
Efficient Aspect Assignment in

Heterogeneous Distributed Systems

S. Bulu, and F. Buzluca

Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract - In recent years, with increasing use of distributed

systems, distributed Aspect Oriented Programming (AOP)

arouses more interest. The way of distributing aspects over the

network can affect the performance of the program. While

assigning aspects to hosts, to achieve higher performance,

properties of the distributed system and relation between

aspects and objects must be taken into consideration. In this

context as a solution for the aspect assignment problem in

distributed systems we propose two algorithms, namely a

Genetic Algorithm (GA) and an A* algorithm. We evaluate the

efficiency of these two algorithms by using a simulator on

heterogeneous distributed systems, where hosts and

communication lines have different properties. It is shown that

the GA is more favorable than A* algorithm for larger systems

with many nodes while for smaller systems A* may be

preferable. The simulation results indicate that the properly

assignment of aspects to hosts improves the performance of a

distributed aspect oriented program.

Keywords: Aspect Oriented Programming, Distributed

Systems, Task Assignment, Genetic Algorithm, A*

Algorithm.

1 Introduction

 Aspect-oriented programming (AOP) [1] is a

programming style that allows programmers to implement

cross-cutting concerns like logging, tracing, profiling, policy

enforcement, pooling, caching, authentication, authorization

and transactional management in a modular way and then

combine these concerns with a base program through a

process called weaving. AOP aims at improving the quality of

the software by decreasing the level of code scattering and

code tangling known as primary symptoms of non-

modularization.

 There are lots of AOP implementations that have been

widely used. Some of these implementations are AspectJ [2],

AspectWerkz [3], JBoss-AOP [4], PostSharp [5] and Spring

AOP [6]. AspectJ, which was proposed as an extension of the

Java language for AOP, is the most prominent

implementation.

 In an AOP cross-cutting concerns are defined as a set of

aspects. An aspect consists of method-like constructs called

advice. An advice is used to define additional behavior at a set

of well-defined points called join points in the program‟s

execution. Join points are matched by a predicate called

pointcut. AOP weaver maps various crosscutting elements to

the object oriented constructs. For example, aspects map to

classes where each data member and method in aspect

become the members of the class. Pointcuts are intermediate

elements that map to methods. Advice usually maps to one or

more methods. The weaver inserts calls to these methods at

potential locations matching the associated pointcut. During

the execution of an AOP objects call methods of related

aspects and mostly objects and related aspects operate on

common data.

 Distributed systems are computer systems, in which the

processing elements are connected by a network. They have

become increasingly popular in recent years because of their

high speed and high reliability. In such area, a new paradigm

called distributed AOP has recently appeared. In distributed

AOP, aspects can be deployed in a set of hosts. Remote

pointcuts [7], which are similar to traditional remote method

calls, invoke the execution of advices in aspects on remote

hosts. DjCutter [7], JAC [8], AWED [9], Damon [10] and

ReflexD [11] are approaches that address distributed AOP.

 Distributed systems allow programmers to divide

applications into a number of tasks and execute concurrently

on different hosts. This process obtains tremendous

improvement in the performance when the task distribution

and assignment are applied effectively. A similar problem also

exists in distributed AOP: How to assign aspects to the hosts

in the network so that the time required for program

completion is minimized?

 While assigning aspects of an AOP to hosts in a

distributed system several properties of the physical system

and the program must be taken into consideration. These

properties are processing capabilities of hosts, parameters of

communication links, amount of data shared between objects

and aspects. The assignment of aspects is critical and affects

the program completion time because when there is a call

from an object to an aspect (assuming that the object and the

aspect are assigned to different hosts), exchanging data

between these object and aspect consumes time. This time

depends on the amount of the data and the capacity of the link

which is used during the data transfer.

266 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

 In this paper we first formulate the aspect assignment

problem in heterogeneous distributed systems by taking all

necessary parameters into account and then propose two

algorithms to solve this problem that occurs in distributed

AOPs. The first algorithm is based on Genetic Algorithms

(GA) [18], and the second one is an A* [19] based search

technique. We also evaluate the efficiency of these algorithms

for different systems and programs. We compare the increase

in the performance of the AOP obtained by these algorithms

with an algorithm that assigns aspects to host randomly.

Simulation results indicate that the assigning aspects to hosts

properly using the proposed algorithms can reduce the

completion time of a distributed aspect oriented program

almost by half compared to randomly assignment.

