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Chapter 11 
 
 

The Surge Tank 
 
 

The surge tank is located between the almost horizontal or slightly inclined conduit 
and steeply sloping penstock and is designed as a chamber excavated in the mountain. 
 
 

 
 

Surge tanks serve as a threefold purpose; 
 

1. Upon the rapid closure of the turbine, water masses moving in the pressure 
tunnel and in the penstock are suddenly decelerated. Owing to the inertia of 
moving masses, F = ma, high overpressures develop at the lower end of the 
penstock, which are propagating upwards in the penstock in the form of 
pressure wave. The magnitude of the so-called water hammer, caused by the 
moving masses by closure, will depend upon the dimensions and elastic 
properties of the conduit. The overpressure due to water hammer travels along 
the closed conduit and is not relieved until a free water surface is reached. 

 
An important function of the surge tank can be summarized like this. The 
turbines to the reservoir is practically interrupted by the surge tank to prevent 
the pressure wave due to the water hammer at the free water surface and to 
free the pressure tunnel from excessive pressures. 
 

2. The surge provides protection to the penstock against damage of water 
hammer. The overpressure depends upon the length of the penstock (the 
closed conduit). The surge tank, by interrupting the closed system of the 
penstock and of the pressure tunnel, reduces the overpressure due to water 
hammer. 

 
 

3. The third purpose of the surge tank is to provide water supply to the turbines 
in case of starting up. The amount of water required during these changes in 
operating conditions is supplied by the surge tank installed in the conduit. The 
capacity thereof should be selected to ensure the required water supply during 
the most unfavorable increase in demand, until the water mass in the tunnel 
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has attained the necessary velocity. Air should be prevented from entering the 
penstock even in case of the deepest downsurge in the chamber. 

 
The height of the surge tank is governed by the highest possible water level that can be 
expected during operation. Variations in demand initiated by a rapid opening or closure 
of the valve or turbine are followed with a time lag by the water masses moving in the 
tunnel. Upon the rapid and partial closure of the valve following a sudden load decrease, 
water masses in the penstock are suddenly decelerated, and one part of the continuous 
supply from the tunnel fills the surge tank. The water surface in the surge chamber will 
be raised to above static level. In case of rapid opening, the flow in the tunnel is smaller 
than the turbine demand to supply water to the turbine. The water surface in the chamber 
will start to drop to below of the steady-state level. To establish steady-flow conditions, 
the water surface will again start to rise from the low point, but owing to the inertia of 
moving water, will again rise over the steady-level. The cycle is repeated all over again 
with amplitudes reduced by friction, i.e. the oscillation is damped. The phenomenon 
described is the water surface oscillation. The maximum amplitude of water surface 
oscillation can be observed when the water demand is suddenly stopped.  
 
A wide variety of types has been developed in practice for the surge tank. According to 
the hydraulic design, the following groups can be distinguished. 
 

1. Simple surge tanks designed as basins, which may be provided with overfall. 
2. Special surge tanks: 

 
Surge tanks with expansion chambers, which may be provided with overfall. 
Surge tank with upper expansion chamber. 
Surge tank with lower expansion chamber. 
Double-chamber surge tank. 
 

3. Restricted-orifice type (throttled) surge tanks: 
Simple restricted-orifice surge tank. 
Differential (Johnson type) surge tank. 
Double-chamber, restricted-orifice surge tank. 
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Water Surface Oscillations in Simple Surge Tank 
 

The oscillating movement starts as soon as the pressure wave due to a change in the 
turbine reaches the surge tank after traveling the length penstock. 

 

 
 

 
Placing manometers at the upper and lower end of the penstock, it will be seen that the 
two react differently to sudden changes in turbine discharges. The lower manometer will 
be the first to indicate the pressure wave starting from the lower end of the penstock. The 
upper manometer will indicate the low-frequency oscillations and will also show the 
water level fluctuations at the same cycle with the surge tank. Waves are damped by 
roughness conditions. 

