganos fault is a 

rupture segment at the westernmost section of 
the North Anatolian fault before it enters the 
North Aegean Trough from the Gulf of Saros 
(Fig. 1). The on-land fault appears along a nar-
row linear valley and forms geomorphic struc-
tures typical of strike-slip faults (releasing 
or restraining bends and stepovers). Figure 2 
shows the fault between Gaziköy and Saros 
mainly delineated through stream offsets with 
cumulative slip varying from 10 to 600 m. The 
fault segment extends offshore where recent 
high-resolution bathymetric data and multi-
channel seismic data show clear fresh fault 
scarps in the Sea of Marmara and in the Aegean 
Sea (Armijo et al., 2005; Ustaömer et al., 2008). 
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ABSTRACT
The Ganos fault is the westernmost segment of the North Anatolian fault that generated the 

9 August 1912 Mürefte (Ganos) earthquake in western Turkey (Mw = 7.4). We study the 1912 
earthquake characteristics using coseismic fault slip and fault segmentation coupled with an 
analysis of historical seismic records. Surface ruptures with small releasing and restraining 
structures and 1.5–5.5 m right-lateral offsets have been measured at 45 sites of the on-land 
~45-km-long fault section. Similar structures are delineated by fresh fault scarps and promi-
nent pull-apart basins in the Sea of Marmara and Saros Bay. A second shock with Mw = 6.8 
occurred on 13 September 1912, implying a 20–40-km-long rupture; the damage distribu-
tion and analysis of seismic records suggest an epicenter located farther west near Saros Bay, 
near the western termination of the 9 August rupture. Modeling of seismic records reveals a 
relative source time function between the two events and indicates 40 s rupture duration, in 
agreement with a 120 ± 30 km-long fault rupture for the 9 August shock. An estimated 150 
± 30 km-long rupture for the two earthquakes, combined with onshore and offshore fault seg-
mentation, allow us to better constrain the western limit of the Marmara Sea seismic gap and 
the related potential for a large earthquake (sharply increased by the devastating 1999 Izmit 
[Sea of Marmara] seismic event).
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Figure 1. Seismotectonics of western Marmara region. Focal mechanisms are from Harvard 
Centroid Moment Tensor catalog (http://www.globalcmt.org/; date as day-month-year [e.g., 
060703] and Mw indicated at bottom), and A.D. 1912 solution is obtained from P-wave fi rst mo-
tions at stations PUL, GTT, EBR, TOL, and HKJ. Offshore fault trace (black lines) is modifi ed 
from Armijo et al. (2005) and Ustaömer et al. (2008). White and yellow stars are 9 August and 
13 September 1912 epicenters, respectively (±0.1°; Ambraseys and Jackson, 2000). Roman 
numerals indicate MSK (maximum intensity in Medvedev-Sponheuer-Karnik scale) intensi-
ties of 13 September event (Hecker, 1920). Upper left inset indicates 1912 earthquake location 
relative to 1939–1999 earthquake sequence. Lower right inset shows isoseismals (dashed 
lines) of 9 August earthquake (EQ) and Marmara seismic gap (Ambraseys and Finkel, 1987). 
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The offshore fault zone east of Gaziköy forms a 
restraining bend (i.e., Tekirdağ bend; 17° ± 3°) 
and can be traced in the Sea of Marmara toward 
the Central Basin as a nearly east-west–trending 
continuous rupture (Fig. 1; Okay et al., 2004). In 
Saros Bay, the on-land Ganos fault extends far-
ther west for an additional minimum 40 km, as 
shown by clear offshore fault scarps (Ustaömer 
et al., 2008; McNeill et al., 2004).