 The rest of this paper is organized as follows. Section 2

mentions related work. Section 3 gives background

information on the aspect assignment problem. Section 4 and

5 present the two algorithms for the problem. Section 6

compares the efficiency of the algorithms and discusses the

simulation results. Finally, section 6 concludes the paper.

2 Related work

 Task assignment problem in distributed systems, which

is similar to our aspect assignment problem, is well-known to

be NP-hard [12]. Many approaches to this problem have been

identified up to now. However, most of this reported

approaches yield suboptimal solutions because of the large

state space. Task assignment approaches can be classified into

three categories, namely, graph theoretic, integer

programming and heuristic methods.

 In graph theoretical approach, each task or/and host is

represented by a node and the cost induced by the

communication delay between them is represented by a

weighted edge. The first attempt in graph based approach is

done by Stone [13]. In Stone‟s work, a Max Flow/Min Cut

Algorithm is utilized to find assignments which minimize total

execution and communication costs.

 The integer programming method formulates the model

as an optimization problem and solves it via mathematical

programming techniques. For example, Chu [14] formulates

the problem into a nonlinear integer zero-one programming

problem and then reduced it to a linear zero-one programming

problem.

 As the first two approaches attempt to obtain the optimal

solutions, they search the whole space and therefore need a lot

of time and memory. Heuristic methods [15][16][17], on the

other hand, do not pursue the optimal solutions but provide

sub-optimal fast and effective solutions. They use special

parameters that affect the systems in indirect ways.

 Although there are a large number of task assignment

algorithms, none of them is interested in assignment of aspect.

To assign aspect to processing nodes properly we take the

following two structures into consideration. Firstly, the

parameters of the distributed system such as processing

capabilities of nodes and bandwidths of communication lines

between them. Secondly, structure of the aspect oriented

program expressed by the relations between aspects and

objects such as reference counts, amount of transferred data

between them.

3 Problem definition

 In this study we first formulate the problem, how to

assign aspects of an AOP to hosts in a heterogeneous

distributed system to increase the performance of the

program. The assignment problem for aspects in distributed

systems can be defined as the assignment of k aspects A = {a1,

a2, ... , ak } to n hosts, H = {h1, h2, ... , hn }.

 We define our distributed system in the form of

heterogeneous in which the connected hosts have different

processing capabilities. In the network Xiq denotes the

execution cost of aspect ai that is proportional to the

execution time of the aspect when it is assigned to and

executed on host hq, 1 ≤ i ≤ k, 1 ≤ q ≤ n. Here we assume that

each advice in the same aspect has the same load. This means

that the execution time doesn‟t depend on which advice of an

aspect is executed.

 Each communication link in the network has different

costs of delay, which can be represented by a delay matrix

D={Dpq}. Dpq denotes the communication cost between two

hosts hp and hq, which arise because of the communication

delay when an object located on hp calls an aspect located on

hq. Further, Dpq=Dqp and Dpp=0.

 Another parameter that effects the performance of the

AOP is the relation count defined as how many times each

aspect instance will be called from each object. These values

can be obtained from the AOP framework tools. For example,

AspectJ Development Tools (AJDT) allows programmers to

register a listener to obtain crosscutting relationship

information whenever a project is built [21]. Let there are m

objects, O = {o1, o2, … , om}, then Rij denotes aspect-object

relation count between aspect ai and object oj. On the other

hand, when there is a call from an object to an aspect, a

communication cost is incurred because of exchanging data.

So, let Cij denotes the communication cost between aspect ai

and object oj that is proportional to size of data transferred

between ai and oj. All cost values (Xiq, Dpq, Cij) are normalized

by assigning one to the smallest positive value in each group.

 In our study we assume that locations of objects are

fixed and predetermined according to their specific jobs. We

focus on distributing and assigning aspects, which are used by

the objects. Therefore we don‟t consider the execution times

of objects. So, let Lj denotes the host that object oj is assigned

to, 1 ≤ Lj ≤ n.

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 267

 All parameters described in this section can be derived

explicitly from the distributed system. As an example, the

parameters of a simple system which is made up of three

hosts, five objects and four aspects are represented in tabular

form in Figure 1.

