Chapter 4

Open Channel Flows

4.1. Introduction

When the surface of flow is open to atmosphere, in other terms when there is only
atmospheric pressure on the surface, the flow is named as open channel flow. The
governing force for the open channel flow is the gravitational force component along the
channel slope. Water flow in rivers and streams are obvious examples of open channel
flow in natural channels. Other occurrences of open channel flow are flow in irrigation
canals, sewer systems that flow partially full, storm drains, and street gutters.

4.2. Classification of Open Channel Flows

A channel in which the cross-sectional shape and size and also the bottom slope are
constant is termed as a prismatic channel. Most of the man made (artificial) channels are
prismatic channels over long stretches. The rectangle, trapezoid, triangle and circle are
some of the commonly used shapes in made channels. All natural channels generally
have varying cross-sections and consequently are non-prismatic.

a) Steady and Unsteady Open Channel Flow: If the flow depth or discharge at a
cross-section of an open channel flow is not changing with time, then the flow is
steady flow, otherwise it is called as unsteady flow.

Flood flows in rivers and rapidly varying surges in canals are some examples of
unsteady flows. Unsteady flows are considerably more difficult to analyze than
steady flows.

b) Uniform and Non-Uniform Open Channel Flow: If the flow depth along the
channel is not changing at every cross-section for a taken time, then the flow is
uniform flow. If the flow depth changes at every cross-section along the flow
direction for a taken time, then it is non-uniform flow. A prismatic channel
carrying a certain discharge with a constant velocity is an example of uniform
flow.

¢) Uniform Steady Flow: The flow depth does not change with time at every cross
section and at the same time is constant along the flow direction. The depth of
flow will be constant along the channel length and hence the free surface will be
parallel to the bed. (Figure 4.1).
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Mathematical definition of the Uniform Steady Flow is,

Figure 4.1
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d) Non-Uniform Steady Flows: The water depth changes along the channel cross-
sections but does not change with time at each every cross section with time. A
typical example of this kind of flow is the backwater water surface profile at the

upstream of a dam.
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Figure 4.2. Non-Uniform steady Flow
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If the flow depth varies along the channel, these kinds of flows are called as varied flows.
If the depth variation is abrupt then the flow is called abrupt varied flow (flow under a
sluice gate), or if the depth variation is gradual it is called gradually varied flow (flow at
the upstream of a dam). Varied flows can be steady or unsteady.

Flood flows and waves are unsteady varied flows since the water depths vary at every
cross-section and also at each cross-section it changes with time.

If the water depth in a flow varies at every cross-section along the channel but does not
vary with time at each cross-section, it is steady varied flow.

4.3. Types of Flow
The flow types are determined by relative magnitudes of the governing forces of the
motion which are inertia, viscosity, and gravity forces.

a) Viscosity Force Effect:

Viscosity effect in a fluid flow is examined by Reynolds number. As it was given in

Chapter 1, Reynolds number was the ratio of the inertia force to the viscosity force.

InertiaForce
Re=— -
Vis cosityForce

For the pressured pipe flows,

Re = Q <2000 — Laminar flow
v
Re= Q > 2500 — Turbulent Flow
v

Since D=4R, Reynolds number can be derived in open channel flows as,

Re = YD = V4R =2000 > Re = IR <500 — Laminar Flow (4.3)
L v L
Re = D = VAR =2500 > Re = /R > 625 — Turbulent Flow (4.4)

L v L

500 < Re < 625 — Transition zone
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R is the Hydraulic Radius of the open channel flow cross-section which can be taken
as the flow depth y for wide channels.

Moody Charts can be used to find out the f friction coefficient by taking D=4R.
Universal head loss equation for open channel flows can be derived as,

Since Friction Velocity is,

b) Gravity Force Effect:

The ratio of inertia force to gravity force is Froude Number.

InertiaForce
Fr=e———
GravityForce
4.6
Fr= r (4.6)
P
&1
e
| L \VA

A=Area

Figure 4.3.
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Where ,
A = Wetted area
L= Free surface width

For rectangular channels,

A= By

L=B (4.7)
V V

Fr =
By g
& B

Fr=1—  Critical Flow
Fr <1— Sub Critical (4.8)

Fr>1— Super Critical Flow

4.4. Energy Line Slope for Uniform Open Channel Flows

Energy Line
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Figure 4.4
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The head (energy) loss between cross-sections 1 and 2,

V2 v}
z, +&+;=z2 +&+—2+hL
y 28 y 28
p
_1=_2=y
e Y
h=r,=v

h, =z, -z,
The head loss for unit length of channel length is energy line (hydraulic) slope,

Senep = h_L = Gl B = Sina
L L

Since in open channel flows the channel slope is generally a small value,

a<5°-10°

Sina =Tana

L

Tano = ilE =S, = (channel bottom slope)

S =8, (4.9)

ener

Conclusion: Hydraulic grade line coincides with water surface slope in every kind of
open channel flows. Since the velocity will remain constant in every cross section at
uniform flows, energy line slope, hydraulic grade line slope (water surface slope) and
channel bottom slope are equal to each other and will be parallel as well.

S=8,=5 (4.10)

Where S is the water surface slope.

4.5. Pressure Distribution

The intensity of pressure for a liquid at its free surface is equal to that of the surrounding
atmosphere. Since the atmospheric pressure is commonly taken as a reference and of
equal to zero, the free surface of the liquid is thus a surface of zero pressure. The pressure

distribution in an open channel flow is governed by the acceleration of gravity g and
other accelerations and is given by the Euler’s equation as below:
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In any arbitrary direction s,

_Ap+re)
S = pa, 4.11)

and in the direction normal to s direction, i.e. in the n direction,

~Llprr)=pu, @12
n

in which p = pressure, a5 = acceleration component in the s direction, a, = acceleration in
the n direction and z = geometric elevation measured above a datum.

Consider the s direction along the streamline and the n direction normal to it. The
direction of the normal towards the centre of curvature is considered as positive. We are

interested in studying the pressure distribution in the n-direction. The normal acceleration
of any streamline at a cross-section is given by,

2
a =2 (4.13)
r

n

where v = velocity of flow along the streamline of radius of curvature r.
4.5.1. Hydrostatic Pressure Distribution
The normal acceleration a, will be zero,

1. if v=0, i.e. when there is no motion, or
2. ifr —oo, i.e. when the streamlines are straight lines.

Consider the case of no motion, i.e. the still water case, Fig.( 4.5). From Equ. (4.12),
since a, = 0, taking n in the z direction and integrating,

P 4, —constant = C (4.14)

4
z ——3%—
tA] sy ]
l-’Yh*I —j—Datum

Figure. 4.4. Pressure distribution in still water
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At the free surface [point 1 in Fig (4.5)] pi/ v = 0 and z = z;, giving C = z;. At any point
A at a depth y below the free surface,

P4

L=z -z, =

y 17 Fa=) (4.15)
Ps=M

This linear variation of pressure with depth with the constant of proportionality equal to
the specific weight of the liquid is known as hydrostatic pressure distribution.