1912 EARTHQUAKE SEQUENCE
The 9 August 1912 earthquake occurred along 

the Ganos fault with an epicenter near Mürefte 
village (Fig. 1; Ambraseys and Finkel, 1987; 
Ambraseys and Jackson, 2000). The earthquake 
was followed by numerous aftershocks, caused 
severe damage in the Thrace region, and was 
recorded worldwide at more than 56 instru-
mental seismic stations (Mihailovic, 1927). 
Field investigations carried out within a few 
days and weeks after the mainshock resulted in 
three key contemporaneous earthquake reports 
(i.e., Macovei, 1913; Mihailovic, 1927; Sadi, 
1912) that provide ample descriptions of sur-
face faulting, landslides, and detailed accounts 
of damage distribution. Coseismic surface rup-
tures were visible all along the ~45 km on-land 
section of the Ganos fault (Fig. 2), and con-
temporaneous photographs show remarkable 
mole tracks in fi elds near Mursallı and Gaziköy 
(Figs. DR1 and DR2 in the GSA Data Reposi-
tory1; Mihailovic, 1927). The maximum dam-
age, localized between Tekirdağ and Mürefte, 
indicates Io = IX–X MSK (maximum intensity 
in Medvedev-Sponheuer-Karnik scale; Fig. 1; 
Ambraseys and Finkel, 1987). The earthquake 
size determined from historical seismic records 
and fi eld observations yields Ms = 7.3 ± 0.3 

(Ambraseys and Jackson, 2000) and Mw 7.4 
(Altunel et al., 2004), respectively. Since the 
1912 Mürefte earthquake and the 1999 Izmit 
earthquake have essentially the same size (i.e., 
Mw 7.4), one may assume that both events have 
a comparable rupture length (120 ± 20 km). Tak-
ing into account the 45-km-long surface rupture 
onshore, ~75 km rupture should be offshore.

A second large event, recorded in at least 
17 worldwide seismic stations, occurred on 
13 September 1912 (Fig. 1; I0 = VII MSK, 
Hecker, 1920; Ms 6.8 ± 0.35, Ambraseys and 
Jackson, 2000). Using a regional bilinear rela-
tion, Ambraseys and Jackson (2000) estimated 
a 2.19 × 1019 Nm seismic moment (Mw 6.8) 
and suggested a 37-km-long coseismic rupture 
for this large second shock. Contemporary and 
recent analyses of seismic records locate the 
event around Saros Bay, west of the fi rst shock 
(Walker, 1912; Mihailovic, 1927; Ambraseys 
and Jackson, 2000). The shock caused further 
damage with new landslides along the Gelibolu 
peninsula and Ganos region. In addition, wide-
spread liquefaction occurred in the Saros region 
(Hecker, 1920; Ambraseys and Finkel, 1987). 
The damage and size of the event, signifi cant 
enough to rupture the entire seismogenic zone, 
suggest that the 13 September earthquake is 
most likely the southwest continuation of the 9 
August rupture rather than a large aftershock.

In order to study the 9 August mainshock, 
we collected 73 historical seismic records that 
also include the 13 September 1912 earthquake 
(e.g., Fig. 3A; Fig. DR3); in the case of histori-
cal seismograms it is useful to have access to 
the record of a similar but a relatively smaller 
earthquake from the same station to eliminate 
the infl uence of unknown parameters. This is 
the base of the empirical Green function (EGF) 
approach, fi rst proposed by Hartzell (1978) and 
further developed in the past 30 yr (e.g., Velasco 
et al., 1994; Vallée, 2004). The EGF method 
involves the deconvolution of the smaller earth-

quake waveform from the large one, giving a 
good estimate of the source time function of the 
larger earthquake. We digitized seismograms of 
both shocks to study seismic source properties 
and used the deconvolutive approach proposed 
by Vallée (2004). The mainshock body waves’ 
deconvolution from the smaller 13 September 
event (Fig. 3B) at Taranto station (TA1, Italy) 
provides the relative source time function shown 
in Figure 3C. Inspection of this source time 
function shows that the wave emission lasted 
40 s; this may correspond to the source dura-
tion of the 9 August event. The relative source 
time function also indicates that the moment 
ratio between the 9 August and 13 September 
shocks is ~30, which corresponds to a factor 
of 0.9–1 difference in magnitude (Fig. 3C). 
Although limited by the results on a single 
seismic station (TA1), the duration implies 
a minimum 110 ± 30 km coseismic rupture 
length at 2–3.5 km/s rupture propagation; here 
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from editing@geosociety.org or Documents Secretary, 
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Figure 2. Ganos fault onshore and A.D. 1912 coseismic slip distribution (in meters). Yellow 
boxes correspond to measures of this study. EQ–earthquake. 

