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Abstract - In recent years, with increasing use of distributed 

systems, distributed Aspect Oriented Programming (AOP) 

arouses more interest. The way of distributing aspects over the 

network can affect the performance of the program. While 

assigning aspects to hosts, to achieve higher performance, 

properties of the distributed system and relation between 

aspects and objects must be taken into consideration.  In this 

context as a solution for the aspect assignment problem in 

distributed systems we propose two algorithms, namely a 

Genetic Algorithm (GA) and an A* algorithm. We evaluate the 

efficiency of these two algorithms by using a simulator on 

heterogeneous distributed systems, where hosts and 

communication lines have different properties. It is shown that 

the GA is more favorable than A* algorithm for larger systems 

with many nodes while for smaller systems A* may be 

preferable. The simulation results indicate that the properly 

assignment of aspects to hosts improves the performance of a 

distributed aspect oriented program. 

Keywords: Aspect Oriented Programming, Distributed 

Systems, Task Assignment, Genetic Algorithm, A* 

Algorithm. 

 

1 Introduction 

  Aspect-oriented programming (AOP) [1] is a 

programming style that allows programmers to implement 

cross-cutting concerns like logging, tracing, profiling, policy 

enforcement, pooling, caching, authentication, authorization 

and transactional management in a modular way and then 

combine these concerns with a base program through a 

process called weaving. AOP aims at improving the quality of 

the software by decreasing the level of code scattering and 

code tangling known as primary symptoms of non-

modularization.  

         There are lots of AOP implementations that have been 

widely used. Some of these implementations are AspectJ [2], 

AspectWerkz [3], JBoss-AOP [4], PostSharp [5] and Spring 

AOP [6]. AspectJ, which was proposed as an extension of the 

Java language for AOP, is the most prominent 

implementation.  

 In an AOP cross-cutting concerns are defined as a set of 

aspects. An aspect consists of method-like constructs called 

advice. An advice is used to define additional behavior at a set 

of well-defined points called join points in the program‟s 

execution. Join points are matched by a predicate called 

pointcut. AOP weaver maps various crosscutting elements to 

the object oriented constructs. For example, aspects map to 

classes where each data member and method in aspect 

become the members of the class. Pointcuts are intermediate 

elements that map to methods. Advice usually maps to one or 

more methods. The weaver inserts calls to these methods at 

potential locations matching the associated pointcut. During 

the execution of an AOP objects call methods of related 

aspects and mostly objects and related aspects operate on 

common data. 

 Distributed systems are computer systems, in which the 

processing elements are connected by a network. They have 

become increasingly popular in recent years because of their 

high speed and high reliability. In such area, a new paradigm 

called distributed AOP has recently appeared. In distributed 

AOP, aspects can be deployed in a set of hosts.  Remote 

pointcuts [7], which are similar to traditional remote method 

calls, invoke the execution of advices in aspects on remote 

hosts. DjCutter [7], JAC [8], AWED [9], Damon [10] and 

ReflexD [11] are approaches that address distributed AOP. 

 Distributed systems allow programmers to divide 

applications into a number of tasks and execute concurrently 

on different hosts. This process obtains tremendous 

improvement in the performance when the task distribution 

and assignment are applied effectively. A similar problem also 

exists in distributed AOP: How to assign aspects to the hosts 

in the network so that the time required for program 

completion is minimized? 

 While assigning aspects of an AOP to hosts in a 

distributed system several properties of the physical system 

and the program must be taken into consideration. These 

properties are processing capabilities of hosts, parameters of 

communication links, amount of data shared between objects 

and aspects. The assignment of aspects is critical and affects 

the program completion time because when there is a call 

from an object to an aspect (assuming that the object and the 

aspect are assigned to different hosts), exchanging data 

between these object and aspect consumes time. This time 

depends on the amount of the data and the capacity of the link 

which is used during the data transfer. 
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 In this paper we first formulate the aspect assignment 

problem in heterogeneous distributed systems by taking all 

necessary parameters into account and then propose two 

algorithms to solve this problem that occurs in distributed 

AOPs. The first algorithm is based on Genetic Algorithms 

(GA) [18], and the second one is an A* [19] based search 

technique. We also evaluate the efficiency of these algorithms 

for different systems and programs. We compare the increase 

in the performance of the AOP obtained by these algorithms 

with an algorithm that assigns aspects to host randomly. 