4.5.2. Channels with Small Slope

Let us consider a channel with a very small value of the longitudinal slope 6. Let 6 = sin0
~1/1000. For such channels the vertical section is practically the same as the normal
section. If a flow takes place in this channel with the water surface parallel to the bed, the
streamlines will be straight lines and as such in a vertical direction [section 0 — 1 in Fig.
(4.6)] the normal acceleration a, = 0. The pressure distribution at the section 0 — 1 will be
hydrostatic. At any point A at a depth y below the water surface,

p

—=y and —+z=z = Elevation of water surface
4

< |
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Figure 4. 6. Pressure distribution in a channel with small slope

Thus the piezometric head at any point in the channel will be equal to the water surface
elevation. The hydraulic grade line will therefore lie (coincide) on the water surface.

4.5.3. Channels with Large Slope
Fig. (4.7) shows a uniform free surface flow in a channel with a large value of inclination

0. The flow is uniform, i.e. the water surface is parallel to the bed. An element of length
AL is considered at the cross-section 0 — 1.
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Figure 4.7. Pressure distribution in a channel with large slope
At any point A at a depth y measured normal to the water surface, the weight of column
A11’A’ = yALy and acts vertically downwards. The pressure at AA’ supports the normal

component of the column A11°A’. Thus,

p AL =yALcos@

p,=ycosd (4.16)
&=ycose
4

The pressure pa varies linearly with the depth y but the constant of proportionality
isy cos@ . If h = normal depth of flow, the pressure on the bed at point O, p, = yicosé .

If d = vertical depth to water surface measured at point O, then 42 =dcosé and the
pressure head at point O, on the bed is given by,

Po _heos@=dcos?d (4.17)
4

The piezometric head at any point A, p, =z+ ycosd =z, +hcos@. Thus for channels

with large values of the slope, the conventionally defined hydraulic gradient line does not
lie on the water surface.

Channels of large slopes are encountered rather rarely in practice except, typically, in
spillways and chutes. On the other hand, most of the canals, streams and rivers with
which a hydraulic engineer is commonly associated will have slopes (sin 0) smaller than
1/100. For such cases cos 0 = 1.0. As such, the term cosf in the expression for the
pressure will be omitted assuming that the pressure distribution is hydrostatic.
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4.5.4. Pressure Distribution in Curvilinear Flows.
Figure (4.8) shows a curvilinear flow in a vertical plane on an upward convex surface.

For simplicity consider a section 01 A2 in which the r direction and Z direction coincide.
Replacing the n direction in Equ. (4.12) by (-r) direction,

QLEHJ: =t (4.18)
g

2 rn-r=h

VA l
1
) (&)
Datum

Hydrostatic
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Figure 4.8. Convex curvilinear flow

Let us assume a simple case in which a, = constant. Then the integration of Equ. (4.18)
yields,

P2y (4.19)
y g

in which C = constant. With the boundary conditions that at point 2 which lies on the
surface, r =1, and p/y = 0 and z = z,.

L (- 2)-22(r, 1) (4.20)
/4

Let z, —z =y =depth of flow the free surface of any point A in the section 01A2. Then
for point A,
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(r2 —r):y:(22 _Z)

Loy Gy, (4.21)
y g

Equ. (4.21) shows that the pressure is less than the pressure obtained by the hydrostatic
distribution. Fig. (4.8).

For any normal direction OBC in Fig. (4.9), at point C, (p / 7)0 =0, . =r,, and for any
point at a radial distance r from the origin O,

£:(ZC_Z)_an (r,=7)
/4 g
ze —z=(r, —r)cos@

(v, —r) (4.22)
g

£:(”2_”)
/4

If the curvature is convex downwards, (i.e. r direction is opposite to z direction)
following the argument above, for constant a, the pressure at any point A at a depth y
below the free surface in a vertical section O1A2 [ Fig. (4.9)] can be shown to be,

P_y, (4.23)
y g

The pressure distribution in vertical section is as shown in Fig. (4.9)

(v

Figure 4.8. Concave curvilinear flow
Thus it is seen that for a curvilinear flow in a vertical plane, an additional pressure will be

imposed on the hydrostatic pressure distribution. The extra pressure will be additive if the
curvature is convex downwards and subtractive if it is convex upwards.
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4.5.5. Normal Acceleration

In the previous section on curvilinear flows, the normal acceleration a, was assumed to
be constant. However, it is known that at any point in a curvilinear flow, a, = v* / r ,
where v = velocity and r = radius of curvature of the streamline at that point.

In general, one can write v = f (r) and the pressure distribution can then be expressed by,

2
(2 + Zj = jv— dr + const (4.24)
v gr

This expression can be evaluated if v = £ (r) is known. For simple analysis, the following
functional forms are used in appropriate circumstances;

v = constant = V = mean velocity of flow

v =c/r, (free vortex)

v = cr, (forced vortex)

a, = constant = VZ/R, where R = radius of curvature at mid depth.

b

Example 4.1: A spillway bucket has a radius of curvature R as shown in the Figure.

a) Obtain an expression for the pressure distribution at a radial section of inclination
0 to the vertical. Assume the velocity at any radial section to be uniform and the
depth of flow h to be constant,

b) What is the effective piezometric head for the above pressure distribution?

Solution:

a) Consider the section 012. Velocity = V = constant across 12. Depth of flow = h.
From Equ. (4.24), since the curvature is convex downwards,

2
(£+ zj = Iv—dr + const
4 8gr

2
£Jrz:V—Lnr+C (A)
/4 g

12 Prof. Dr. Atill BULU



Atpoint I, p/y=0,z=z;,r=R-h

2
C=z —V—Ln(R—h)
g

At any point A, at radial distance r from 0,

2

Loz -z o
7/—(21 Z)JrgLn(R—hj (B)

z,—z=(r—R+h)cos@

2
£z(r—R+h)cos6+V—Ln( A j (©)
4 g R—-h

Equ. (C) represents the pressure distribution at any point (r, 0). At point 2, r =R, p = p,.
b) Effective piezometric head, hep:

From Equ. (B), the piezometric head h,, at A is,

2
hp:(£+z] :zl+V—Ln( ! j
4 p g R-h

Noting that z, = z, + hcos @ and expressing h, in the form of Equ. (4.17),

h,=z,+hcos@+Ah

Where,

The effective piezometric head he, from Equ. (4.17),

R [1r2
h,, =z,+hcos0+ ! I[V—Ln[ A ﬂa’r

hcos@ ;.| g R—h
2
h,, =z,+hcos0+ d —h+RLn( R ]
ghcos@ R—h
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it
R 1-h/R
o Hows

It may be noted that when R — o0 and h/R — 0, hep — z, +Acos@

(D)

h, =z, +hcosf+

4.6. Uniform Open Channel Flow Velocity Equations

Horizontal

Figure 4.10.