Dpq

Xiq

 h1 h2 h3 a1 a2 a3 a4

 h1 0 1 3 h1 1 4 2 3

 h2 1 0 2 h2 3 1 6 2

 h3 3 2 0 h3 5 6 2 3

 a. Host Communication Costs b. Aspect Execution Costs

Cij o1 o2 o3 o4 o5 Rij o1 o2 o3 o4 o5

a1 4 1 2 4 4 a1 16 0 11 14 9

a2 4 1 5 3 2 a2 17 3 9 10 5

a3 2 2 6 3 5 a3 2 9 0 9 16

a4 5 2 1 5 4 a4 14 1 14 4 9

 c. Aspect-Object d. Aspect-Object

 Communication Costs Relation Counts

O(j) 1 2 3 4 5

h(Lj) 1 2 2 3 1

e. Object Assignments (Lj)

Figure 1. An Example set of system and program parameters

 The solution of the aspect assignment problem is a

proper mapping of k aspects to n hosts that will minimize the

running time of the aspect oriented program. To evaluate the

efficiency of the assignment procedure we consider the host

that is maximally loaded by the aspects. Here the load of a

host is defined as a metric that is proportional to the total time

consumed by the aspects located on this host during the

execution of the program. As the hosts in a distributed system

run parallel the host that needs the longest time to complete its

aspects is taken into consideration, because it will determine

the completion time of the whole AOP. The load metric of a

host consists of two components. First one is the total running

time of the aspects on this host and second one is data transfer

time between these aspects and related objects. Let T is the set

of aspects that are assigned to host q then the load on host q

is:

   
  
















Ti

m

j

m

j

qLijijiqijq j
DCRXRLoad

1 1

 (1)

where m is the number of the objects and Lj is the host number

of j
th

 object.

 The solution has to fulfill two objectives. First, we try to

minimize the load of the maximally loaded host, which is

represented by the following cost function F1:

 nqLoadF q  1),max(1 (2)

This first objective is related to the completion time of the

aspect oriented program under assumption that all hosts

operate parallel. Secondly, if there are many aspect

assignment possibilities, which minimize the F1, the second

objective is to minimize the sum of load on all nodes, which is

expressed by the following function F2:

 




n

q

qLoadF

1

2 (3)

4 Genetic algorithm

 Genetic algorithms (GA) [18], which are used for

solving many search and optimization problems, generate

solutions using techniques inspired by natural evolution. A

GA starts by generating a random population of solutions

(called chromosomes in GAs literature). At each iteration a

number of solutions are selected for the mating pool

according to their fitness. Crossover and mutation operations

are then applied to mating pool in order to produce new

solutions. The algorithm terminates when either a maximum

number of generations has been produced or population is

converged.

 The first step in designing a GA is to develop a suitable

representation for chromosomes in the population. In our

algorithm we use integer representation, with considering the

relationship between hosts and aspects. For k aspects there are

k elements (called gene in GAs literature) in the chromosome.

The value of each gene in the chromosome represents the host

to which that aspect is allocated. As an example a

chromosome with four genes is shown in Figure 2.

 Aspect: 1 2 3 4

 Host (gene):

Figure 2. Chromosome representation

 The fitness value of each gene in the chromosome is the

load on the host that the gene represents (Loadq), which is

calculated using the equation giving in (1). On the other hand

the fitness value of the chromosome is the maximum gene

fitness which is the load on the heaviest-loaded host that is

represented by F1 as given in (2).

 In our algorithm, we apply one point crossover operation

on a pair of chromosomes which is randomly selected from

the mating pool. One point crossover is accomplished by

randomly choosing a point along the length of the

chromosome, and exchanging all genes beyond that point in

either chromosome. This operation yields two new

chromosomes. After crossover operation, a mutation

operation is performed on a randomly selected gene of each

chromosome with a certain probability. In mutation operation

the value of a gene is replaced by randomly generated host

number.

2 3 1 2

268 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

 After crossover and mutation operations the worst

chromosomes, the chromosomes with the highest value of

fitness (F1) in the population, are replaced by new ones in the

mating pool. This means that the best chromosomes (the

chromosomes with the lowest value of fitness) in the

population are carried to the next generation (called elitism in

GAs literature). In our algorithm we replace 1 chromosome by

new ones with better fitness values. If there are many

chromosomes with the same fitness value (F1), then the

second objective (F2) comes into play, and the chromosomes

with the smallest F2 value are selected. The complete GA is

given in Figure 3.

