PAGE
II

İSTANBUL TEKNİK ÜNİVERSİTESİ

COMMUNICATION PROGRAM IN AN OFFICE

Graduation Project

Aslı Koçyiğit 498602

Filiz Ünlüşerefoğlu 498664

Advisor : Yrd. Dç. Feza BUZLUCA

July 2002

COMMUNICATION PROGRAM IN AN OFFICE

(SUMMARY)

1. Purpose Of Project

The main purpose of this project is to develop a program which provides communication and coordination between personnel of an office. The application tools are Java 2 SDK Standart Edition v 1.3.1 and Borland JBuilder 3.0 while Windows is the implementation platform.

2. Aim of Project

· Learning the techniques of efficient Network Programming

· Learning Java and developing programs using Java

· Improving to write programs using Object Oriented Programming approach

· Learning SQL

3. Context of Project

This program has two main features which provide the communication and coordination of a staff in an office. The first one is sending message which can be useful in two ways: Instant messaging with an online user and leaving a message to an offline user. The second one is file transfer which enables file sharing between users.

11.
INTRODUCTION

11.1.
Need Of a Network Program

11.2.
Reasons for Using Client/Server Architecture

21.3.
Need of a Communication Program In An Office

21.4.
Reasons For Using Java

42.
THEORETICAL INFORMATION

42.1.
History Of Java

52.2.
Networking

52.2.1.
What is network?

52.2.2.
Client/Server Architecture

62.2.3.
Client/Server Communication

72.3.
Multithreading

72.3.1.
What is Multithreading?

72.3.2.
How does is work?

82.3.3.
Benefits of Using Multithreading

82.3.3.1. Parallelism

92.3.3.2. Throughput

92.3.3.3. Responsiveness

92.3.3.4. Communications

92.3.3.5. System Resources

102.3.3.6. Distributed Objects

102.3.3.7. Same Binary for Uniprocessors and Multiprocessors

102.3.3.8. Program Structure

112.4.
RMI

122.5.
Using Java with Databases

122.5.1.
JDBC API

142.5.2.
Steps Required to Access a JDBC Database

152.6.
Packages Used

152.6.1.
Java.io package

152.6.2.
Java.lang package

172.6.3.
Java.net package

192.6.4.
Java.sql package

212.6.5.
Java.rmi package

232.6.6.
Java.util package

243.
APPLICATION

243.1.
Database

243.1.1.
Password Table

243.1.2.
Status Table

253.1.3.
Message Table

253.2.
Flow Chart of The Program

253.2.1.
Logging into the Program

273.2.2.
The Program Interface

273.2.3.
Send Message Panel

293.2.3.1. Sending Message

313.2.4.
Receive Message Panel

333.2.4.1. Reading an Incoming Message

333.2.4.2. Replying an Incoming Message

343.2.5.
Send File Panel

383.2.6.
Receive File Panel

413.2.7.
Logging Out of the Program

433.3. Classes & Interfaces Used In The Program

433.3.1.
 Classes and Interfaces of Java Packages

433.3.1.1. Java.net package

443.3.1.2. Java.io package

453.3.1.3. Java.lang package

453.3.1.4. Java.sql package

463.3.1.5. Java.util package

473.3.1.6. Javax.swing package

503.3.1.7. Java.rmi package

513.3.2. User Defined Classes

513.3.2.1. Classes On the Client Side

3.3.2.1.1. 51Paket Class

3.3.2.1.2. 51Mesaj Class:

3.3.2.1.3. 53GroupThread Class:

3.3.2.1.4. 54FilePacket Class:

3.3.2.1.5. 55MyFile Class:

3.3.2.1.6. 58Parola4 Class:

3.3.2.1.7. 58Frame4 Class:

3.3.2.1.8. 66ServeClient Class:

3.3.2.1.9. 68ServerThread Class:

3.3.2.1.10. 69FileServerThread Class:

3.3.2.1.11. 69FileThread Class:

3.3.2.1.12. 72QueryClient Class:

743.3.2.2. Classes On the Server Side

3.3.2.2.1. 74QueryImpl Class:

3.3.2.2.2. 76ServerSide Class:

3.3.2.2.3. 76ServeToClient Class:

814.
CONCLUSION

814.1. Assumptions

814.2. Results

835.
REFERENCES

1.
INTRODUCTION

1.1.
Need Of a Network Program

Networking adds a lot of power to simple programs. With networks, a single program can retrieve information stored in many computers located anywhere in the world. A single network program can communicate with millions of people. In addition to these, network programs give an opportunity to people to talk to each other.