The fundamental equation for uniform flow may be derived by applying the Impuls-
Momentum equation to the control volume ABCD,
F=Ma

The external forces acting on the control volume are,

1) The forces of static pressure, F; and F; acting on the ends of the body,
FI = F, — Uniform flow, flow depths are constant
2) The weight, W, which has a component WSin6 in the direction of motion,

W._=WSin6 = yALSin6
3) Change of momentum,
M,=M,=pQV — V,=V,=V
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4) The force of resistance exerted by the bottom and sides of the channel cross-
section,

T=r,PL
Where P is wetted perimeter of the cross-section.

M, +F+W,-M,-F,-T=0
yALSin@ =t PL

A ..
T, = 7;Szn6’
A R,Sinf =S,
P
7, = /RS, (4.25)

Using Equ. (4.5) and friction velocity equation,

7,=pU;

= RS,

y? :87g><RS0

V= 87g><1/RS0 (4.26)

c- J%
S (4.27)

vV =Cy/RS,

If we define,

This cross-sectional mean velocity equation for open channel flows is known as Chezy
equation. The dimension of Chezy coefficient C,

1=[cIr]"[s,]"
[Lr]=[c]z ]Foror]
cl-fer
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C Chezy coefficient has a dimension and there it is not a constant value. When using the
Chezy equation to calculate the mean velocity, one should be careful since it takes
different values for different unit systems.

The simplest relation and the most widely used equation for the mean velocity calculation

is the Manning equation which has been derived by Robert Manning (1890) by analyzing

the experimental data obtained from his own experiments and from those of others. His

equation is,

1
n

Where n is the Manning’s roughness coefficient.

v ==R"s"’ (4.28)

Equating Equs. (4.27) and (4.28),

1
CRI/ZSé/Z _ ;Rz/ss(l)/z

RS

n

C (4.29)

Equ. (4.28) was derived from metric data; hence, the unit of length is meter. Although n
is often supposed to be a characteristic of channel roughness, it is convenient to consider
n to be a dimensionless. Then, the values of n are the same in any measurement
system.Some typical values of n are given in Table. (4.1)

Table 4.1. Typical values of the Manning’s roughness coefficient n

n

Axrtificial lined channels:
Glass
Brass
Steel, smooth
Painted
Riveted
Cast iron
Concrete, finished
Unfinished
Planed wood
Clay tile
Brickwork
Asphalt
Corrugated metal
Rubble masonry
Excavated earth channels:
Clean
Gravelly
Weedy
Stony, cobbles
Natural channels:
Clean and straight
Sluggish, deep pools
Major rivers
Floodplains:
Pasture, farmland
Light brush
Heavy brush
Trees

16

0.010 = 0.002
0.011 = 0.002
0.012 = 0.002
0.014 = 0.003
0.015 *= 0.002
0.013 &= 0.003
0.012 *+ 0.002
0.014 = 0.002
0.012 = 0.002
0.014 = 0.003
0.015 = 0.002
0.016 = 0.003
0.022 = 0.005
0.025 = 0.005

0.022 = 0.004
0.025 = 0.005
0.030 = 0.005
0.035 = 0.010

0.030 £ 0.005
0.040 = 0.010
0.035 = 0.010

0.035 = 0.010
0.05 = 0.02
0.075 £ 0.025
0.15 = 0.05
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4.6.1. Determination of Manning’s Roughness Coefficient

In applying the Manning equation, the greatest difficulty lies in the determination of the
roughness coefficient, n; there is no exact method of selecting the n value. Selecting a
value of n actually means to estimate the resistance to flow in a given channel, which is
really a matter of intangibles. (Chow, 1959) .To experienced engineers, this means the
exercise of engineering judgment and experience; for a new engineer, it can be no more
than a guess and different individuals will obtain different results.

4.6.2. Factors Affecting Manning’s Roughness Coefficient

It is not uncommon for engineers to think of a channel as having a single value of n for
all occasions. Actually, the value of n is highly variable and depends on a number of
factors. The factors that exert the greatest influence upon the roughness coefficient in
both artificial and natural channels are described below.

a) Surface Roughness: The surface roughness is represented by the size and
shape of the grains of the material forming the wetted perimeter. This usually
considered the only factor in selecting the roughness coefficient, but it is
usually just one of the several factors. Generally, fine grains result in a
relatively low value of n and coarse grains in a high value of n.

b) Vegetation: Vegetation may be regarded as a kind of surface roughness, but it
also reduces the capacity of the channel. This effect depends mainly on height,
density, and type of vegetation.

¢) Channel Irregularity: Channel irregularity comprises irregularities in wetted
perimeter and variations in cross-section, size, and shape along the channel
length.

d) Channel Alignment: Smooth curvature with large radius will give a
relatively low value of n, whereas sharp curvature with severe meandering
will increase n.

e) Silting and Scouring: Generally speaking, silting may change a very
irregular channel into a comparatively uniform one and decrease n, whereas
scouring may do the reverse and increase n.

f) Obstruction: The presence of logjams, bridge piers, and the like tends to
increase n.

g) Size and Shape of the Channel: There is no definite evidence about the size
and shape of the channel as an important factor affecting the value of n.

h) Stage and Discharge: The n value in most streams decreases with increase in
stage and discharge.

i) Seasonal Change: Owing to the seasonal growth of aquatic plants, the value
of n may change from one season to another season.
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4.6.3. Cowan Method

Taking into account primary factors affecting the roughness coefficient, Cowan (1956)

developed a method for estimating the value of n. The value of n may be computed by,
n=(n0+n1+n2+n3+n4)xm (4.30)

Where ny is a basic value for straight, uniform, smooth channel in the natural materials

involved, n; is a value added to ny to correct for the effect of surface irregularities, n; is a

value for variations in shape and size of the channel cross-section, n3 is a value of

obstructions, n4 is a value for vegetation and flow conditions, and m is a correction factor

for meandering of channel. These coefficients are given in Table (4.2) depending on the
channel characteristics. (French, 1994).

Example 4.2: A trapezoidal channel with width B=4 m, side slope m=2, bed slope
Sy=0.0004, and water depth y=1 m is taken. This artificial channel has been excavated in
soil. Velocity and discharge values will be estimated with the vegetation cover change in
the channel. For newly excavated channel, ny value is taken as 0.02 from the Table (4.2).