Generate initial population (chromosomes represent
different aspect assignment possibilities, Fitness=F1)
do {
 Create mating pool
 Apply crossover operation
 Apply mutation operation
 Apply elitism (Select chromosomes with smallest F1
 values. If these values are equal select chromosomes
 with smallest F2 values.)
 Carry new chromosomes from mating pool to population
}until(max generation is reached or converged)

Figure 3. Complete GA

5 A* algorithm

 A* [19] is a best-first search algorithm, which can

guaranteed to find the optimal solutions. In a tree

representation it starts from the root node, expands the

intermediate nodes and finally reaches one of the leaf nodes.

At each node, one of the aspects is assigned to a specific host

as an addition to assignments made at its ancestors. Root node

is a null solution of the problem. Intermediate nodes represent

the partial solutions and leaf nodes represent the complete

solutions.

 Each node p in the tree maintains a cost function f(p)

which is computed as f(p) = g(p) + h(p), where g(p) is the cost

of getting from the root to node p and h(p) is the estimated

cost of getting from p to the goal node. In our algorithm g(p)

is calculated using equations (1) and (2) as the load on the

heaviest-loaded host (F1) of partial assignment. Since, at

intermediate nodes all aspects have not been assigned yet,

g(p) is not sufficient solely to express the greatest load F1.

Future assignments to the same host may increase this load.

To be able to compare cost values of nodes in different levels

fairly, possible effect of unassigned aspects on the load is

added as h(p) to g(p). In our algorithm h(p) is calculated as

the sum of the object relation counts of aspects that are

unassigned at node p. Let U is the set of unassigned aspects in

node p, then h(p) is calculated as follows:

  
 
















Ui

m

j

ijRph

1

)((4)

 Here h(p) is not a real load value; it is just an estimation

of the effect of future assignments that is used to compare cost

values of different nodes fairly. Different functions may also

be used as h(p). In our study we chose the simple one in (4),

which provides proper solutions.

 As an illustration, for the sample system of three hosts,

five objects and four aspects (see Figure 1) the resulting

search tree of the A* algorithm is shown in Figure 4. A

search-tree node includes partial assignment of aspects to

hosts, and the value of the cost function. A partial assignment

means that some aspects are unassigned; if there is an „X‟ in

the place of aspect ai it indicates that i
th

 aspect has not been

assigned yet. For example in Figure 4 the node with label 5

shows that aspect a1 has been assigned to host 2, and the value

produced by the cost function f(p) is 485. The search tree‟s

depth equals the number of aspects, and any node of the tree

can have a maximum of n successors, which is the number of

the hosts.

Figure 4. Search tree for A* algorithm

 The algorithm maintains two lists named OPEN and

CLOSED. The OPEN list keeps nodes that need to be

examined, while the CLOSED list keeps nodes that have

already been examined. When a node is selected from OPEN

list to be examined, its child nodes are generated and put into

the OPEN list. The nodes in the OPEN list are ordered before

the selection according to cost function f(p); that is, the

algorithm selects the node with the minimum cost. Initially,

the OPEN list contains just the root node, and the CLOSED

list is empty.

 In the example, given in Figure 4, labels show the

selection order of the nodes for the given system. We start

with the root node labeled as 1. We examine children of the

root and select node 2 because it has the lowest cost value

(292). Then all children of node 2 are added to the OPEN list,

where children of root still exist. Now node 3 is selected from

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 269

the OPEN list because it has the smallest cost value and its

children are added to the list. After that, nodes 4, 5 and finally

6 are selected from the OPEN list according to their cost

values. Since node 6 is a leaf node the algorithm terminates

and the final solution is the assignment of aspects as presented

on this node. If more than one node have the same smallest

cost value then the second objective function (F2) is taken

into account, and the node with the smallest sum of load is

selected. The complete A* algorithm is as follows:

Initialize OPEN and CLOSED lists
(OPEN=root node; CLOSED=EMPTY)
while the OPEN list is not empty {
 Get node p off the OPEN list with the lowest f(p)
 Add p to the CLOSED list
 if p is the leaf node then return p as solution
 Generate each successor node p' of p
 Add p' to the OPEN list
}

Figure 5. Complete A* algorithm

6 Experimental results

 To evaluate the performance of our algorithms firstly,

we coded our algorithms in Java programming language using

Eclipse SDK 3.4.2 and compared their speeds for different

aspect oriented programs by executing them on a server with

four quad-core 2.60 GHz Intel Xeon CPU processors and 15

GB main memory, running the Ubuntu Linux 10.04.1.