 

 
 

Figure. Undamped oscillations in the surge tank if frictionless conditions 
are assumed in the pressure tunnel 
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In the pure theoretical case when no friction is assumed to occur in the pressure tunnel, 
the water level in the surge tank is on the same elevation as the reservoir whatever the 
discharge of the system is. Therefore, hydrostatic and hydrodynamic levels are identical. 
The axis of the undamped oscillation is the hydrostatic (and at the same time 
hydrodynamic) equilibrium level. The penstock is supplied through a surge tank from the 
frictionless pressure tunnel. The reservoir level may be considered unchanged. 
 
F = Surge tank cross-sectional area, 
f = Pressure tunnel cross-sectional area, 
l = Pressure tunnel length. 
 
It will be assumed that the time of opening or closure turbine valves is zero 
(instantaneous). With the above fundamental assumptions, the expressions for the four 
basic cases are given without derivation. 
 
1. Instantaneous total closure from the maximum discharge of Q0 (so-called 
total load rejection). 
 
It is evident that the total closure at maximum turbine discharge results in the greatest 
possible surges. This highest value of the ymax surges occurring in the tank upon rejection 
of different loads will be distinguished by the notation Ymax. The flow velocity in the 

pressure tunnel for the discharge Q0 is 
f

QV 0
0 = . 

The absolute value of the widest amplitude in case of the undamped mass oscillation, i.e. 
the so-called maximum surge is, 
 

gF
lfVY 0max =    (m) 

 
The departure of the water level from its initial position at any arbitrary time t 
(considering the downward branch of the axis y as positive); 
 

t
T

SinYy π2
max−=    (m) 

 
The varying velocity of water flowing in the pressure tunnel at any time t is, 
 

t
T

CosVV π2
0=    (m/sec) 

 
At the time t = T/4 (quarter period), the velocity in the tunnel is V = 0, the direction of 
the flow in the tunnel changes. 
 
The velocity of the water level in the surge tank is, 
 

t
T

CosV
F
f

dt
dy π2

0−=    (m/sec) 

 



  Prof. Dr. A. Bulu 6

The time of the total cycle, i.e. the period of the mass oscillation is, 
 

gf
lFT π2=   (sec) 

 
 

Example: The pressure tunnel length is l = 10 km with a cross-sectional area of f = 10 m2 
and steady flow velocity V0 = 2 m/sec at a hydroelectric power plant. Cylindrical surge 
tank cross-sectional area is F = 100 m2. In case of instantaneous closure, compute the 
maximum surge height and the period of the oscillation assuming the ideal fluid  
(frictionless). 
 
Solution: Maximum surge height, 
 

m
gF
lfVY 20.20

10081.9
101000020max =

×
×

×==  

 
The period of mass oscillation, 
 

sec640
1081.9
1001000022 ≅

×
×

== ππ
gf
lFT  

 
Velocities at the maximum surge height in the tunnel and the surge tank are, 
 

0160
640
3602

100
10

0160
640
36022

sec160
4

640
4

0

=⎟
⎠
⎞

⎜
⎝
⎛ ×××−==

=⎟
⎠
⎞

⎜
⎝
⎛ ××==

===

Cos
dt
dyU

Cost
T

CosVV

Tt

π  

 
The water will stop at t = T/4 time for the maximum surge case and will begin to drop in 
the tank. 
 
 

2. The surge amplitude in case of partial instantaneous closure, from the 
maximum discharge Q0 to an arbitrary Q1 value is, 

 

( )
gF
lfVVY 10 −=     (m) 

 
 
 
 

Where, V1 = Q1/f  is the velocity for the reduced discharge. The position of the water 
level at any time t is given by the expression, 
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t
T

YSiny π2
−=  

 
Velocity in the pressure tunnel is, 
 

( ) t
T

CosVVVV π2
101 −+=  

 
Velocity in the surge tank is, 
 

( ) t
T

CosVV
F
f

dt
dyU π2

10 −−==  

 
The period of oscillation is also, 
 

gf
lFT π2=      (sec) 

 
 

Example: Using the values given in preceding example, compute the maximum surge for 
the closure from maximum discharge Q0 to 0.5Q0. 
 