Only ny and n4 values will be taken in using Equ. (4.30), the effects of the other factors
will be neglected.

n=n,+n,

(A)
Table 4.2. Values for the Computation of the Roughness Coefficient

Channel conditions

Valuea
Earth 0.020
Material Rock cut . 0.025
involved Fine gravel 0.024
Coarese gravel 0.028
Smooth 0.000
Degree of Minor - 0.005
irregularity | pqoderate 0.010
Severe 0.020
Gradual 0.000
v“:;tn‘::l;? ::osa Alternating occasionally T 0.005
eection Alternating frequently 0.010-0.015
Negligible 0. 000
Relative Minor 0.010-0.015
zg:::u?:f‘iona Appreciable . 0.020-0.030
Bevere 0.040-0.060
Low _-_ 0.005-0.010
. Medium 0.010-6.025
Vesetation High ™ i 0.025-0.050
Very high 0.050--0.100
Minor 1.000

18
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The calculated velocity and discharge values corresponding to the n values found by Equ.
(A) have been given in Table. As can be seen from the Table, as the vegetation covers
increases in the channel perimeter so the velocity and discharge decreases drastically.
The discharge for the high vegetation cover is found to be 6 times less than the low
vegetation cover. Vegetation cover also corresponds to the maintenance of the channel
cross-section along the channel. High vegetation cover correspond low maintenance of
the channel. It is obvious that the discharge decrease would be higher if we had taken the
variations in other factors.

Table . Velocity and Discharge Variation with n

n Velocity (m/sec) |Discharge (m3/sec)
0.020 0.79 4.77
0.030 0.53 3.17
0.045 0.35 2.12
.070 0.23 1.36
0.120 0.13 0.79

The calculated velocity and discharge values corresponding to the n values found by Equ.
(A) have been given in Table. As can be seen from the Table, as the vegetation covers
increases in the channel perimeter so the velocity and discharge decreases drastically.
The discharge for the high vegetation cover is found to be 6 times less than the low
vegetation cover. Vegetation cover also corresponds to the maintenance of the channel
cross-section along the channel. High vegetation cover correspond low maintenance of
the channel. It is obvious that the discharge decrease would be higher if we had taken the
variations in other factors.

4.6.4. Empirical Formulae for n

Many empirical formulae have been presented for estimating manning’s coefficient n in
natural streams. These relate n to the bed-particle size. (Subramanya, 1997). The most
popular one under this type is the Strickler formula,

dsy
=0 431
21.1 *+3D

Where ds is in meters and represents the particle size in which 50 per cent of the bed
material is finer. For mixtures of bed materials with considerable coarse-grained sizes,

dl/6
n= 90

= (4.32)

Where dgp = size in meters in which 90 per cent of the particles are finer than dgy. This
equation is reported to be useful in predicting n in mountain streams paved with coarse
gravel and cobbles.
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4.7. Equivalent Roughness

In some channels different parts of the channel perimeter may have different
roughnesses. Canals in which only the sides are lined, laboratory flumes with glass walls
and rough beds, rivers with sand bed in deepwater portion and flood plains covered with
vegetation, are some typical examples. For such channels it is necessary to determine an
equivalent roughness coefficient that can be applied to the entire cross-sectional
perimeter in using the Manning’s formula. This equivalent roughness, also called the
composite roughness, represents a weighted average value for the roughness coefficient,
n.

Figure 4.5. Multi-roughness type perimeter
Consider a channel having its perimeter composed of N types rough nesses. Py, P,...., Py

are the lengths of these N parts and nj, n,........ , ny are the respective roughness
coefficients (Fig. 4.5). Let each part P; be associated with a partial area A; such that,

ZAI.=A1+A2+ ........ + 4 +....... + A, = A= Total area

It 1s assumed that the mean velocity in each partial area is the mean velocity V for the
entire area of flow,

V=V, ==V, = oo —V, =V

By the Manning’s equation,

Vin, V,n Vn, V.n Vn
12 _ "' Vafty _ Vit _ VNN
S =g = XF R (4.33)

Where n = Equivalent roughness.

From Equ. (4.33),

(4.34)
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W EVE JZUR)

n¥*p

2/3
M (4.35)

n= P

This equation gives a means of estimating the equivalent roughness of a channel having
multiple roughness types in its perimeters.

Example 4.3: An earthen trapezoidal channel (n = 0.025) has a bottom width of 5.0 m,
side slopes of 1.5 horizontal: 1 vertical and a uniform flow depth of 1.10 m. In an
economic study to remedy excessive seepage from the canal two proposals, a) to line the
sides only and, b) to line the bed only are considered. If the lining is of smooth concrete
(n=0.012), calculate the equivalent roughness in the above two cases.

T

1.Im

Solution:

Case a): Lining on the sides only,

Forthebed — n;=0.025and P; =5.0 m.

For the sides — n; =0.012 and P, = 2x1.10xy1+1.5 =3.97m
P=P +P,=50+397=89Tm

Equivalent roughness, by Equ. (4.36),

_[5.0x0.025' +3.97x0.012"* "

o7 =0.020

Case b): Lining on the bottom only,

P,=50m — n;=0.012
P,=397"m — n,=0.025>P=897m

2/3

(5.0%0.012'* +3.97x0.025")

o7 =0.018
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4.8. Hydraulic Radius

Hydraulic radius plays a prominent role in the equations of open-channel flow and
therefore, the variation of hydraulic radius with depth and width of the channel becomes
an important consideration. This is mainly a problem of section geometry.

Consider first the variation of hydraulic radius with depth in a rectangular channel of
width B. (Fig. 4.11.a).

= Asymptote

., R
— |
| L
(@)
— .
e oL
Figure 4.11.
A=By,P=B+2y
_A__ B
P B+2y
R:Bi
—+2
y
y=0—->R=0
For B (4.36)
y—)OO,R:E

Therefore the variation of R with y is as shown in Fig (4.11.a). From this comes a useful
engineering approximation: for narrow deep cross-sections R= B/2. Since any
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(nonrectangular) section when deep and narrow approaches a rectangle, when a channel
is deep and narrow, the hydraulic radius may be taken to be half of mean width for
practical applications.

Consider the variation of hydraulic radius with width in a rectangular channel of with a
constant water depth y. (Fig. 4.11.b).

_ By

B+2y

R= y2

1+—

vB
B=0—>R=0

(4.37)
B—>x,R—>y

From this it may be concluded that for wide shallow rectangular cross-sections R=y ; for
rectangular sections the approximation is also valid if the section is wide and shallow,
here the hydraulic radius approaches the mean depth.

4.9. Uniform Flow Depth

The equations that are used in uniform flow calculations are,

a) Continuity equation,
VA

.
[

b) Manning velocity equation,

1
V:ZR”&?

Q=AV=A%R”&%

The water depth in a channel for a given discharge Q and n= Manning coefficient,
So= Channel slope, B= Channel width, is called as Uniform Water Depth.