Figure 3. A: Historical seismic record col-
lected and digitized for this study. B: Digitized 
seismogram of Taranto station (Italy) and 
waveform modeling showing comparison 
between real (gray) and reconstituted (black) 
9 August 1912 shock. C: Relative source time 
function of 9 August 1912 and 13 September 
1912 earthquakes gives ratio of 0.9–1 in mo-
ment magnitude and ~40 s rupture duration.
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we disregard supershear velocities and bilateral 
propagation as observed during the 1999 Izmit 
earthquake along straight fault section simi-
lar to the Ganos fault (Bouchon et al., 2002). 
Although most seismograms are for north-south 
and east-west components, P-wave polarities at 
5 stations (Fig. 1) and a fi eld-based N68°E fault 
strike show a strike-slip mechanism (Fig. 1).

The size of the 9 August shock (Ms = 7.3 
± 0.3; Ambraseys and Jackson, 2000) corre-
sponds to Mo = 1.23 1020 N m using the Ekström 
and Dziewonski relation (1988). Assuming 2.0–
3.0 m average slip and 15–18 km fault width, 
the seismic moment implies a 130 ± 15 rupture 
length, in agreement with the wave form analysis.

FAULT GEOMETRY AND COSEISMIC 
SLIP DISTRIBUTION

The 1912 on-land rupture is clearly visible 
along strike due to pressure ridges, sag-ponds, 
stepovers, shutter ridges, and coseismic right-
lateral offsets (<6 m; Figs. 2 and 4A). The sur-
face rupture and coseismic slip illustrate fault 
discontinuities at depth that may cause stress 
concentrations signifi cant enough to arrest rup-
ture propagation (Wesnousky, 2006).

The N68°E trending on-land rupture shows 
three 20–30-km-long geometrical segments sep-
arated by two releasing basins (<1 km in width; 
Figs. 2 and 4A). Typical strike-slip rupture 
morphologies associated with Riedel shears are 
illustrated in historical documents (Mihailovic, 
1927) at sites where we observe 3–5 m right-
lateral slip near Gaziköy and Mursallı village 
(Figs. DR1 and DR2).

Ambraseys and Finkel (1987) suggested 
a maximum 3 m of right-lateral slip for the 9 
August 1912 Mürefte earthquake. The previ-
ously reported offsets of Altunel et al. (2004) 

are not evenly distributed along strike and form 
gaps at the two tips of the inland section. Our 
study raises the number of slip measurements 
from 31 to 45 offsets, and fi lls the gaps along 
the fault (Figs. 2 and 4). The right-lateral dis-
placements range from 1.4 to 5.5 m, most being 
>3 m, since only large offsets are preserved 
today. Many offsets larger than 4 m (maximum 
5.5 m) are measured along the Güzelköy subseg-
ment and 5–5.4 m right-lateral slip is measured 
on the eastern tip of the Yeniköy subsegment 
(Fig. 4). On the Saros subsegment, Rockwell et 
al. (2009) estimated a 4.5 m right-lateral offset 
related to the 1912 earthquake. Considering the 
lack of minimum offsets, the overall slip distri-
bution indicates an average of 2.5 m with 4.5 
and 5 m offsets at the western and eastern fault 
tips of Saros and Gaziköy, respectively. This 
implies that the 1912 rupture continued offshore 
into Saros Bay and the Sea of Marmara.