Solution: The discharge of the full load, 
 

( ) ( ) m
gF
lfVVY

mV

mQQ

mfVQ

10.10
10081.9

101000012

sec1
10
10

sec105.0

sec20102

10

1

3
01

3
00

=
×
×

×−=−=

==

==

=×==

 

 
The period of oscillation will not change. 
 

3. Oscillations for the instantaneous partial opening from some discharge Q1 to 
the maximum Q0 (partial load demand) are given by, 

 
 

( )
gF
lfVVY 10 −=  

 
The momentary position of the water leveling the surge tank is given by the function, 
 

t
T

YSiny π2
=  
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Velocities can be computed from the following relations, 
 

( )

( ) t
T

CosVV
F
f

dt
dyU

t
T

CosVVVV

π

π

2

2

10

100

−==

−−=
 

 
The oscillation period equation is the same. 
 

4. The instantaneous total opening from the rest (Q = 0) to the maximum 
discharging capacity of the turbines Q0 (total load demand) can be 
characterized by the following relations. 

 
The maximum surge is equal to the value obtained for total closure, 
 

gF
lfVY 0max =  

 
 

The movement of the water surface is, 
 

t
T

SinYy π2
max=  

 
Velocities are obtained as, 
 

t
T

CosV
F
f

dt
dyU

t
T

CosVVV

π

π

2

2

0

00

==

−=
 

 
 

Water Surface Oscillations in the Surge Tank by Taking Headloss in the Pressure 
Tunnel (Damped Oscillations) 
 
The frictional resistance developing along the tunnel will be taken into account and its 
damping effect yielding damped oscillations will be dealt with. The only case of damped 
mass oscillations for which an exact mathematical solution can be found is the total 
closure. For other circumstances only approximate mathematical and graphical methods 
are available. 
 
For the examination of instantaneous closure consider the Figure below and notations 
used therein. The reservoir is connected with a surge tank of cross-sectional area F, by a 
pressure tunnel of cross-sectional area f, and length l, followed by a penstock conveying a 
discharge Q0. The hydrodynamic-equilibrium water level in the surge tank for this 
operating condition is below the hydrostatic level by, 



  Prof. Dr. A. Bulu 9

 
 

 
 
 

 
 

Figure 
 

2
034

2
2

00
ln V
R

Vy β==  

 
Where the static level is equal to that in the reservoir, and V0 = Q0/ f. Hence y0 is the 
hydraulic resistance of the tunnel at a flow velocity V0. This is the headloss due to the 
friction in the tunnel computed by the Manning equation as, 
 

21
3221

0
32

0
11

⎟
⎠
⎞

⎜
⎝
⎛ Δ==

l
hR

n
SR

n
V  

 
Whence the friction headloss is, 
 

34

22
0

R
lnVh =Δ  

 
The resistance factor of the tunnel is, 
 

34

2

R
nl ⋅

=β  
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In case of instantaneous opening of turbine valves, the discharge for the turbine cannot 
be supplied by the pressure tunnel because of the velocity differences among the pressure 
tunnel and penstock. This water volume difference will be supplied by the surge tank 
initially so that the water level in the surge tank will drop. Air entrance to the penstock 
should not be permitted in order not to cause bursting of the penstock. There should be 
minimum water height of 1.50 m over the top of penstock in the surge tank for the 
minimum water level which is the case of instantaneous opening of turbines for full load. 
In order to be on the safe side, manning roughness coefficient n should be selected high 
for concrete lining as n = 0.015 to obtain a higher β resistance factor. 
 
Vogt Dimensionless Variables 
 
Tables have been prepared to compute surge amplitudes and periods for the surge tanks 
using dimensionless variables. 
 