Secondly, aspects of different programs are assigned to hosts

according to solutions obtained by two algorithms and these

programs are executed on a simulation tool called the

Asynchronous Distributed System Simulator [20]. We

compared completion time of programs related to the different

aspect assignments.

 The Asynchronous Distributed System Simulator is

written in Java programming language using a threaded

architecture and can simulate any algorithm that has been

designed for the distributed system network. It takes input

parameters through an XML file which specifies the nodes

in the network, the links between the hosts and the

algorithm to be run on the distributed system. The

simulator has a queue of messages that represents messages

that are in transit on the network. Each link has a delay

associated with it and messages sent using a link are not

delivered until after the delay period has passed.

 In our experiments we test our algorithms on a fully

connected distributed system with five hosts. The host

connectivity graph of the system is shown in Figure 6, where

labels on edges show the cost of delays of the communication

links (Dpq). On this system we try to distribute aspects of three

aspect oriented programs with different sizes. The programs

are detailed below:

 P1 : 10 objects and 5 aspects

 P2 : 20 objects and 10 aspects

 P3 : 30 objects and 15 aspects

Figure 6. Host connectivity graph used in experiments

 For each of these programs we generate 10 different

datasets randomly, which include following properties of

programs: aspect execution costs (Xiq), aspect-object relation

counts (Rij), aspect-object communication costs (Cij) and

object locations (Lj). Xiq and Cij cost values are generated

randomly in the range of [1, 10]. Similarly, Rij values are

generated randomly in the range of [0, 20]. These datasets can

be found in [22].

Table 1. Obtained cost values execution times of two

algorithms for P1 in milliseconds

of

dataset

GA A*

F1 F2 Time F1 F2 Time

1 1690 6287 441 1690 6287 25

2 1627 6505 379 1627 6505 43

3 1713 6173 371 1713 6173 42

4 1615 7240 425 1615 7240 31

5 2012 5751 418 2012 5751 43

6 1838 7057 378 1838 7057 42

7 1427 5194 368 1427 5194 24

8 1763 7023 359 1763 7023 38

9 1985 6994 399 1985 6994 47

10 1354 5307 363 1354 5307 34

Average 390 37

Table 2. Obtained cost values execution times of two

algorithms for P2 in milliseconds

of

dataset

GA A*

F1 F2 Time F1 F2 Time

1 6836 31293 1392 6246 29085 671278

2 7013 30520 1289 6759 29237 441766

3 6895 29182 1342 6131 28809 317609

4 7110 32584 1373 7110 30025 524357

5 6604 27703 1349 6456 27601 389860

6 5388 22709 1211 5388 21194 478004

7 6412 28918 1301 5919 26361 383846

8 6127 28192 1307 6127 28051 680675

9 6716 29391 1153 6019 27461 238493

10 6758 27687 1291 6267 25851 174162

Average 1301 430005

270 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

Table 3. Obtained cost values execution times of two

algorithms for P3 in milliseconds

of

dataset

GA A*

F1 F2 Time F1 F2 Time

1 14701 64427 3556 12078 56246 3935320

2 13672 61427 3642 12435 59121 9420174

3 14126 65993 3520 12871 63270 1956809

4 15334 69969 3387 13115 59602 5884341

5 13117 60436 3653 12045 55062 5229528

6 13725 65806 3549 12346 59445 3257284

7 13543 60250 3675 12053 56469 6977759

8 13667 64415 3487 12741 58318 7851088

9 16001 69825 3516 13734 65334 3139030

10 14588 66789 3520 13291 61567 2761528

Average 3551 5041286

 Using the results of simulations we evaluate

performance of our algorithms in two ways. Firstly, we

consider execution times of algorithms, spent to find a

solution. Secondly we investigate the completion time of the

AOP, when the aspects are assigned to host according the

solutions provided by the algorithms.

 Tables 1, 2 and 3 provide performance comparison of

two algorithms by considering obtained cost values (F1 and

F2) and their execution times for three different programs.

Results in Table 1 show that GA and A* obtains always the

same cost values for P1, which is a relative smaller program

than P2 and P3. In this case A* performs almost 10 times

faster than GA. When the number of aspects increases A*

obtains better (smaller) cost values than the GA as it is shown

in Tables 2 and 3. This means that A* can distribute aspects

more efficiently than the GA for bigger programs. A*

achieves about 7% smaller F1 values for P2 and about 10%

smaller values for P3 compared to the GA. On the other hand,

with the increase in the number of aspects and objects in the

program, the execution time of A* increases very fast. For P2

the GA proposes a solution 300 times faster and for P3 nearly

1400 times faster than the A*.