Because of the reasons stated above network programming is one of the main issues considered in the computer world.

1.2. Reasons for Using Client/Server Architecture

The client/server computing model provides the means to integrate personal productivity applications for an individual employee or manager with specific business data processing needs to satisfy total information processing requirements for the entire enterprise.

· Enhanced Data Sharing : Data that is collected as part of the normal business process and maintained on a server is immediately available to all authorized users. The use of Structured Query Language (SQL) to define and manipulate the data provides support for open access from all client processors and software. SQL grants all authorized users access to the information through a view that is consistent with their business need. Transparent network services ensure that the same data is available with the same currency to all designated users.

· Integrated Services : In the server/client model, clients does not need to change into terminal mode or log into another processor to access information. All authorized information and processes are directly available from the desktop interface.

· Sharing Resources Among Diverse Platforms : Applications may be created and implemented without regard to the hardware platforms or the technical characteristics of the software. Thus, users may obtain client services and transparent access to the services provided by database, communications, and applications servers. Operating systems software and platform hardware are independent of the application and masked by the development tools used to build the application.

· Data Interchangeability and Interoperability : Almost all the development tools used for client/server development expect to reference a back-end database server accessed through SQL. Network services provide transparent connectivity between the client and local or remote servers.
1.3. Need of a Communication Program In An Office

 A communication software is designed to be used by groups of people sharing information and working together. It lets a group of people use the same information-but often- times in different ways depending on their particular needs.

More specifically, a communication software for an office helps to manage the particular needs of a worker such as exchanging mail, sharing ideas, accessing information, and planning for the future. By using one simple program, a worker can reduce the time to accomplish all of these tasks and increase his performance.

1.4. Reasons For Using Java

According to Sun Microsystems, Java is "simple, object-oriented, statically typed, compiled, architecture neutral, multi-threaded, garbage collected, robust, secure, and extensible."

Reasons of usage is summarized below:

· Simple. Java's developers deliberately left out many of the unnecessary features of other high-level programming languages. For example, Java does not support pointer math, implicit type casting, structures or unions, operator overloading, templates, header files, or multiple inheritance.

· Object-oriented. Just like C++, Java uses classes to organize code into logical modules. At runtime, a program creates objects from the classes. Java classes can inherit from other classes, but multiple inheritance, wherein a class inherits methods and fields from more than one class, is not allowed.

· Statically typed. All objects used in a program must be declared before they are used. This enables the Java compiler to locate and report type conflicts.

· Compiled. Before you can run a program written in the Java language, the program must be compiled by the Java compiler. The compilation results in a "byte-code" file that, while similar to a machine-code file, can be executed under any operating system that has a Java interpreter. This interpreter reads in the byte-code file and translates the byte-code commands into machine-language commands that can be directly executed by the machine that's running the Java program. You could say, then, that Java is both a compiled and interpreted language.

· Multi-threaded. Java programs can contain multiple threads of execution, which enables programs to handle several tasks concurrently. For example, a multi-threaded program can render an image on the screen in one thread while continuing to accept keyboard input from the user in the main thread. All applications have at least one thread, which represents the program's main path of execution.

· Garbage collected. Java programs do their own garbage collection, which means that programs are not required to delete objects that they allocate in memory. This relieves programmers of virtually all memory-management problems.

· Robust. Because the Java interpreter checks all system access performed within a program, Java programs cannot crash the system. Instead, when a serious error is discovered, Java programs create an exception. This exception can be captured and managed by the program without any risk of bringing down the system.

· Secure. The Java system not only verifies all memory access but also ensures that no viruses are hitching a ride with a running applet. Because pointers are not supported by the Java language, programs cannot gain access to areas of the system for which they have no authorization.

· Extensible. Java programs support native methods, which are functions written in another language, usually C++. Support for native methods enables programmers to write functions that may execute faster than the equivalent functions written in Java. Native methods are dynamically linked to the Java program; that is, they are associated with the program at runtime. As the Java language is further refined for speed, native methods will probably be unnecessary.

· Well-understood. The Java language is based upon technology that's been developed over many years. For this reason, Java can be quickly and easily understood by anyone with experience with modern programming languages such as C++.