( )

0

0

2
0

2
0

h
yx

V
Vz

h
V

F
f

g
l

Δ
=

=

Δ
⋅⋅=ε

 

 
Δh0 = Head loss for the steady flow case (will get negative values since y values are 
taken positive for upward direction). 
 

a) Instantaneous full closure case 
 
Forchhmeir has given for the first maximum surge height for steady flow of Q0 discharge 
with Δh0 headloss, 
 

εεε
212121 maxmax +=⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ + xLnx  

 
For m = Damping factor, 
 

2
0

0

0

22
lfV

hgF
h

m Δ
=

Δ
=
ε

 

 
The equation takes the form of, 
 

( ) ( ) 0maxmax 111 hmyLny Δ+=+−+  
 

m dimensional variables are always negative since ε dimensionless variables are positive 
and y direction is taken positive for upward direction with Δh negative values. 
Forchhmeir equation is solved by using the Table. 
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In order to calculate the other extreme surge values after calculation the first ymax value, 
Braun equations are used. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )3344

2233

1122

maxmax11

1111
1111
1111

1111

myLnmymyLnmy
myLnmymyLnmy
myLnmymyLnmy

myLnmymyLnmy

+−+=+−+
−−−=−−−
+−+=+−+
−−−=−−−

 

 
The following steps are taken for the solution of the aforementioned equations, 
 

1) ε dimensionless variable is calculated, 
2) ymax value is computed by Forchhmeir equation by using the Table for (mΔh0) to 

get (mymax) value, 
3) After calculation ymax, the other y surge values are calculated by using above 

giving equations and the Table. 
 

b) Partial Closure of the Turbine Valve 
 
Q0 full load discharge may be reduced to nQ0 for (n < 1). It will be instantaneous full 
closure if (n = 0). Frank`s Table can be used to calculate the surge values for partial 
closure. The values in the Table can be defined as, 
 

( )

gf
lF

t
T
t

h
yx

hgF
flV

π
τ

ε

2

0

max
max

2
0

2
0

==

Δ
=

Δ
=

 

 
The Table has been prepared for circular simple surge tanks. 
 
Example: An hydroelectric power plant with a design discharge Q = 30 m3/sec is fed by 
a pressure tunnel with a diameter D = 4 m, length l = 5000 m, and Manning coefficient n 
= 0.014. Compute the extreme surge heights for instantaneous full turbine closure in the 
surge tank with cross-sectional area F = 150 m2, 
 

a) By using Forchhmeir method, 
b) By the help of Frank`s table. 

 
Solution:  
 

a) Physical characteristics of the plant are, 
 

2
22

57.12
4
4

4
mDf =

×
==
ππ  
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sec39.2
57.12
0.30

1
4

0 m
f
QV

mDR

===

==
 

 

( )
78.7

60.515081.9
39.257.125000

60.5
1

500057.1239.2

2

2

2
0

2
0

34

2

34

22
0

0

=
××
××

=
Δ

=

=
××

==Δ

hgF
lfV

m
R

lnVh

ε
 

 

( )
( ) ( ) 257.060.5046.0

046.0
60.578.7

22

0

0

=−×−=Δ

−=
−×

=
Δ

=

hm
h

m
ε  

 
From the Forchhmeir Table, 
 

mΔh0 = 0.25   →   mymax = -0.551 
mΔh0 =0.26   →   mymax = -0.559 

 
mΔh0 = 0.257   →   mymax = -0.557 

 

my 11.12
046.0
557.0

max =
−
−

=  

 
The first minimum level, 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )557.01557.0111

1111

11

maxmax11

+−+=−−−
−−−=−−−

LnmyLnmy
myLnmymyLnmy

 

( ) ( ) 114.1443.0557.111 11 =−=−−− myLnmy  
 

114.0
114.11

0

0

=Δ
=Δ+

hm
hm

 

 
From the Frank`s Table, 
 

mΔh0 = 0.11   →   mymax = -0.399 
mΔh0 = 0.12   →   mymax = -0.413 

 
mΔh0 = 0.114   →   mymax = -0.405 

 

my 80.8
046.0
405.0

1 −=
−

=  
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Second maximum level, 
 

( ) ( ) ( ) ( )
( ) ( )

114.0
114.1519.0595.01

405.01405.011
1111

0

0

0

1122

=Δ
=+=Δ+

−−−=Δ+
+−+=+−+

hm
hm

Lnhm
myLnmymyLnmy

 

 
The same mΔh0 value has been obtained coincidentally. 

 
mΔh0 = 0.114   →   my2 = -0.405 

 

my 80.8
046.0
405.0

2 ==  

Second minimum level, 
 

( ) ( ) ( ) ( )
( ) ( )

