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CHAPTER  6 
 
 

TWO-DIMENSIONAL IDEAL FLOW 
 
 

6.1 INTRODUCTION 
 

An ideal fluid is purely hypothetical fluid, which is assumed to have no viscosity and 
no compressibility, also, in the case of liquids, no surface tension and vaporization. The study 
of flow of such a fluid stems from the eighteenth century hydrodynamics developed by 
mathematicians, who, by making the above assumptions regarding the fluid, aimed at 
establishing mathematical models for fluid flows. Although the assumptions of ideal flow 
appear to be far obtained, the introduction of the boundary layer concept by Prandtl in 1904 
enabled the distinction to be made between two regimes of flow: that adjacent to the solid 
boundary, in which viscosity effects are predominant and, therefore, the ideal flow treatment 
would be erroneous, and that outside the boundary layer, in which viscosity has negligible 
effect so that idealized flow conditions may be applied.  

 
The ideal flow theory may also be extended to situations in which fluid viscosity is 

very small and velocities are high, since they correspond to very high values of Reynolds 
number, at which flows are independent of viscosity. Thus, it is possible to see ideal flow as 
that corresponding to an infinitely large Reynolds number and zero viscosity. 

 
 

6.2. CONTINUITY EQUATION 
 

The control volume ABCDEFGH in Fig. 6.1 is taken in the form of a small prism with 
sides dx, dy and dz in the x, y and z directions, respectively. 
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Fig. 6.1 

 
The mean values of the component velocities in these directions are u, v, and w. 

Considering flow in the x direction, 
 

Mass inflow through ABCD in unit time udydzρ=  
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In the general case, both specific mass ρ and velocity u will change in the x direction 
and so, 

Mass outflow through EFGH in unit time ( ) dydzdx
x
uu ⎥⎦

⎤
⎢⎣
⎡

∂
∂

+=
ρρ  

Thus, 

Net outflow in unit time in x direction ( )dxdydz
x
u

∂
∂

=
ρ  

Similarly, 

Net outflow in unit time in y direction ( )dxdydz
y
v

∂
∂

=
ρ  

 

Net outflow in unit time in z direction ( )dxdydz
z
w

∂
∂

=
ρ  

Therefore, 

Total net outflow in unit time 
( ) ( ) ( ) dxdydz
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Also, since ∂ρ/∂t is the change in specific mass per unit time, 

 

Change of mass in control volume in unit time dxdydz
t∂

∂
−=

ρ  

 
(the negative sign indicating that a net outflow has been assumed). Then, 
 
Total net outflow in unit time = Change of mass in control volume in unit time 
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∂
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Equ. (6.1) holds for every point in a fluid flow whether steady or unsteady, compressible or 
incompressible. However, for incompressible flow, the specific mass ρ is constant and the 
equation simplifies to 

 

0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u                        (6.2) 

 
For two-dimensional incompressible flow this will simplify still further to 

 

0=
∂
∂

+
∂
∂

y
v

x
u                      (6.3) 
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EXAMPLE 6.1: The velocity distribution for the flow of an incompressible fluid is 
given by u = 3-x, v = 4+2y, w = 2-z. Show that this satisfies the requirements of the 
continuity equation. 

 
SOLUTION: For three-dimensional flow of an incompressible fluid, the continuity 

equation simplifies to Equ. (6.2); 
 

1,2,1 −=
∂
∂

=
∂
∂

−=
∂
∂

z
w

y
v

x
u  

and, hence, 

0121 =−+−=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u  

 
Which satisfies the requirement for continuity. 
 
 

6.3. EULER’S EQUATIONS 
 

Euler’s equations for a vertical two-dimensional flow field may be derived by 
applying Newton’s second law to a basic differential system of fluid of dimension dx by dz 
(Fig. 6.2). 
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Fig. 6.2 

 
The forces dFx and dFz on such an elemental system are, 

 

gdxdzdxdz
z
pdF

dxdz
x
pdF

z

x

ρ−
∂
∂

−=

∂
∂

−=
 

 
The accelerations of the system have been derived for steady flow (Equ. 3.5) as, 
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Applying Newton’s second law by equating the differential forces to the products of 
the mass of the system and respective accelerations gives, 
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and by cancellation of dxdz and slight arrangement, the Euler equations of two-dimensional 
flow in a vertical plane are 
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x
uu

x
p

∂
∂

+
∂
∂

=
∂
∂

−
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1                        (6.4) 
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Accompanied by the equation continuity, 
 

0=
∂
∂

+
∂
∂

z
w

x
u                     (6.3) 

 
The Euler equations form a set of three simultaneous partial differential equations that 

are basic to the solution of two-dimensional flow field problems; complete solution of these 
equations yields p, u and w as functions of x and z, allowing prediction of pressure and 
velocity at any point in the flow field.  