Simulation results indicate that the assigning aspects to hosts 

properly using the proposed algorithms can reduce the 

completion time of a distributed aspect oriented program 

almost by half compared to randomly assignment. 

 The rest of this paper is organized as follows. Section 2 

mentions related work. Section 3 gives background 

information on the aspect assignment problem. Section 4 and 

5 present the two algorithms for the problem. Section 6 

compares the efficiency of the algorithms and discusses the 

simulation results. Finally, section 6 concludes the paper. 

2 Related work 

 Task assignment problem in distributed systems, which 

is similar to our aspect assignment problem, is well-known to 

be NP-hard [12]. Many approaches to this problem have been 

identified up to now. However, most of this reported 

approaches yield suboptimal solutions because of the large 

state space. Task assignment approaches can be classified into 

three categories, namely, graph theoretic, integer 

programming and heuristic methods.  

 

 In graph theoretical approach, each task or/and host is 

represented by a node and the cost induced by the 

communication delay between them is represented by a 

weighted edge. The first attempt in graph based approach is 

done by Stone [13]. In Stone‟s work, a Max Flow/Min Cut 

Algorithm is utilized to find assignments which minimize total 

execution and communication costs. 

 

 The integer programming method formulates the model 

as an optimization problem and solves it via mathematical 

programming techniques. For example, Chu [14] formulates 

the problem into a nonlinear integer zero-one programming 

problem and then reduced it to a linear zero-one programming 

problem. 

 

 As the first two approaches attempt to obtain the optimal 

solutions, they search the whole space and therefore need a lot 

of time and memory. Heuristic methods [15][16][17], on the 

other hand, do not pursue the optimal solutions but provide 

sub-optimal fast and effective solutions. They use special 

parameters that affect the systems in indirect ways. 

 

 Although there are a large number of task assignment 

algorithms, none of them is interested in assignment of aspect. 

To assign aspect to processing nodes properly we take the 

following two structures into consideration. Firstly, the 

parameters of the distributed system such as processing 

capabilities of nodes and bandwidths of communication lines 

between them. Secondly, structure of the aspect oriented 

program expressed by the relations between aspects and 

objects such as reference counts, amount of transferred data 

between them. 

 

3 Problem definition 

 In this study we first formulate the problem, how to 

assign aspects of an AOP to hosts in a heterogeneous 

distributed system to increase the performance of the 

program. The assignment problem for aspects in distributed 

systems can be defined as the assignment of k aspects A = {a1, 

a2, ... , ak } to n hosts, H = {h1, h2, ... , hn }. 

 We define our distributed system in the form of 

heterogeneous in which the connected hosts have different 

processing capabilities. In the network Xiq denotes the 

execution cost of aspect ai that is proportional to the 

execution time of the aspect when it is assigned to and 

executed on host hq, 1 ≤ i ≤ k, 1 ≤ q ≤ n. Here we assume that 

each advice in the same aspect has the same load. This means 

that the execution time doesn‟t depend on which advice of an 

aspect is executed. 

 Each communication link in the network has different 

costs of delay, which can be represented by a delay matrix 

D={Dpq}. Dpq denotes the communication cost between two 

hosts hp and hq, which arise because of the communication 

delay when an object located on hp calls an aspect located on 

hq. Further, Dpq=Dqp and Dpp=0. 

 Another parameter that effects the performance of the 

AOP is the relation count defined as how many times each 

aspect instance will be called from each object. These values 

can be obtained from the AOP framework tools. For example, 

AspectJ Development Tools (AJDT) allows programmers to 

register a listener to obtain crosscutting relationship 

information whenever a project is built [21]. Let there are m 

objects, O = {o1, o2, … , om}, then Rij denotes aspect-object 

relation count between aspect ai and object oj. On the other 

hand, when there is a call from an object to an aspect, a 

communication cost is incurred because of exchanging data. 