 The relation between the performance of the algorithms

and the number of objects and aspects in the program can be

explained as follows. A* algorithm uses a best-first search

technique that builds a search-tree by visiting the most

promising nodes first. When the number of nodes in the

search tree is smaller it quickly reaches the solution node. But

if the number of aspects increases, nodes in the tree also

increase and the algorithm spends more time to visit these

nodes. On the other hand GA uses a random search technique,

which requires only a certain number of iterations to obtain a

solution. Therefore if the number of aspects increase the

execution time of the A* is increased much more that the GA.

However it is expected that the A* can find optimal solution

in all cases, while the GA can obtain optimal aspect

assignments only for relative small systems.

 In order to validate the efficiency of the aspect

assignments of two algorithms we run three aspect oriented

programs on the simulator and measure the completion time

of these programs under different assignments of aspects. To

evaluate the performance improvement achieved by our

algorithms, we created a rival algorithm, namely the random

assignment algorithm (RAA). The RAA assigns aspects to

hosts randomly without taking any properties of the system

and program into consideration. This is our baseline algorithm

that helps us to observe the speedup obtained by the proposed

algorithms. We performed the RAA on three programs (P1,

P2, P3) for each dataset 10 times. We ran these programs on

the simulator for 10 different random assignments produced

by the RAA and calculated the average of the completion time

T(RAA) for each dataset. To get the speedup of the AOPs we

do the following calculations: T(RAA)/T(GA), and

T(RAA)/T(A*), where T(GA) and T(A*) are completion

times of the AOPs, when aspects are assigned according to the

GA and A*, respectively. Results are given in Table 4. For

example, the value 2.6 in the first row and column of the table

denotes that the execution time of the AOP P1for dataset #1

takes 2.6 times longer if the aspects are assigned by the RAA

then the case where aspect assignment is performed by the GA

or A*.

Table 4. Speedup of programs using proposed algorithms

relative to random assignment

of

dataset

P1 P2 P3

GA and A* GA A* GA A*

1 2.6 1.8 1.9 1.9 2.0

2 2.3 1.7 1.7 1.8 2.2

3 2.2 2.3 2.6 1.9 2.1

4 2.5 2.0 2.0 1.8 2.0

5 1.8 2.0 2.1 2.1 2.3

6 1.9 2.1 2.1 1.8 1.9

7 2.8 1.9 2.1 1.9 2.2

8 2.4 2.2 2.2 1.8 1.9

9 2.4 1.8 2.0 2.0 2.3

10 2.9 2.0 2.2 1.8 2.0

 We deduce from Table 4 two main results. Firstly,

properly assignment of aspects improves the performance of a

distributed AOP. Experimental result show that the proposed

algorithms can speed up the AOPs between 1.7 and 2.9 times.

Secondly, we see that A* achieves slightly higher speedups

then the GA except for P1, where the GA obtains also the

same values. This result was expected, since the cost values

(F1) given in Tables 1, 2 and 3 are related to the completion

time of the AOPs and they have almost the same characteristic

as the speedup values in Table 4.

7 Conclusion

 In this paper we first formulate the aspect assignment

problem for distributed AOP. During this formulation we

consider properties of heterogeneous distributed systems and

distributed AOPs, such as processing capabilities of hosts,

delays of communication links, amount of transferred data

between objects and related aspects. Then we propose two

different algorithms to solve this problem. One of these

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 271

algorithms is GA which is based on the laws of natural

evolution and the second one is A* algorithm which is based

on best-first search.

 Experimental results show that the proposed algorithms

have their own advantages and disadvantages compared to

each other. Firstly, we noticed that the A* algorithm obtained

the optimal assignments for each of the programs with all

datasets we used. On the other hand, the GA found the

optimal assignments for small sized programs and sub-optimal

solutions if the size of the programs increased. Secondly, the

solution time for A* algorithm is considerably shorter than

GA when the search space is smaller. However, the duration

of the A* algorithm increases with the growth of the search

space very fast and GA performs better, namely up to 1400

faster for one of the tested programs.