The basic variables in uniform flow problems can be the discharge Q, velocity of flow V,
normal depth yy, roughness coefficient n, channel slope Sy and the geometric elements
(e.g. B and side slope m for a trapezoidal channel). There can be many other derived
variables accompanied by corresponding relationships. From among the above, the
following five types of basic problems are recognized.
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Problem Type Given Required
1 vo, N, So, Geometric elements Qand V
2 Q, yo, n, Geometric elements So
3 Q, yo, So, Geometric elements n
4 Q, n, Sy, Geometric elements Yo
5 Q, yo, n, So, Geometry Geometric elements

Problems of the types 1, 2 and 3 normally have explicit solutions and hence do not
represent any difficulty in their calculations. Problems of the types 4 and 5 usually do not
have explicit solutions an as such may involve trial-and-error solution procedures.

Example 4.4: Calculate the uniform water depth of an open channel flow to convey
Q=10 m’/sec discharge with manning coefficient n=0.014, channel slope Sy=0.0004, and
channel width B=4 m.

a) Rectangular cross-section

V 2
Yo=?
v
B=4m
A=By, =4y,
P=B+2y,
_é_ 4y,
P 4+2y,

O=AV = A%R”Sg/z

23
10 = 4 yy x——x| —2o_ | 40,0004
0.014

4+2y,
23
yox(—yo ] :—1(5)/:(0'014:0.694
442y, 477 x0.02
O
(4+2y,)"
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Vo =2m—> X =0.794 # 0.694

Vo =1.90m = X =0.741# 0.694
Vo =1.80m — X =0.689 # 0.694
Vo =1.81Im - X =0.694 = 0.694

The uniform water depth for this rectangular channel is yo = 1.81 m.
There is no implicit solution for calculation of water depths. Trial and error must be used
in calculations.

b) Trapezoidal Cross-Section

B+4y,

v 51/2y0
B [:::>>

Yo
1 2y0

o :

B=4m

B+B+4
Azfyo)% :(B+2y0)yo :(4+2y0)y0

P=B+2x/5xy, =4+4.472y,
_ﬁ (4+2yo)yo

P 4+4472y,

Trial and error method will be used to find the uniform water depth.

0=V =alR¥s"
n o

1 (ay,+202 )"
10 = (4y, +252 x x| 2TV | 0.0004"2
0.014 | 4+4.472y,
10x0.014 __

0.02
_ (4y0 + 2)/3 )5/3

(4+4.472y,)"
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Vo=Im—>X=495=7

Vo =110m —> X =570=7
Vo =120m —> X =6.73+7
Vo =122m > X=694#=7
Vo =123m—>X=7.05=7

The uniform water depth for this trapezoidal channel is yp =1.23 m.

Example 4.5: A triangular channel with an apex angle of 75° carries a flow of 1.20
m’/sec at a depth of 0.80 m. If the bed slope is So = 0.009, find the roughness coefficient
n of the channel.

v [/ T

Yo

SR

75°

Solution:
yo= Normal depth = 0.80 m
Referring to Figure,

Area A =%x0.80x2x0.80xtan[§j =0.491m*
Wetted perimeter P=2x0.80xsec37.5° =2.02m
R =£=m=0243m
P 202

ARPS)? 0.491x0.2437” x0.009"°
0 1.20

=0.0151

n=

4.10. Best Hydraulic Cross-Section

a) The best hydraulic (the most efficient) cross-section for a given Q, n, and S is the
one with a minimum excavation and minimum lining cross-section. A = A, and
P = Ppin. The minimum cross-sectional area and the minimum lining area will
reduce construction expenses and therefore that cross-section is economically the
most efficient one.

V:g_)izl/

A A . max
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= lS(‘/zRZ/3 =CxR”

V = Vmax _) R = Rmax

w“cla;

R
R —>P=P

ax min

b) The best hydraulic cross-section for a given A, n, and Sy is the cross-section that
conveys maximum discharge.

1
0= A;RZ“S(I)”

cher2/3

C' = const
0=0,. >R=R_,
R=A

P
R=R_ —>P=P,

The cross-section with the minimum wetted perimeter is the best hydraulic cross-
section within the cross-sections with the same area since lining and maintenance

expenses will reduce substantially.

4.10.1. Rectangular Cross-Sections

\V/

A
\ 4

B
A = By =Constant
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Since P=P,;, for the best hydraulic cross-section, taking derivative of P with respect
toy,

d—Axy—A
dap _ dy

5 +2=0
dy y

A
—=2—>A4=2y’=By (4.38)
y

B=2y

The best rectangular hydraulic cross-section for a constant area is the one with B =
2y. The hydraulic radius of this cross-section is,

2 2
R=A__Y (439
P 4y 2

For all best hydraulic cross-sections, the hydraulic radius should always be R = y/2
regardless of their shapes.

Example 4.6: Calculate the best hydraulic rectangular cross-section to convey Q=10
m>/sec discharge with n=0.02 and Sy= 0.0009 canal characteristics.

Solution: For the best rectangular hydraulic cross-section,

A=2y°
R=2
2

1
0= A;RmSé/z

| 2/3
10=2y"x——x| 2| x0.0009"
0.02 2

¥ _ 10x0.02x 2% 5129
2x0.03
y=5.29% =1.87m
B=2xy=2x1.87=3.74m
y=1.87Tm

Implicit solutions are possible to calculate the water depths for the best hydraulic cross-
sections.
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4.10.2. Trapezoidal Cross-Sections

L
|A Ll
I~ 'I
mv B mv
- /]
y
Y1+ m?
m
d Ll
[~ 1
B
Figure 4.12.

B+B+2
A=%Xy=(3+my)y
P=B+2yVJl+m’

A
B=—-my

y

A
P="——my+2yJ1+m’
Y
As can be seen from equation, wetted perimeter is a function of side slope m and water
depth y of the cross-section.

a) For a given side slope m, what will be the water depth y for best hydraulic
trapezoidal cross-section?

For a givenarea A, P=P

min

P dd
dy dy

dP ?y_A —

—=y—2—m+2 1+m2 =0

dy y

£2=—m+2\/1+m2
y
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A:( 1+m?’ —m)y2 (4.40)

P:( 1+m® —m)y—my+2y\/1+m2
P=2y\1+m* —my—my+2y\J1+m’

P:2y(2 1+ m> —m) (4.41)

The hydraulic radius R, channel bottom width B, and free surface width L may be
found as,

(2\/1+m2 —m)y2

= 2y(2 1+m? —m)

A4
P
r=2
2

A
B=——my=(2 1+m® —m)y—my
y

B:Zy(\/1+m2 —m) (4.42)

L=B+2my

L= Zy(\/l+m2 —m)+2my
L=2y1+m? (4.43)

b) For a given water depth y, what will be the side slope m for best hydraulic
trapezoidal cross-section?