So, let Cij denotes the communication cost between aspect ai 

and object oj that is proportional to size of data transferred 

between ai and oj. All cost values (Xiq, Dpq, Cij) are normalized 

by assigning one to the smallest positive value in each group. 

 In our study we assume that locations of objects are 

fixed and predetermined according to their specific jobs. We 

focus on distributing and assigning aspects, which are used by 

the objects. Therefore we don‟t consider the execution times 

of objects. So, let Lj denotes the host that object oj is assigned 

to, 1 ≤  Lj ≤ n.  
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 All parameters described in this section can be derived 

explicitly from the distributed system. As an example, the 

parameters of a simple system which is made up of three 

hosts, five objects and four aspects are represented in tabular 

form in Figure 1. 

  

Dpq 
   

Xiq 
 

 h1 h2 h3   a1 a2 a3 a4 

 h1 0 1 3  h1 1 4 2 3 

 h2 1 0 2  h2 3 1 6 2 

 h3 3 2 0  h3 5 6 2 3 

  a. Host Communication Costs    b. Aspect Execution Costs 

Cij o1 o2 o3 o4 o5             Rij o1 o2 o3 o4 o5 

a1 4 1 2 4 4 a1 16 0 11 14 9 

a2 4 1 5 3 2 a2 17 3 9 10 5 

a3 2 2 6 3 5 a3 2 9 0 9 16 

a4 5 2 1 5 4 a4 14 1 14 4 9 

              c. Aspect-Object                    d. Aspect-Object                         

          Communication Costs                Relation Counts    

 

O(j) 1 2 3 4 5 

h(Lj) 1 2 2 3 1 

e. Object Assignments (Lj) 

 

Figure 1. An Example set of system and program parameters 

 The solution of the aspect assignment problem is a 

proper mapping of k aspects to n hosts that will minimize the 

running time of the aspect oriented program. To evaluate the 

efficiency of the assignment procedure we consider the host 

that is maximally loaded by the aspects. Here the load of a 

host is defined as a metric that is proportional to the total time 

consumed by the aspects located on this host during the 

execution of the program. As the hosts in a distributed system 

run parallel the host that needs the longest time to complete its 

aspects is taken into consideration, because it will determine 

the completion time of the whole AOP.  The load metric of a 

host consists of two components. First one is the total running 

time of the aspects on this host and second one is data transfer 

time between these aspects and related objects. Let T is the set 

of aspects that are assigned to host q then the load on host q 

is: 
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where m is the number of the objects and Lj is the host number 

of j
th

 object. 

 The solution has to fulfill two objectives. First, we try to 

minimize the load of the maximally loaded host, which is 

represented by the following cost function F1: 

 nqLoadF q  1),max(1  (2)  

 

This first objective is related to the completion time of the 

aspect oriented program under assumption that all hosts 

operate parallel. Secondly, if there are many aspect 

assignment possibilities, which minimize the F1, the second 

objective is to minimize the sum of load on all nodes, which is 

expressed by the following function F2: 

 




n

q

qLoadF

1

2  (3) 

4 Genetic algorithm 

 Genetic algorithms (GA) [18], which are used for 

solving many search and optimization problems, generate 

solutions using techniques inspired by natural evolution. A 

GA starts by generating a random population of solutions 

(called chromosomes in GAs literature). At each iteration a 

number of solutions are selected for the mating pool 

according to their fitness. Crossover and mutation operations 

are then applied to mating pool in order to produce new 

solutions. The algorithm terminates when either a maximum 

number of generations has been produced or population is 

converged. 

 The first step in designing a GA is to develop a suitable 

representation for chromosomes in the population. In our 

algorithm we use integer representation, with considering the 

relationship between hosts and aspects. For k aspects there are 

k elements (called gene in GAs literature) in the chromosome. 

The value of each gene in the chromosome represents the host 

to which that aspect is allocated. As an example a 

chromosome with four genes is shown in Figure 2. 