065.11
405.01405.011

1111

0

0

2233

=Δ+
+−+=Δ+

−−−=−−−

hm
Lnhm

myLnmymyLnmy
 

 
mΔh0 = 0.065   →   my3 = -0.318 

my 91.6
046.0
318.0

3 −=
−

=  

 
Third maximum level, 
 

( ) ( ) ( ) ( )
065.1383.0682.01

318.01318.0111

0

44

=+=Δ+
−−−=+−+

hm
LnmyLnmy

 

mΔh0 = 0.065   →   my4 = -0.318 
 

my 91.6
046.0
318.0

4 ==  

 
b) Franks Table will be used for surge calculations for instantaneous closure, n = 0. 

 

36.0
78.7

1178.7 ==→=
ε

ε  

 
The first maximum level for n = 0, 

35.01
=

ε
   →   x = -2.24   ,   τ = 0.293 

40.01
=

ε
   →   x = 1.88   ,   τ = 0.300 

36.01
=

ε
    →   x = -2.17   ,   τ = 0.294 
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Oscillation period, 

sec490
57.1281.9

150500022 =
×
×

== ππ
gf
lFT  

 
Δh0 = -5.60m 

 
( ) ( )

sec144490294.0
15.1260.517.2

max

0maxmax

=×=×=
=−×−=Δ×=

Tt
mhxy

τ
 

 
First inflection point, 
 

35.01
=

ε
   →   x = -0.45   ,   τ = 0.520 

40.01
=

ε
   →   x = -0.41   ,   τ = 0.525 

36.01
=

ε
   →   x = 0.44   ,   τ = 0.521 

 
( ) ( )

sec255521.0490

46.260.544.0

1

1

inf

inf

=×=

=−×−=

t

my
 

 
First minimum level, 
 

35.01
=

ε
   →   x = +1.63   ,   τ = 0.797 

40.01
=

ε
   →   x = +1.34   , τ = 0.805 

36.01
=

ε
   →   x = +1.57   ,   τ = 0.799 

 
( )

sec392799.0490

79.860.557.1

1

1

min

min

=×=

−=−×=

t

my
 

 
Second inflection point, 
 

35.01
=

ε
   →   x = 0.256   ,   τ = 1.030 

40.01
=

ε
   →   x = 0.218   ,   τ = 1.037 

36.01
=

ε
   →   x = 0.248   ,   τ = 1.031 
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( )
sec505031.1490

43.160.5256.0

2

2

inf

inf

=×=

=−×=

t

my
 

 
Second maximum level, 
 

35.01
=

ε
   →   x = -1.274   ,  τ = 1.300 

40.01
=

ε
   →   x = -1.025   ,   τ = 1.309 

36.01
=

ε
   →   x = -1.224   ,   τ = 1.302 

 
( ) ( )

sec638490302.1

13.760.5274.1

2

2

max

max

=×=

=−×−=

t

my
 

 
Placing the surge values to the table, 
 

y Forchheimer Frank 
ymax 12.11 12.15 
y1 -8.80 -8.79 

 
 

The values are close for the both methods. 
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Table 18. Discharge increase from nQ0 to Q0 
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c) Instantaneous Opening of the Turbines 
 
The discharge increase to the turbines by instantaneous opening is done from nQ0 to Q0 
(n < 1). If the turbines are not running, there will be no discharge feeding the penstock 
which is (n =0) case. Instantaneous partial opening case may be computed to find out the 
surge heights by using Frank`s Table 18. 
 

The column with 01
=

ε
 value corresponds to ε→∞. Since l, f, V0

2, F are physical 

magnitudes, this ε→∞ corresponds to Δh0 = S0l → 0 which is the ideal fluid case. The x 
and τ values of this column can only be used for ideal fluids which is no friction losses 
would occur in the plant. 
 
Example: An hydroelectric power plant with a pressure tunnel of the length l = 5000 m, 
diameter D = 4 m, and Manning coefficient n = 0.014 is feeding the turbines. The cross-
sectional area of the cylindrical surge tank is F = 150 m2. Calculate the extreme surge 
levels by using Frank tables for, 
 

a) Instantaneous discharge increase from 0 m3/sec to 10 m3/sec, 
b) Instantaneous discharge increase from 10 m3/sec to 30 m3/sec. 