 To evaluate proposed algorithms and examine the effect

of assignment of aspects on the speed of the AOPs, we

distributed aspects in three different ways, namely according

to GA, A* and randomly. Then we compared the completion

time of the AOPs under different aspect assignments The

simulation results indicate that properly assignment of aspects

can speed up the AOPs between 1.7 and 2.9 times. We also

see that A* provides approximately 10% higher speedups then

the GA for relatively larger programs. In conclusion, properly

assignment of aspects improves performance of the

distributed AOPs, and because it‟s shorter response times the

proposed GA can be preferred to solve this assignment

problem.

8 References

[1] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented

programming,” Communications of the ACM, Vol. 44,

No. 10, October 2001, pp. 29-32.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.

Palm, and W. Griswold, “An overview of AspectJ,” In

15th European Conference on Object-Oriented

Programming (ECOOP 2001), Budapest, Hungary, June

2001, pp. 327–353

[3] AspectWerkz, “AspectWerkz Dynamic AOP for Java

Overview”, http://aspectwerkz.codehaus.org/, 2004.

[4] B. Burke and al. JBoss-AOP.

www.jboss.org/developers/projects/jboss/aop.

[5] PostSharp. http://www.postsharp.org/.

[6] R. Johnson et al. Spring – Java / J2EE application

framework. Reference Manual Version 2.0.6,

Interface21 Ltd., 2007.

[7] M. Nishizawa, S. Chiba, and M. Tatsubori. “Remote

pointcut – a language construct for distributed AOP,”

Proc. ACM Int'l Aspect Oriented Software Development,

2004, pp. 7-15.

[8] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F.

Legond-Aubry, and L. Martelli, “JAC: an aspect-

oriented distributed dynamic framework,” Software:

Practice and Experience, Vol. 34, No. 12, 2004, pp.

1119–1148.

[9] L. D. Benavides Navarro, M. Südholt, W. Vanderperren,

B. De Fraine, and D. Suvèe. “Explicitly distributed AOP

using AWED,” In Proceedings of the 5th International

Conference on Aspect-Oriented Software Development

(AOSD 2006), Bonn, Germany, March 2006, pp. 51–62.

[10] R. Mond´ejar, P. Garc´ıa, C. Pairot, and A. Skarmeta.

“Building a distributed AOP middleware for large scale

systems,” In Proceedings of the 2008 Workshop on Next

Generation Aspect Oriented Middleware (NAOMI 08),

New York, USA, April 2008, pp. 17–22.

[11] É. Tanter and R. Toledo. “A Versatile Kernel for

Distributed AOP,” In Proceedings of the IFIP

International Conference on Distributed Applications

and Interoperable Systems (DAIS 2006), Bologna, Italy,

June 2006, pp. 316–331.

[12] M. Gursky, “Some complexity results for a multi-

processor scheduling problem,” Private Communication

from H. S. Stone, 1981.

[13] H. S. Stone, “Multiprocessor scheduling with the aid of

network flow algorithms,” IEEE Trans. Software Eng.,

Vol. SE-3, 1977, pp. 85-93.

[14] W. W. Chu, “Optimal file allocation in multiple

computing system,” IEEE Trans. Comp., Vol. C-18,

1969, pp. 885-889.

[15] V. M. Lo, “Heuristic algorithms for task assignment in

distributed systems,” IEEE Trans. On Computers, Vol.

37, No. 11, 1988.

[16] B. Shirazi, M. Wang and G. Pathak, “Analysis and

evaluation of heuristic methods for static task

scheduling,” J. Parallel Distrib. Comp., Vol. 10, 1990,

pp. 222-232.

[17] S.S. Wu and D. Sweeping, “Heuristic Algorithms for

Task Assignment and Scheduling in a Processor

Network,” Parallel Computing, Vol. 20, 1994, pp. 1-14.

[18] D. E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning, Massachusetts:

Addison Wesley, 1989.

[19] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis

for the Heuristic Determination of Minimum Cost

Paths,” IEEE Transactions on Systems Science and

Cybernetics, Vol. 4, No. 2, 1968, pp. 100-107.

[20] S. Burgess, Asynchronous Distributed System Simulator,

University of Western Ontario, Computer Science, 2007.

[21] Obtaining crosscutting relationship information from

AJDT, http://wiki.eclipse.org/Developer‟s_guide_to_

building_tools_on_top_of_AJDT_and_AspectJ

[22] http://web.itu.edu.tr/bulusa/DS/

272 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