                    Aspect:                   1     2     3     4     
               
                    Host (gene): 

 
 

Figure 2. Chromosome representation 
 

 The fitness value of each gene in the chromosome is the 

load on the host that the gene represents (Loadq), which is 

calculated using the equation giving in (1). On the other hand 

the fitness value of the chromosome is the maximum gene 

fitness which is the load on the heaviest-loaded host that is 

represented by F1 as given in (2).    

 In our algorithm, we apply one point crossover operation 

on a pair of chromosomes which is randomly selected from 

the mating pool. One point crossover is accomplished by 

randomly choosing a point along the length of the 

chromosome, and exchanging all genes beyond that point in 

either chromosome. This operation yields two new 

chromosomes. After crossover operation, a mutation 

operation is performed on a randomly selected gene of each 

chromosome with a certain probability. In mutation operation 

the value of a gene is replaced by randomly generated host 

number. 

2     3     1     2      
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 After crossover and mutation operations the worst 

chromosomes, the chromosomes with the highest value of 

fitness (F1) in the population, are replaced by new ones in the 

mating pool. This means that the best chromosomes (the 

chromosomes with the lowest value of fitness) in the 

population are carried to the next generation (called elitism in 

GAs literature). In our algorithm we replace 1 chromosome by 

new ones with better fitness values. If there are many 

chromosomes with the same fitness value (F1), then the 

second objective (F2) comes into play, and the chromosomes 

with the smallest F2 value are selected. The complete GA is 

given in Figure 3. 

Generate initial population (chromosomes represent    
different aspect assignment possibilities, Fitness=F1) 
do { 
  Create mating pool 
  Apply crossover operation 
  Apply mutation operation 
  Apply elitism (Select chromosomes with smallest F1  
  values. If these values are equal select chromosomes  
  with smallest F2 values.) 
  Carry new chromosomes from mating pool to population 
}until(max generation is reached or converged) 

Figure 3. Complete GA 

 

5 A* algorithm 

 A* [19] is a best-first search algorithm, which can 

guaranteed to find the optimal solutions. In a tree 

representation it starts from the root node, expands the 

intermediate nodes and finally reaches one of the leaf nodes. 

At each node, one of the aspects is assigned to a specific host 

as an addition to assignments made at its ancestors. Root node 

is a null solution of the problem. Intermediate nodes represent 

the partial solutions and leaf nodes represent the complete 

solutions. 

 Each node p in the tree maintains a cost function f(p) 

which is computed as f(p) = g(p) + h(p), where g(p) is the cost 

of getting from the root to node p and h(p) is the estimated 

cost of getting from p to the goal node. In our algorithm g(p) 

is calculated using equations (1) and (2) as the load on the 

heaviest-loaded host (F1) of partial assignment. Since, at 

intermediate nodes all aspects have not been assigned yet, 

g(p) is not sufficient solely to express the greatest load F1. 

Future assignments to the same host may increase this load. 

To be able to compare cost values of nodes in different levels 

fairly, possible effect of unassigned aspects on the load is 

added as h(p) to g(p). In our algorithm h(p) is calculated as 

the sum of the object relation counts of aspects that are 

unassigned at node p. Let U is the set of unassigned aspects in 

node p, then h(p) is calculated as follows: 
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 Here h(p) is not a real load value; it is just an estimation 

of the effect of future assignments that is used to compare cost 

values of different nodes fairly. Different functions may also 

be used as h(p). In our study we chose the simple one in (4), 

which provides proper solutions. 

 As an illustration, for the sample system of three hosts, 

five objects and four aspects (see Figure 1) the resulting 

search tree of the A* algorithm is shown in Figure 4. A 

search-tree node includes partial assignment of aspects to 

hosts, and the value of the cost function. A partial assignment 

means that some aspects are unassigned; if there is an „X‟ in 

the place of aspect ai it indicates that i
th

 aspect has not been 

assigned yet. For example in Figure 4 the node with label 5 

shows that aspect a1 has been assigned to host 2, and the value 

produced by the cost function f(p) is 485. The search tree‟s 

depth equals the number of aspects, and any node of the tree 

can have a maximum of n successors, which is the number of 

the hosts. 