 
 
Solution:  
 

a) Q0 = 10 m3/sec, 
 

sec80.0
57.12

10

1
4
4

4

57.12
4
4

4

0

2
22

m
f
QV

mDR

mDf

===

===

=
×

==
ππ

 

 

m
R

lnVh 63.0
1

5000014.080.0
34

22

34

22
0

0 =
××

==Δ  

 

( )

12.0
87.68

11

87.68
63.015081.9

80.057.125000
2

2

2
0

2
0

==

=
××
××

=
Δ

⋅⋅=

ε

ε
h

V
F
f

g
l

 

 

sec490
57.1281.9

150500022 =
×
×

== ππ
gf
lFT  

 
First minimum surge tank level for n = 0 by using Table 18, 
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10.01
=

ε
   →   x = 10.10   ,   τ = 0.255 

15.01
=

ε
   →   x = 6.75   ,   τ = 0.258 

12.01
=

ε
   →   x = 8.76   ,   τ = 0.256 

 
( )

sec125256.0490

52.563.076.8
1min

=×=

−=−×=

τ

my
 

 
First maximum level, 

10.01
=

ε
   →   x = -5.00   ,   τ = 0.760 

15.01
=

ε
   →   x = -2.13   ,   τ = 0.768 

12.01
=

ε
   →   x = -3.85   ,   τ = 0.763 

 
 
 

( ) ( )
sec374763.0490

43.263.085.3
1max

=×=

=−×−=

τ

my
 

 
Second minimum level, 

10.01
=

ε
   →   x = 5.80   ,   τ = 1.261 

15.01
=

ε
   →   x = 3.15   ,   τ = 1.272 

12.01
=

ε
   →   x = 4.74   ,   τ = 1.265 

( )
sec620265.1490

00.363.074.4
2min

=×=

−≅−×=

τ

my
 

 
 

b) Instantaneous discharge increase from Q = 10 m3/sec to Q0 = 30 m3/sec. 
 

Q0 = 30 m3/sec   ,   f = 12.57 m2   ,   R = 1 m. 

( )
m

h
V

F
f

g
l

m
R

lnVh

mV

78.7
60.515081.9

39.257.125000

60.5
1

5000014.039.2

sec39.2
57.12

30

2

2

2
0

2
0

34

22

34

22
0

0

0

=
××
××

=
Δ

⋅⋅=

=
××

==Δ

==

ε
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36.0
78.7

11
==

ε
   ,    333.0

30
10

==n  

 

Interpolation will be done for the required 
ε
1 , and n values using Table 18. 

Minimum surge tank level for n = 0.333, 

n = 0   →   35.01
=

ε
   →    x = 2.96   ,   τ = 0.272 

n = 0   →   40.01
=

ε
   →   x = 2.61   ,   →   τ = 0.276 

n = 0   →   36.01
=

ε
   →   x = 2.89   ,    τ = 0.273 

n = 0.5   →   35.01
=

ε
   →   x = 1.83   ,   τ = 0.297 

 

n = 0.5   →   40.01
=

ε
   →   x = 1.06   ,   τ = 0.306 

 

n = 0.5   →   36.01
=

ε
   →   x = 1.80   ,   τ = 0.299 

n = 0.333   →   36.01
=

ε
   →   x = 2.17   ,   τ = 0.290 

 
( )

sec14249029.0

15.1260.517.2

1

1

min

min

=×=

−=−×=

t

my
 

 
First maximum surge tank level, 
 

n = 0   →   35.01
=

ε
   →   x = 0.52   ,   τ = 0.817 

n = 0   →   40.01
=

ε
   →   x = 0.68   ,   τ = 0.833 

n = 0   →   36.01
=

ε
   →   x = 0.55   ,   τ = 0.820 

n = 0.5   →   35.01
=

ε
   →   x = 0.78   ,   τ = 0.834 

n = 0.5   →   40.01
=

ε
   →   x = 0.85   ,   τ = 0.853 

n = 0.5   →   36.01
=

ε
   →   x = 0.79   ,   τ = 0.838 

n = 0.333   →    36.01
=

ε
   →   x = 0.71   ,   τ = 0.832 
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( )
sec408832.0490