P=Pmin
ar_dd_
dm dm
A I
P=——-my+2yvl+m
y
dAy 0
aP  gm” 2m
— == y+2y——==0
dm ) 21+ m?
2my 2m

y= - =1
\/1+m2 \/1+m2

am’ =1+m*> = 3m’ =1
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A=+3y’ (4.45)

P=2y(2 1+m? —m)

1 1
P= 2y(2\/;—ﬁj

pzzy(ﬂj:ﬂ’

3 B
P=2y3 (4.46)

A By 1 3-1
B=—-—my= S e
y y B33

243 P
B=""2 =2 4.47
3 V=3 (4.47)
4 3y
R:—: -

The channel bottom width is equal one third of the wetted perimeter and therefore sides
and channel width B are equal to each other at the best trapezoidal hydraulic cross-
section. Since a = 60, the cross-section is half of the hexagon.
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Example 4.7: Design the trapezoidal channel as best hydraulic cross-section with Q= 10
m’/sec, n=0.014, So= 0.0004, and m= 3/2.

1.5y B 1.5y

Solution:

_B+B+3y><

A y=(B+1.5y)y

P:B+2y1/1+% =B+2y4/3.25=B+3.6ly

B=1_1sy

y
P:£—1.5y+3.61y:£+2.11y

y y

dP iJlAy_A

oY o11=0

dy )’

A=2.11y"

B=2.11y-15y=0.61y
P=0.61y+3.61y=422y
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0= A%RMS(;/Z

2/3
10=2.115" x—— x| 2| x0.0004"
0.014 | 2

g3 10x0.014x2%°
2.11x0.02
y=5.266"* =1.86m

=5.266

A=2.11y* =2.11x1.86 =7.30m"”
B=0.61y=0.61x1.86=1.13m
L=B+3y=1.13+3x1.86=6.71m
P=422y=422x1.86="7.85m

R:A 7.30 y 1.86

—=——=093m >R==-=—-=0.93m
P 7.85 2 2

Example 4.8: A slightly rough brick-lined trapezoidal channel (n = 0.017) carrying a
discharge of Q = 25 m’/sec is to have a longitudinal slope of Sy = 0.0004. Analyze the

proportions of,

a) An efficient trapezoidal channel section having a side of 1.5 horizontal: 1 vertical,

b) the most efficient-channel section of trapezoidal shape.
Solution:
Casea): m=1.5

For an efficient trapezoidal channel section, by Equ. (4.40),

A=2N1+m’ —m)y2

A=21+1.5 —1.5)y2 =2.106y"

R :%,Q:25m3/sec

2/3
25— 2106y x(lj % 0.0004"2
0.017 2

y=2.83m
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B :Zy(\/l+m2 —m)

B=2><2.83><( 1+1.5% —1.5):1.72m

Case b): For the most-efficient trapezoidal channel section,

m =L:0.577
3

=+/3y% =1.732)"

A
R=

N =

2/3
25— 1732y %[ 2] x0.0004%
0.017 2

y=3.05m

B :ix3.05 =3.52m

N

4.10.3. Half a Circular Conduit

Figure 4.13.

Wetted area A, and wetted perimeter of the half a circular conduit,

Y
2
P=nm (4.48)

Half a circular conduit itself is a best hydraulic cross-section.
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Example 4.9:

a) What are the best dimensions y and B for a rectangular brick channel designed to
carry 5 m>/sec of water in uniform flow with S = 0.001, and n=0.015?
b) Compare results with a half-hexagon and semi circle.

Solution:
a) For best rectangular cross-sections, the dimensions are,
Yy
A=2y* , R==
2

1
0= A;R”Sé/z

1 2/3
5=2y2x—x| 2| x0.001°
0.015 \ 2

g3 5x0.015x2%°
2x%0.001"
y=127Tm

=1.882

The proper area and width of the best rectangular cross-section are,

A=2y*=2x127*=3.23m’

B=2 o0y =3B 5 5um
y 1.27
\V4

y=1.27

¢—— B=254m —

b) It is constructive to see what discharge a half-hexagon and semi circle would
carry for the same area of A = 3.23 m”.

T

AN

" s
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m = cota = cot60° L 0.577

V3

A= (B+B+2my)y :(B+my)y

2 (A)
A=(B+0.577y)y
P=B+2yJ1+m’
Y (B)

P=B+2yJ1+0.577° =B+231y

Using Equs. (A) and (B),

B=2_0577y
y

P:£—0.577y+2.31y
y
P=ﬁ+1.733y
y

P 323

dy )

. 323
_32 1 3Tm
R TT

+1.733=0

B =ﬁ—0.577><1.37 =1.57Tm
1.37

P=1.57+231x1.37=4.73m
R A_323 137

222 _068m > R=2=-"~0.68m
P 473 2 2

The discharge conveyed in this half a hexagon cross-section is,

0= 4V =323x ;15 %0.68%° x0.001° =5.27m’ fsec

5.27-5.00
5.00

=0.054

Half of a hexagon cross-section with the same area of the rectangular cross-section will
convey 5.4 per cent more discharge.
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For a semicircle cross-section,

2
4=323=-"2
p =832 L _ogm
3.14
oD _314x287
2
R=2-32 _o716m=L
P 451 4
0=3.23x 115 x0.716%* x0.001%° = 5.45m° /sec
545-5.00_,
5.00
545-527 o
527

Semicircle carries more discharge comparing with the rectangular and trapezoidal cross-
sections by 9 and 3 per cent respectively.

Table 4.3. Proportions of some most efficient sections

Channel Shape A P B R L
Rectangle (half square) 2y* 4y 2y y 2y
2
Trapezoidal 3y 23y | 2 ¥ 4
(half regular hexagon) Ey 2 fy
Circular (semicircle) T o, y
2’ g - 2 | %y
Triangle ¥ 243y - ¥ 2y
(vertex angle = 90" 22

(A = Area, P = Wetted perimeter, B = Base width,
R = Hydraulic radius, L = Water surface width)
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4.10.4. Circular Conduit with a Free Surface

A
R
\ :
Y
Figure 4.14.

A circular pipe with radius r is conveying water with depth y. The angle of the free water
surface with the center of the circle is 8. Wetted area and wetted perimeter of the flow is,

360° = 2mradian — A=m* — P =27

For 0 radian, the area and the perimeter of the sector are,

2 2
A=07__T%  (4a9)
27 2
P,=02" _r6  (4.50)
2r

Wetted area of the flow with the flow depth y is,
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. b .6
Sin—=——>x=rSin—
r

Cosgzlﬁy:rCosg
2 2

r
2rSing><rCOSQ 2 0 0
Ao = 22 :7x2Sin5Cos5
P2 20 2

r
A, =—xSin—=—>~S8in0
OAB 2 2 2

Substituting Axop into the Equ. (4.51) give the wetted area of the flow,

2 2
A="0 " g0 (@s2)
2 2

a) What will be the 0 angle for the maximum discharge?