 
 

Figure 4. Search tree for A* algorithm 

 The algorithm maintains two lists named OPEN and 

CLOSED. The OPEN list keeps nodes that need to be 

examined, while the CLOSED list keeps nodes that have 

already been examined. When a node is selected from OPEN 

list to be examined, its child nodes are generated and put into 

the OPEN list. The nodes in the OPEN list are ordered before 

the selection according to cost function f(p); that is, the 

algorithm selects the node with the minimum cost. Initially, 

the OPEN list contains just the root node, and the CLOSED 

list is empty. 

 In the example, given in Figure 4, labels show the 

selection order of the nodes for the given system. We start 

with the root node labeled as 1. We examine children of the 

root and select node 2 because it has the lowest cost value 

(292). Then all children of node 2 are added to the OPEN list, 

where children of root still exist. Now node 3 is selected from 
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the OPEN list because it has the smallest cost value and its 

children are added to the list. After that, nodes 4, 5 and finally 

6 are selected from the OPEN list according to their cost 

values. Since node 6 is a leaf node the algorithm terminates 

and the final solution is the assignment of aspects as presented 

on this node. If more than one node have the same smallest 

cost value then the second objective function (F2) is taken 

into account, and the node with the smallest sum of load is 

selected. The complete A* algorithm is as follows: 

Initialize OPEN and CLOSED lists 
(OPEN=root node; CLOSED=EMPTY) 
while the OPEN list is not empty { 
  Get node p off the OPEN list with the lowest f(p)  
  Add p to the CLOSED list 
  if p is the leaf node then return p as solution 
  Generate each successor node p' of p 
  Add p' to the OPEN list 
} 

Figure 5. Complete A* algorithm 
 

6 Experimental results 

 To evaluate the performance of our algorithms firstly, 

we coded our algorithms in Java programming language using 

Eclipse SDK 3.4.2 and compared their speeds for different 

aspect oriented programs by executing them on a server with 

four quad-core 2.60 GHz Intel Xeon CPU processors and 15 

GB main memory, running the Ubuntu Linux 10.04.1. 

Secondly, aspects of different programs are assigned to hosts 

according to solutions obtained by two algorithms and these 

programs are executed on a simulation tool called the 

Asynchronous Distributed System Simulator [20].  We 

compared completion time of programs related to the different 

aspect assignments. 

 The Asynchronous Distributed System Simulator is 

written  in  Java  programming  language  using  a threaded 

architecture and  can  simulate  any  algorithm  that  has  been  

designed  for  the distributed system network. It takes input 

parameters  through an XML  file  which specifies  the  nodes  

in  the network,  the  links  between  the  hosts and the  

algorithm  to  be  run  on  the distributed system. The 

simulator has a queue of messages that represents messages 

that are in transit on the network. Each link has a delay 

associated with it and messages sent using a link are not 

delivered until after the delay period has passed. 

 In our experiments we test our algorithms on a fully 

connected distributed system with five hosts. The host 

connectivity graph of the system is shown in Figure 6, where 

labels on edges show the cost of delays of the communication 

links (Dpq). On this system we try to distribute aspects of three 

aspect oriented programs with different sizes. The programs 

are detailed below: 

 P1 : 10 objects and 5 aspects 

 P2 : 20 objects and 10 aspects 

 P3 : 30 objects and 15 aspects 

 

Figure 6. Host connectivity graph used in experiments 

 

 For each of these programs we generate 10 different 

datasets randomly, which include following properties of 

programs: aspect execution costs (Xiq), aspect-object relation 

counts (Rij), aspect-object communication costs (Cij) and 

object locations (Lj).  Xiq and Cij cost values are generated 

randomly in the range of [1, 10]. Similarly, Rij values are 

generated randomly in the range of [0, 20]. These datasets can 

be found in [22]. 