 
 

6.4. BERNOULLI’S EQUATION 
 

Bernoulli’s equation may be derived by integrating the Euler equations for a constant 
specific weight flow. Multiplying Equ. (6.4) by dx and Equ. (6.5) by dz and integrating from 
1 to 2 on a streamline give 
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∂
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∂
∂

+
∂
∂

∂
∂

−=
∂
∂

+
∂
∂

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

dzgdz
z
pdz

z
wwdz

x
wu

dx
x
pdx

z
uwdx

x
uu

ρ

ρ

∫
 

Prof. Dr. Atıl BULU 103



u

w V

1

2

x

z

dz u
dx

ds
V w

 
However, along a streamline in any steady flow dz/dx=w/u and therefore udz = wdx. If we 
collect the both equations, 
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Since ( )
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∂
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∂
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, arranging the equation yields, 
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Since the terms in each bracket is a total differential, by integrating gives 
 

( ) ( 1212

2
1

2
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2
1

2
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2222
zzgppwwuu

−−−−=−+−
ρ

)  

 
By remembering that V2 = u2 + w2, the equation takes the form of 

 

2
2

2
2

1
1

2
1

22
zp

g
Vzp

g
V

++=++
γγ

                   (6.6) 

 
This equation is the well-known Bernoulli equation and valid on the streamline 

between points 1 and 2 in a flow field. 
 

 
6.5. ROTATIONAL AND IRROTATIONAL FLOW  

 
Considerations of ideal flow lead to yet another flow classification, namely the 

distinction between rotational and irrotational flow. 
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Fig. 6.2 and 6.3 

 
Basically, there are two types of motion: translation and rotation. The two may exist 

independently or simultaneously, in which case they may be considered as one superimposed 
on the other. If a solid body is represented by square, then pure translation or pure rotation 
may be represented as shown in Fig. 6.2 (a) and (b), respectively. 

 
If we now consider the square to represent a fluid element, it may be subjected to 

deformation. This can be either linear or angular, as shown in Fig. 6.3 (a) and (b), 
respectively. 

 
The rotational movement can be specified in mathematical terms. Fig.6.4 shows the 

rotation of a rectangular fluid element in a two-dimensional flow.  
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 C 

Fig. 6.4 
 

During the time interval Δt the element ABCD has moved relative to A to a new 
position, which is indicated by the dotted lines. The angular velocity (wAB) of line AB is, 
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Similarly, the angular velocity (wAD) of line AD is 

 

y
u

t
w

t
AD ∂

∂
−=

Δ
Δ

=
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2

0
lim θ  

 
The average of the angular velocities of these two line elements is defined as the 

rotation w of the fluid element ABCD. Therefore, 
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⎠

⎞
⎜⎜
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⎛
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∂
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2
1                      (6.7) 

 
The condition of irrotationality for a two-dimensional flow is satisfied when the 

rotation w is everywhere zero, so that 
 

0=
∂
∂

−
∂
∂

y
u
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v         or         
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u
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∂
∂

=
∂
∂               (6.8) 

 
For a three-dimensional flow, the condition of irrotationality requires that the rotation 

about each of three axes, which are parallel to x, y and z-axes must be zero. Therefore, the 
following three equations must be satisfied: 
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z
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∂
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=
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∂ ,,                 (6.9) 

 
EXAMPLE 6.2: The velocity components in a two-dimensional velocity field for an 

incompressible fluid are expressed as 
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Show that these functions represent a possible case of an irrotational flow. 

 
SOLUTION: The functions given satisfy the continuity equation (Equ. 6.3), for their 

partial derivatives are 
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x
u 22 −=
∂
∂        and        22 −=

∂
∂ xy
y
v  
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y
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Therefore they represent a possible case of fluid flow. The rotation w of any fluid element in 
the flow field is, 
 

( ) ( )[ ] 0
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6.6. CIRCULATION AND VORTICITY 

 
Consider a fluid element ABCD in rotational motion. Let the velocity components 

along the sides of the element be as shown in Fig. 6.5.  

u
yu +     dy

Direction
of

intergration

u

vdy

 dx

A D

CB

v +     dxv
x

y

x  
Fig. 6.5 

 
Since the element is rotating, being part of rotational flow, there must be a resultant 

peripheral velocity. However, since the center of rotation is not known, it is more convenient 
to relate rotation to the sum of products of velocity and distance around the contour of the 
element. Such a sum is the line integral of velocity around the element and it is called 
circulation, denoted by Γ. Thus, 

 

∫ ⋅=Γ sdV rr
                      (6.10) 

 
Circulation is, by convention, regarded as positive for anticlockwise direction of 

integration. Thus, for the element ABCD, from side AD 
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Since 

ζ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
u

x
v  

 
For the two-dimensional flow in the x-y Ë–aWe, is the vorticity of the element about 

the z-axis, ζz. ThÔ product dxdy is the area of the element dA.  
Th)s� 

dAdxdy
y
u

x
v

zABCD ζ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=Γ  

 
It is seen, therefore, that the circulation[XrWund X contour is equal to the sum of the 

vorticities within%the area of contour. This is known as Stokes’ thXo�em and may be stated 
mathematically, for a general case of any contoué›C�(Fig_6.6) as 

 

∫∫ ⋅=⋅=Γ
A

sC dAdsV ζ                       (6.11) 

ζdA
θ

C

 
Fig. 6.6 

 
The above considerations<indicate that, for irrotational flow, since vorticity iÏ equal to 

zero, Óhe circulation around a closed contour through which fluid és moving, must be equal 
to zero. 