2/3 5/3
0= A%(%} 53/2 =%Sé/2 A

1
C’ :—Sé/z = cons
n

S g dd pos 2y dP

A5/3
a0 37 de 3 dé =0
o p3 S

5/3
é><A2/3><d—A><P2/3:zxd—PxA—
3 deo 3 do PpP"

21 52
5><d—A><P5+§ =2><d—P><A?5
do d

s p_2dP 4 (453
do do
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Derivatives of the wetted area and the wetted perimeter are,

2
A=%(0—Sin0)

2
d—A:r—(I—COSH)
do 2

Substituting the derivates to the Equ. (4.53),

2 2
5%(1—C059)r<9 = Zr%(H—SinH)

50(1—Cos@)=2(0 - Sin)
50 -56Cos0—-20+2S8in6 =0

30 -568Cos0+2Sin6 =0 (4.54)
Solution of the Equ. (4.54) give the 0 angle as,
6 =302°30" = 5.28radian

The wetted area, wetted perimeter, and hydraulic radius of the flow are,

2
A="—(0-Sin0)
2
}/'2 7’2
:7(5.28—Sin302.5°)=7(5.28+0.84)
A4=3.06r
P=r0=528r
2
R=4 23007 455,
P 528~
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The water depth in the circular conduit s,

0
y=r —rCosg =r —rCos[3022'5 j =r(1+0.88)

y=1.88r=0.94D

1

2/3 @1/2
RS,

0=4

0,.. =3.06r xlx(o.ssr)z“ S)?
n

0, =2.137% 153/2
n

b) What will be the 0 angle for the maximum velocity?

1
V==R7PS)

n
A

V —— R=——max
P

max

dR = dAxP—zdPxA _0
P

(1-cos@)d =0 —sind
0 —0cos@=0-sinb
_sinf

0= tan @
cosd

6 =257°30' = 2.49radian

0
y= r—rcosg = r(l—cos 2575 ]= 1.626r =0.813D
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Figure 4.15.

4.11. Compound Sections

Some channel sections may be formed as a combination of elementary sections.
Typically natural channels, such as rivers, have flood plains which are wide and shallow
compared to the main channel. Fig. (4.16) represents a simplified section of a stream with
flood banks.

Consider the compound section to be divided into subsections by arbitrary lines. These
can be extensions of the deep channel boundaries as in Fig. (4.16). Assuming the
longitudinal slope to be same for all subsections, it is easy to see that the subsections will
have different mean velocities depending upon the depth and roughness of the
boundaries. Generally, overbanks have larger size roughness than the deeper main
channel. If the mean velocities V; in the various subsections are known then the total
discharge is ) ViA.

Figure 4.16. Compound section

If the depth of flow is confined to the deep channel only (y < h), calculation of discharge
by using Manning’s equation is very simple. However, when the flow spills over the
flood plain (y > h), the problem of discharge calculation is complicated as the calculation
may give a smaller hydraulic radius for the whole stream section and hence the discharge
may be underestimated. The following method of discharge estimation can be used. In
this method, while calculating the wetted perimeter for the sub-areas, the imaginary
divisions (FJ and CK in the Figure) are considered as boundaries for the deeper portion
only and neglected completely in the calculation relating to the shallower portion.
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1. The discharge is calculated as the sum of the partial discharges in the sub-areas;

for e.g. units 1, 2 and 3 in Fig. (4.16)

Qp :ZQI' :ZVI‘AI‘

(4.55)

2. The discharge is also calculated by considering the whole section as one unit,

(ABCDEFGH area in Fig.4.16), say Qy.

3. The larger of the above discharges, Q, and Q,, is adopted as the discharge at the

depth y.

Example 4.10: For the compound channel shown in the Figure, determine the discharge

for a depth of flow 1.20 m. n =0.02, Sy = 0.0002.

¥

17.0m

b 4

il

© el 7o

— 7.0m ———p|

i IO.90 m

—p
3.0m

Solution:
a): y=120m
Partial area discharge; Sub-area 1 and 3:

A =7.0x0.3=2.1m>
P =03+7.0=73m

Ro=A =2 0288m
P 13
= Lx 2.1x0.288% x 0.0002°%°
L 0.02

0, = 0.648m* [sec = 0,

43
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Sub-area 2:

Total discharge,

A, =3.0x1.2=3.6m"
P, =3.0+0.9+0.9=4.8m

4, 3.
R, :—2=3—=0.75m

P, 48
0, == 1)2 %3.6%0.75%7 x0.0002"° =2.10m* /sec

Qp = Qpl +Qp2 +Qp3
0, =0.648+2.10+0.6.48 =3396m’ /sec

b): By the total-section method:

A=21+2.1+3.6=78m"
P=03+7.0+09+3.0+09+7.0+0.3=19.4m

R=A_78 _040m
P 194
0, = ; 1)2 x 7.8 0.402% x 0.0002%° =3.00m’ /sec

Since Qp > Qy, the discharge in the channel is,

0=0,=3.39m’[sec

4.10 Design of Irrigation Channels

For a uniform flow in a canal,

Where A and R are in general, functions of the geometric elements of the canal. If the

Q — %AR2/3S(())5

canal is of trapezoidal cross-section,

Equ. (4.56) has six variables out of which one is a dependent variable and the rest five are
independent ones. Similarly, for other channel shapes, the number of variables depends
upon the channel geometry. In a channel design problem, the independent variables are
known either explicitly or implicitly, or as inequalities, mostly in terms of empirical
relationships. The canal-design practice given below is meant only for rigid-boundary

0= f(n,,,S,,B,m) (4.56)

channels, i.e. for lined an unlined non-erodible channels.
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4.12.1. Canal Section

Normally a trapezoidal section is adopted. Rectangular cross-sections are also used in
special situations, such as in rock cuts, steep chutes and in cross-drainage works.

The side slope, expressed as m horizontal: 1 vertical, depends on the type pf canal, i.e.
lined or unlined, nature and type of soil through which the canal is laid. The slopes are
designed to withstand seepage forces under critical conditions, such as;

1. A canal running full with banks saturated due to rainfall,
2. The sudden drawdown of canal supply.

Usually the slopes are steeper in cutting than in filling. For lined canals, the slopes
roughly correspond to the angle of repose of the natural soil and the values of m range
from 1.0 to 1.5 and rarely up to 2.0. The slopes recommended for unlined canals in
cutting are given in Table (4.4).