Table 1. Obtained cost values execution times of two 

algorithms for P1 in milliseconds 

# of 

dataset 

GA A* 

F1 F2 Time F1 F2 Time 

1 1690 6287 441 1690 6287 25 

2 1627 6505 379 1627 6505 43 

3 1713 6173 371 1713 6173 42 

4 1615 7240 425 1615 7240 31 

5 2012 5751 418 2012 5751 43 

6 1838 7057 378 1838 7057 42 

7 1427 5194 368 1427 5194 24 

8 1763 7023 359 1763 7023 38 

9 1985 6994 399 1985 6994 47 

10 1354 5307 363 1354 5307 34 

Average   390   37 

 

Table 2. Obtained cost values execution times of two 

algorithms for P2 in milliseconds 

# of 

dataset 

GA A* 

F1 F2 Time F1 F2 Time 

1 6836 31293 1392 6246 29085 671278 

2 7013 30520 1289 6759 29237 441766 

3 6895 29182 1342 6131 28809 317609 

4 7110 32584 1373 7110 30025 524357 

5 6604 27703 1349 6456 27601 389860 

6 5388 22709 1211 5388 21194 478004 

7 6412 28918 1301 5919 26361 383846 

8 6127 28192 1307 6127 28051 680675 

9 6716 29391 1153 6019 27461 238493 

10 6758 27687 1291 6267 25851 174162 

Average   1301   430005 
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Table 3. Obtained cost values execution times of two 

algorithms for P3 in milliseconds 

# of 

dataset 

GA A* 

F1 F2 Time F1 F2 Time 

1 14701 64427 3556 12078 56246 3935320 

2 13672 61427 3642 12435 59121 9420174 

3 14126 65993 3520 12871 63270 1956809 

4 15334 69969 3387 13115 59602 5884341 

5 13117 60436 3653 12045 55062 5229528 

6 13725 65806 3549 12346 59445 3257284 

7 13543 60250 3675 12053 56469 6977759 

8 13667 64415 3487 12741 58318 7851088 

9 16001 69825 3516 13734 65334 3139030 

10 14588 66789 3520 13291 61567 2761528 

Average   3551   5041286 

 

 Using the results of simulations we evaluate 

performance of our algorithms in two ways. Firstly, we 

consider execution times of algorithms, spent to find a 

solution. Secondly we investigate the completion time of the 

AOP, when the aspects are assigned to host according the 

solutions provided by the algorithms. 

 Tables 1, 2 and 3 provide performance comparison of 

two algorithms by considering obtained cost values (F1 and 

F2) and their execution times for three different programs. 

Results in Table 1 show that GA and A* obtains always the 

same cost values for P1, which is a relative smaller program 

than P2 and P3. In this case A* performs almost 10 times 

faster than GA. When the number of aspects increases A* 

obtains better (smaller) cost values than the GA as it is shown 

in Tables 2 and 3. This means that A* can distribute aspects 

more efficiently than the GA for bigger programs. A* 

achieves about 7% smaller F1 values for P2 and about 10% 

smaller values for P3 compared to the GA. On the other hand, 

with the increase in the number of aspects and objects in the 

program, the execution time of A* increases very fast. For P2 

the GA proposes a solution 300 times faster and for P3 nearly 

1400 times faster than the A*. 

 The relation between the performance of the algorithms 

and the number of objects and aspects in the program can be 

explained as follows. A* algorithm uses a best-first search 

technique that builds a search-tree by visiting the most 

promising nodes first. When the number of nodes in the 

search tree is smaller it quickly reaches the solution node. But 

if the number of aspects increases, nodes in the tree also 

increase and the algorithm spends more time to visit these 

nodes. On the other hand GA uses a random search technique, 

which requires only a certain number of iterations to obtain a 

solution. Therefore if the number of aspects increase the 

execution time of the A* is increased much more that the GA. 

However it is expected that the A* can find optimal solution 

in all cases, while the GA can obtain optimal aspect 

assignments only for relative small systems. 