98.360.571.0
1max

=×=

−=−×=

t

my
 

 
Second minimum surge tank level, 
 

n = 0   →   35.01
=

ε
   →   x = 1.16   ,   τ = 1.345 

n = 0   →   40.01
=

ε
   →   x = 1.09   ,   τ = 1.370 

n = 0   →   36.01
=

ε
→   x = 1.15   ,   τ = 1.35 

n = 0.5   →   35.01
=

ε
   →   x = 1.08,   τ = 1.364 

n = 0.5   →   40.01
=

ε
   →   x = 1.04   ,   τ = 1.393 

n = 0.333   →   36.01
=

ε
   →   x = 1.10   ,    τ = 1.36  

( )
sec66636.1490

16.660.510.1
2min

=×=

−=−×=

t

my
 

 
Stability Conditions of the Surge Tanks 
 
Stability conditions of the surge tanks were first established by D. Thoma and F. Vogt. 
They stated that in order to prevent the development of unstable oscillations the cross-
section of the surge tank should exceed a critical value.  
 
According to the Thoma equation suggested in small oscillations, the limit cross-
sectional area of the surge tank is,   
 

02 Hg
lfkFF thm β

=>     (m2) 

 
k = Factor of safety, 
V0 = Pressure tunnel velocity for the new dynamic equilibrium level, i.e. to the power 
output to be succeeded after opening (m/sec), 
β = Resistance factor of the pressure tunnel (sec2/m), 
l = Length of the tunnel (m), 
H0 = H – βV0

2 = H – Δh0 = net head (by neglecting the headloss in the penstock) (m). 
 
Substituting the damping factor m, 
 

lf
gFm β2

=  

 
The minimum value of head succeeding surge stability in case of a given cross-sectional 
area F of the surge tank is, 



  Prof. Dr. A. Bulu 25

 

m
kH

g
mlf

Hg
klfF

=

==

0

0 22 ββ  

 
Assuming local headlosses can be neglected with respect to friction losses, and with the 
substitution, 
 

2
0

34

2
0

34

34

2

22 ngH
fRk

lngH
lfRkF

R
ln

thm ==

=β
 

 
Is obtained, which can be simplified in case of a circular pressure tunnel cross-section, R 
= D/4 as hydraulic radius, f = πD2/4 cross sectional are, to the form of, 
 

2
0

34

234

62.1944 nH
DDkF
×××

=
π  

 
 

2
0

310

160 nH
DkF =  

 
A safety factor k of 1.5 to 1.8 may be adopted. 
 
As can be seen from the equation, the lower the friction factor β, the larger the cross-
sectional area of the surge tank. Limit values of F are thus obtained by simultaneous 
assumption of the highest safety factor k and lowest Manning coefficient n. Substituting 
the pairs of values k = 1.5, n = 0.014 as well as k = 1.8, n = 0.0106, we obtain, 
 

0

310

0

310

22

0

310

0

310

21

100
0106.0160
8.1

50
014.0160

5.1

H
D

H
DF

H
D

H
DF

≅×
×

=

≅×
×

=

 

 

2
1

2 =
F
F  

 
In case of a concrete lined pressure tunnel, the deviation depending on the choice of the 
friction coefficient n, as well as on the safety factor k, is considerable between extreme 
F2/F1 = 2. For a lining carried out with steel, the mean value n = 0.0143 – 0.0133 may be 
applied. 
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For great amplitudes the Thoma equation was modified by Ch. Jaeger, demonstrating 
that the safety factor can n0 longer be considered constant. According to Jaeger, the 
cross-sectional area necessary for stability should not be less than, 
 

0
2

34

0 22 Hgn
fRk

Hg
lfkF ∗∗ ==
β

 

 
For a circular cross-section, 
 

0
2

310

160 Hn
DkF ∗=  

 
The safety factor is, 
 

0

max482.01
H
yk +=∗  

 
ymax is the amplitude of the undamped (frictionless) surge. 
 
 
 