The offshore fault scarp mapped by Armijo 
et al. (2005) in the Sea of Marmara and by 
Ustaömer et al. (2008) in Saros Bay suggests 
the existence of submarine geometrical seg-
ments (Fig. 4). A signifi cant restraining bend 
(17°) is observed between the on-land linear 
strike-slip fault and the N88°E trending 65 km 
offshore fault from Gaziköy to the Central 
Basin (Figs. 1 and 4). Here, a displaced ridge 
along the Western High subsegment displays 6 
± 1 m of right-lateral slip, presumably due to the 
1912 earthquake (Armijo et al., 2005; Fig. 4), 
but it may also include the penultimate event. 
Ustaömer et al. (2008) documented a N68°E 
trending impressive fresh fault scarp in Saros 
Bay that affects the Saros shelf and the Saros 
Basin (Fig. 1), where we note the existence of 
clear cumulative right-lateral offset (that likely 
includes the 1912 faulting event) visible on 

ridges and stream channels. The linear fault 
geometry in the shelf is followed farther west by 
a complex dissected fault system within a 5-km-
wide half-graben structure (Saros Basin; Fig. 1; 
Ustaömer et al., 2008; McNeill et al., 2004). The 
1912 surface rupture, slip distribution, and com-
plex fault geometry both on land and offshore 
depict a discontinuous fault geometry at depth, 
where the 7-km-wide Central pull-apart basin, 
the Ganos 17° bend, and the 5-km-wide Saros 
half graben basin may act as major obstacles to 
the rupture propagation.

DISCUSSION AND CONCLUSIONS
Our recent fi eld investigations of the 1912 

Ganos fault segment document the on-land rup-
ture geometry and related segmentation with 
slip distribution (Figs. 1 and 2). A maximum 
5.5 m of right-lateral slip is measured on land 
along the Ganos fault, from which we infer an 
average 2.5 m of slip, comparable to the 1999 
Izmit earthquake (Barka et al., 2002). We pro-
vide a strike-slip focal mechanism for the fi rst 
mainshock from P-wave arrivals. Using seis-
mic records of the 9 August and 13 September 
shocks from the Italian TA1 station, we per-
formed a deconvolution modeling and obtained 
an ~40 s source duration for the fi rst shock. 
Field measurements of coseismic slip and fault 
segmentation and estimated 120 ± 30 km long 
fault rupture are consistent with the inferred 
rupture duration (Figs. 1 and 3B) and the earth-
quake size (Mw 7.4). Together, this confi rms that 
a signifi cant portion of the earthquake rupture is 
offshore and, assuming ~30 km rupture length 
for the second shock, the total earthquake fault 
rupture length sums to 150 ± 30 km.

The analysis of the onshore and offshore fault 
geometry indicates that the only major barriers to 
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the earthquake rupture propagation are the Saros 
and Central pull-apart basins (cf. Wesnousky, 
2006). These barriers are comparable to the 
Çınarcık and Düzce basins that stopped the 1999 
Izmit earthquake rupture propagation (Barka et 
al., 2002). If, as suggested by Le Pichon et al. 
(2003) and Altınok et al. (2003), the 9 August 
rupture stops at the Tekirdağ restraining bend, 
the 120 ± 30 km rupture length determined 
from fi eld observations, seismic moment, and 
source time function requires that the 13 Sep-
tember earthquake epicenter be located far west, 
beyond the Dardanelles. However, such a sce-
nario fails to explain the damage distribution 
given by Hecker (1920) and the epicentral loca-
tion estimated by Ambraseys and Finkel (1987). 
In addition, it overlaps the epicenter region 
of the well-defi ned 27 March 1975 Mw = 6.6 
earthquake, which most likely ruptured a sig-
nifi cant portion of the fault in Saros Bay (Fig. 1, 
Ambraseys and Jackson, 2000). Therefore, the 
9 August rupture must have propagated mostly 
into the Sea of Marmara rather than toward 
Saros Bay, and, having crossed the restraining 
bend, necessarily reached the Central Basin, in 
agreement with the Armijo et al. (2005) study. 
The 150 ± 30 km total rupture length includes 
(1) the three segments in the Sea of Marmara 
(~65 km) beginning from the Central Basin, 
(2) the on-land fault section (~45 km), and (3) 
the Saros Bay segment (~40 km) limited by the 
Saros pull-apart basin. The eastern termination 
of the 9 August 1912 rupture and the western 
termination of the 1999 earthquake rupture 
(Çakır et al., 2003) imply a minimum 100-km-
long seismic gap in the Sea of Marmara. This 
fault length suggests an earthquake size, M > 7, 
that should be taken into account in any seismic 
hazard assessment of the Istanbul region.
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