 In order to validate the efficiency of the aspect 

assignments of two algorithms we run three aspect oriented 

programs on the simulator and measure the completion time 

of these programs under different assignments of aspects. To 

evaluate the performance improvement achieved by our 

algorithms, we created a rival algorithm, namely the random 

assignment algorithm (RAA). The RAA assigns aspects to 

hosts randomly without taking any properties of the system 

and program into consideration. This is our baseline algorithm 

that helps us to observe the speedup obtained by the proposed 

algorithms. We performed the RAA on three programs (P1, 

P2, P3) for each dataset 10 times. We ran these programs on 

the simulator for 10 different random assignments produced 

by the RAA and calculated the average of the completion time 

T(RAA) for each dataset. To get the speedup of the AOPs we 

do the following calculations: T(RAA)/T(GA), and 

T(RAA)/T(A*), where T(GA) and T(A*) are completion 

times of the AOPs, when aspects are assigned according to the 

GA and A*, respectively. Results are given in Table 4. For 

example, the value 2.6 in the first row and column of the table 

denotes that the execution time of the AOP P1for dataset #1 

takes 2.6 times longer if the aspects are assigned by the RAA 

then the case where aspect assignment is performed by the GA 

or A*. 

Table 4. Speedup of programs using proposed algorithms 

relative to random assignment 

# of 

dataset 

P1 P2 P3 

GA and A* GA A* GA A* 

1 2.6 1.8 1.9 1.9 2.0 

2 2.3 1.7 1.7 1.8 2.2 

3 2.2 2.3 2.6 1.9 2.1 

4 2.5 2.0 2.0 1.8 2.0 

5 1.8 2.0 2.1 2.1 2.3 

6 1.9 2.1 2.1 1.8 1.9 

7 2.8 1.9 2.1 1.9 2.2 

8 2.4 2.2 2.2 1.8 1.9 

9 2.4 1.8 2.0 2.0 2.3 

10 2.9 2.0 2.2 1.8 2.0 

 

 We deduce from Table 4 two main results. Firstly, 

properly assignment of aspects improves the performance of a 

distributed AOP.  Experimental result show that the proposed 

algorithms can speed up the AOPs between 1.7 and 2.9 times. 

Secondly, we see that A* achieves slightly higher speedups 

then the GA except for P1, where the GA obtains also the 

same values. This result was expected, since the cost values 

(F1) given in Tables 1, 2 and 3 are related to the completion 

time of the AOPs and they have almost the same characteristic 

as the speedup values in Table 4. 

7 Conclusion 

 In this paper we first formulate the aspect assignment 

problem for distributed AOP. During this formulation we 

consider properties of heterogeneous distributed systems and 

distributed AOPs, such as processing capabilities of hosts, 

delays of communication links, amount of transferred data 

between objects and related aspects.  Then we propose two 

different algorithms to solve this problem. One of these 
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algorithms is GA which is based on the laws of natural 

evolution and the second one is A* algorithm which is based 

on best-first search. 

 Experimental results show that the proposed algorithms 

have their own advantages and disadvantages compared to 

each other. Firstly, we noticed that the A* algorithm obtained 

the optimal assignments for each of the programs with all 

datasets we used. On the other hand, the GA found the 

optimal assignments for small sized programs and sub-optimal 

solutions if the size of the programs increased. Secondly, the 

solution time for A* algorithm is considerably shorter than 

GA when the search space is smaller. However, the duration 

of the A* algorithm increases with the growth of the search 

space very fast and GA performs better, namely up to 1400 

faster for one of the tested programs. 

 To evaluate proposed algorithms and examine the effect 

of assignment of aspects on the speed of the AOPs, we 

distributed aspects in three different ways, namely according 

to GA, A* and randomly. Then we compared the completion 

time of the AOPs under different aspect assignments The 

simulation results indicate that properly assignment of aspects 

can speed up the AOPs between 1.7 and 2.9 times. We also 

see that A* provides approximately 10% higher speedups then 

the GA for relatively larger programs. In conclusion, properly 

assignment of aspects improves performance of the 

distributed AOPs, and because it‟s shorter response times the 

proposed GA can be preferred to solve this assignment 

problem. 
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