LECTURE NOTES - II

«HYDROELECTRIC POWER PLANTS »

Prof. Dr. Atıl BULU

Istanbul Technical University
College of Civil Engineering
Civil Engineering Department
Hydraulics Division

CHAPTER 2

MEASURES

In the field of hydroelectric development, work and energy (output of a power plant) are expressed generally in kilowatt-hours (kWh).

Power (capacity of a power plant) is usually expressed in kilowatts (kW) and sometimes the power of hydraulic machinery is in horsepower (HP).

1 megawatt $(\mathrm{MW})=1000 \mathrm{~kW}$
1 megawatt-hours $(\mathrm{MWh})=1000 \mathrm{kWh}$
1 gigawatt-hours $(\mathrm{GWh})=10^{6} \mathrm{kWh}$

$$
\begin{gathered}
1 \mathrm{HP}=75 \mathrm{kgm} / \mathrm{sec}=736 \mathrm{watts}=0.736 \mathrm{~kW} \\
75 \mathrm{kgm} / \mathrm{sec}=75 \times 9.81 \approx 736 \mathrm{Nm} / \mathrm{sec}=\mathrm{Joule} / \mathrm{sec}=\text { Watt } \\
1 \mathrm{~kW}=1.36 \mathrm{HP} \\
1 \mathrm{~kW}=\frac{75}{0.736}=102 \mathrm{kgm} / \mathrm{sec}
\end{gathered}
$$

$$
1 \mathrm{HP}-\text { hour }=0.736 \mathrm{kWh}
$$

$$
1 \text { HP-hour }=75 \times 3600=270000 \mathrm{kgm}
$$

$$
1 \text { HP-hour }=75 \times 9.81 \times 3600=2648700 \mathrm{Nm}(\text { Joule })
$$

$$
1 \mathrm{Kwh}=\frac{270000}{0.736}=367000 \mathrm{kgm}=3.6 \times 10^{6} \text { Joule }
$$

$$
1 \mathrm{kgm}=9.81 \text { joules }(\mathrm{Nm})
$$

$$
1 \mathrm{kgm} / \mathrm{sec}=9.81 \mathrm{joules} / \mathrm{sec}=9.81 \mathrm{watt}
$$

In the field of thermal power generation, work and energy are also measured in kilogramcalories (Cal).

$$
\begin{gathered}
1 \mathrm{Cal}=427 \mathrm{kgm} \\
1 \mathrm{kWh}=\frac{367000}{427}=860 \mathrm{Cal}
\end{gathered}
$$

Example 2.1: Calculate the quantity in kWh of the energy generated from 1 kg of coal of 4000 calories by a thermal power plant having an overall efficiency of 24%.

Solution: Considering that $\eta=0.24$, from 1 kg of coal of 4000 calories, the thermoelectric plant generates a quantity of electric energy that corresponds to,

$$
0.24 \times 4000=960 \text { Calories }
$$

As,

$$
1 \mathrm{kWh}=860 \mathrm{Cal}
$$

The electric energy generated from 1 kg of coal is,

$$
\frac{960}{860}=1.12 \mathrm{kWh}
$$

Example 2.2: Compute in kg weight of coal saved per annum by a hydroelectric plant operating at an annual average capacity of 8000 kW , supposing the fuel consumption of the substituting thermal plant is $3500 \mathrm{Cal} / \mathrm{kWh}$, and the quality of coal is characterized by 4000 $\mathrm{Cal} / \mathrm{kg}$.

Solution: The hydroelectric produces an annual output of,

$$
8000 \times 365 \times 24=70 \times 10^{6} \mathrm{kWh}
$$

When generating the same quantity of energy, the consumption of the substituting thermal plant would be,

$$
3500 \mathrm{Cal} / \mathrm{kWh} \times 70 \times 10^{6} \mathrm{kWh}=24.5 \times 10^{10} \mathrm{Cal}
$$

Accordingly, the annual saving in coal attained by operating the hydroelectric plant amounts to,

$$
\frac{24.5 \times 10^{10}}{4 \times 10^{3}}=6.12 \times 10^{7} \mathrm{~kg}=61200 \mathrm{ton}
$$

Example 2.3: How long does it take a 100 W bulb to consume the same quantity of energy as is required for a tourist of 70 kg in weight carrying an outfit of 35 kg to climb a mountain of 970 m in height? The tourist is assumed to set out on his way to the top of the 970 m mountain from a hostel situated 340 m above sea level.

Solution: The work done by the tourist is,

$$
\begin{aligned}
& (970-340) \times(70+35)=66150 \mathrm{kgm} \\
& 66150 \times 9.81=648932 \mathrm{Nm}(\text { Joule })
\end{aligned}
$$

The hourly consumption of a 100 W bulb is 0.10 kWh ,

$$
1 K w h=\frac{1000 \times 3600}{9.81} \cong 367000 \mathrm{kgm}
$$

The electric energy consumed per hour by the bulb is equivalent to a mechanical work of $0.1 \times 367000=36700 \mathrm{kgm}$. Accordingly, the electric energy equivalent to the work done by the tourist is consumed in,

$$
\frac{66150}{36700}=1.80 \text { hours }
$$

Example 2.4: A laborer working at an average capacity shovels $8 \mathrm{~m}^{3}$ of earth a day up to a vertical distance of 1.60 m from a material having specific weight of $1.8 \mathrm{ton} / \mathrm{m}^{3}$. Compute in kg the quantity of coal of 4200 Cal required for obtaining the same work if the thermal station operates at an efficiency of 24%.

Solution: The work done daily by the laborer is,

$$
\begin{gathered}
8 \times 1.8 \times 1.6=23.04 \mathrm{tm}=23040 \mathrm{kgm} \\
23040 \times 9.81 \cong 226000 \text { Joule }(\mathrm{Nm}) \\
1 \mathrm{Cal}=427 \mathrm{kgm} \\
\frac{23040}{427} \cong 54 \mathrm{Cal}
\end{gathered}
$$

In case of a 24% efficiency, from the coal having a calorific value of 4200 ,

$$
\frac{54}{0.24 \times 4200}=0.054 \mathrm{~kg}=54 \mathrm{gr}
$$

Coal is required to substitute the work done in 1 day by the laborer.
Example 2.5: Determine the quantity of heat generated by braking and stopping a goods train consisting of 50 wagons and traveling at a velocity of $36 \mathrm{~km} / \mathrm{hour}$. Calculate the time required for a small hydroelectric power plant of 15 kW capacity to generate an equivalent amount of electric energy. The average weight of each wagon is 20 ton.

Solution: The mass of goods train amounts to,

$$
\frac{50 \times 20000}{9.81} \cong 102000 \mathrm{~kg} \mathrm{sec}^{2} / \mathrm{m}
$$

In the process of braking the goods train running at a speed of $36 \mathrm{~km} / \mathrm{hour}=10 \mathrm{~m} / \mathrm{sec}$, the kinetic energy converted into heat equals,

$$
\begin{aligned}
& \frac{m V^{2}}{2}=\frac{102000 \times 10^{2}}{2}=5.1 \times 10^{6} \mathrm{kgm} \\
& \frac{5.1 \times 10^{6}}{367000}=13.9 \mathrm{kWh}
\end{aligned}
$$

Consequently, the small hydroelectric plant of 15 kW capacity is capable of producing an equivalent electric energy in,

$$
\frac{13.9}{15}=0.926 \text { hour }=56 \mathrm{~min}
$$