Table 4.3. Side slopes for unlined canals in cutting

Type of soil m
Very light loose sand to average sandy soil | 1.5 —-2.0
Sandy loam, black cotton soil 1.0-1.5
Sandy to gravel soil 1.0-2.0
Murom, hard soil 0.75-1.5
Rock 0.25-0.5

4.12.2. Longitudinal Slope

The longitudinal slope is fixed on the basis of topography to command as much area as
possible with the limiting velocities acting as constraints. Usually the slopes are of the
order of 0.0001. For lined canals a velocity of about 2 m/sec is usually recommended.

4.12.3. Roughness coefficient n

Procedures for selecting n are discussed in Section (4.6.1). Values of n can be taken from
Table (4.2).

4.12.4. Permissible Velocities

Since the cost for a given length of canal depends upon its size, if the available slope
permits, it is economical to use highest safe velocities. High velocities may cause scour
and erosion of the boundaries. As such, in unlined channels the maximum permissible
velocities refer to the velocities that can be safely allowed in the channel without causing
scour or erosion of the channel material.
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In lined canals, where the material of lining can withstand very high velocities, the
maximum permissible velocity is determined by the stability and durability of the lining
and also on the erosive action of any abrasive material that may be carried in the stream.
The permissible maximum velocities normally adopted for a few soil types and lining
materials are given in Table (4.5).

Table 4.4. Permissible Maximum velocities

Nature of boundary Permissible maximum
velocity (m/sec)
Sandy soil 0.30 — 0.60
Black cotton soil 0.60 —0.90
Hard soil 0.90-1.10
Firm clay and loam 0.90-1.15
Gravel 1.20
Disintegrated rock 1.50
Hard rock 4.00
Brick masonry with cement pointing 2.50
Brick masonry with cement plaster 4.00
Concrete 6.00
Steel lining 10.00

In addition to the maximum velocities, a minimum velocity in the channel is also an
important constraint in the canal design. Too low velocity would cause deposition of
suspended material, like silt, which cannot only impair the carrying capacity but also
increase the maintenance costs. Also, in unlined canals, too low a velocity may encourage
weed growth. The minimum velocity in irrigation channels is of the order of 0.30 m/sec.

4.12.5. Free Board

Free board for lined canals is the vertical distance between the full supply level to the top
of lining (Fig. 4.17). For unlined canals, it is the vertical distance from the full supply

level to the top of the bank.

Free board

Y FSL

Rounding off of corner Bed

Figure 4.10. Typical cross-section of a lined canal
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This distance should be sufficient to prevent overtopping of the canal lining or banks due
to waves. The amount of free board provided depends on the canal size, location, velocity
and depth of flow. Table (4.5) gives free board heights with respect to the maximum
discharge of the canal.

Table 4.6.

Discharge Free board (m)
(m*/sec) Unlined Lined

Q<10.0 0.50 0.60
Q>10.0 0.75 0.75

4.10.6. Width to Depth Ratio

The relationship between width and depth varies widely depending upon the design
practice. If the hydraulically most-efficient channel cross-section is adopted,

2
L =2 1155y, 5B —1.155

ﬁ \/g Yo

If any other value of m is use, the corresponding value of B/y, for the efficient section
would be from Equ. (4.18),

m=

B_ 2( 1+m? —m) (4.57)
Yo

In large channels it is necessary to limit the depth to avoid dangers of bank failure.
Usually depths higher than about 4.0 m are applied only when it is absolutely necessary.

For selection of width and depth, the usual procedure is to adopt a recommended value
Example 4.11: A trapezoidal channel is to carry a discharge of 40 m*/sec. The maximum
slope that can be used is 0.0004. The soil is hard. Design the channel as, a) a lined canal

with concrete lining, b) an unlined non-erodible channel.

Solution:
a) Lined canal

Choose side slope of 1 : 1, i.e., m = 1.0 (from Table 4.4)

n for concrete, n = 0.013 (from Table 4.2)
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From Equ. (4.57),

—:2(2 1+m’ —m)
Yo

B [ 2
—=2><(2 1+1 —1)
Yo

EZ3.67

Yo

Since,

A=(B+my,)y, LA B s367412467
Yo o

For the most-efficient hydraulic cross-sections, R = BANYY Yo

Q:lARZBSgS
n
1 2/3 0.5
40 = x4.67y,x(0.5 x0.0004™
0.013 Yo ( yo)
y)? =8.838 > y, =3.70m

A=4.67y, =4.67x3.70=17.28m"

2=i=2.31m/sec
A 17.28

B=3.67y,=3.67x3.70=13.58m

This velocity value is greater than the minimum velocity of 0.30 m/sec, and further is less
than the maximum permissible velocity of 6.0 m/sec for concrete. Hence the selection of
B and yy are all right. The recommended geometric parameters of the canal are therefore:

B=13.58m, m=1.0, So=0.0004

Adopt a free board of 0.75 m. The normal depth for n = 0.013 will be 3.70 m.

b) Lined canal

From Table (4.), a side slope of 1 : 1 is chosen. From Table (4.2), take n for hard soil
surface as n = 0.020.
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From Equ. (4.57),

£:2(2 1+m2—m)
Yo

B [ 12
— =2x1241+1° -1
Yo

£=3.67

Yo

Since,

A=(B+my,)y, LA B 36T +1=467
Yo Yo

For the most-efficient hydraulic cross-sections, R = RAN Yo

1

40 = X467y, (0.5y, )" x0.0004°*

y? =13.60 > y, =4.79m
Since yp =4.79 m > 4.0 m, yo = 4.0 m is chosen,

£ =3.67>B=3.67x4.0=14.68m
Yo

A=4.67x4=18.68m>

p-L_ 40 _ 2.14m/sec
A 18.68

But this velocity is larger than the permissible velocity of 0.90 — 1.10 m/sec for hard soil

(Table 4.5). In this case, therefore the maximum permissible velocity will control the
channel dimensions.

Adopt V =1.10 m/sec,

A= 40 _ 36.36m>
1.10

v, =4.0
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A:(B“'mJ’o)yo

B="_my, =%—1x4.0=5.09m

Yo :
P=B+2Vm’ +1y,
P=5.09+2v1+1x4.0=16.40m

23
0 :Lx36.36x(ﬁj %0.0004°°

0.020 16.40
0 =61.82m" [sec)40m’ [sec

The slope of the channel will be smoother,

oA
n

s = 97 2
*{R¥4

2/3 0.5
RS

40x0.02

2/3
(36%) x36.36

16.40
S, =0.000167

Hence the recommended parameters pf the canal are B = 5.09 m, m = 1, and Sy =
0.000167. Adopt a free board of 0.75 m. The normal depth for n = 0.02 will be y, = 4.0
m.
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