 
 

6.7. STREAM FUNCTIO… 
 

A stream function ψ is a mathematical device, which describes the formŒof any 
particular pattern of flow. In Fig. 6.7 let P (x, y) represent a movable point in the plane of 
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motion of a steady, tw  have unit thicrness 
perpendicular to the xy-plane.  

o-dimensional flow, and cönsider the flow to

υ

ν

P''

P`

y P(x,y)
x

q Δ

y

x                           
 Fig. 6.7 

The volume rate of flow across any line connecting OP is a function of the position of 
 function ψ: P and defined as the stream

 
( )yxf ,=ψ  

 
Stream function ψ has a unit of cubic meter per second per meter thickness (normal to 

the xy-

The two components of velocity, u and v can be expressed in terms of ψ. If the point P 
in Fig. 6.7 is f itesim l distance ∂y is ∂ψ = u⋅∂y. Therefore, 

 

plane).  
 

 displaced an in in a

y∂
∂

=
ψu                         (6.12) 

Similarly, 

x
v

∂
−=
∂ψ                     (6.13)  

 
W en these values of u and v are substituted into Eqs. (3.6), the differential equation 

for stream es 
 

h
lines in two-dimensional flow becom

0=
∂

+
∂ dxdyψ ψ

∂∂ xy
 

 
By definition, the left-hand side of this equation is equal to the total differential dψ 

when  = f (x, y). Thus, 
 

ψ

0=ψd  
and 

ψ = C  (constant along a streamline)           (6.14) 
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Equ. (6.14) indicates that the general equation for the streamlines in a flow pattern is 
obtained when ψ is equated to a constant. Different numerical values of the constant in turn 
define streamlines. As an example, the stream function for a steady two-dimensional flow at 
900 corner (shown in Fig. 6.8) takes the following form: 

 
xy=ψ  

 
The general equation for the streamlines of such a flow is obtained when ψ = C 

(constan
 

efine different streamlines as shown in Fig. 6.8. Obviously, the 
volume rate of flow between any two streamlines is equal to the difference in numerical 
values of their constants. 

 

t), that is, 

Cxy =  
 

Which indicates that the streamlines are a family of rectangular hyperbolas. Different 
numerical values of C d

2
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 = 16
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4
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ν
υ P(x,y)

0
 

A stream function is given by 

 
1). 

ponents of velocity are given by 

-component:  

Fig. 6.8 
 

EXAMPLE 6.3: 
 

323 yx −=ψ  

Determine the magnitude of velocity components at the point (3,
 

SOLUTION: T
 

he x and y com

x ( ) 232 −=−
∂

=
∂

= 33 yyx
yy

u
∂∂

ψ  
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y-component:  ( ) xyx
xx

v 63 32 −=−
∂

−=
∂
∂

−=
ψ ∂  

 
t the point (3,1) 

        v = -18 
 
and the total velocity is the vector sum of the two components. 

ji

A
 
u = -3         and

 
V

rrr
183 −−=  

 
Note that ∂v/∂y=0, so that 

 
∂u/∂x=0 and 

0=
∂

+
∂ vu  

∂yx
 

satisfies the continuity equation. 

 

∂

Therefore the given stream function 
 
The equation for vorticity, 

yx ∂∂
 

ma s of ψ by substituting Eqs. (6.12) and (6.13) into Equ. (6.14) 

uv ∂
−

∂
=ζ                         (6.14) 

y also be expressed in term
 

22 yx ∂∂
 

ows, ζ = 0, and the classic Laplace equation, 

22 ∂
−

∂
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ψψζ  

However, for irrotational fl
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2

=∇=
∂
∂

+
∂
∂ ψψψ

yx
 

 
results. This means that the stream functions of all irrotational flows must satisfy the Laplace 
equation and that such flows may be identified in this manner; conversely, flows whose ψ 
does not satisfy the Laplace equation are rotational ones. Since both rotational and irrotational 
flow fi

EXAMPLE 6.4: A flow field is described by the equation ψ = y-x2. Sketch the 
streamlines ψ = 0, ψ=1, and ψ = 2. Derive an expression for the velocity V at any point in the 
flow field. Calculate the vorticity. 

elds are physically possible, the satisfaction of the Laplace equation is no criterion of 
the physical existence of a flow field. 
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SOLUTION: From the equation for ψ, the flow field is a family of parabolas 

symmetrical about the y-axis with the streamline ψ = 0 passing through the origin of 
coordinates. 
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Which allows the directional arrows to be placed on streamlines as shown.  

The magnitude V of the velocity may be calculated from 
 

222 41 xvuV +=+=  
 

and the vorticity by Equ. (6.14) 
 

( ) ( ) 1sec212 −=
∂
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−
∂
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=
∂
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−
∂
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=
y

x
xy

u
x
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Since ζ ≠ 0, this flow field is seen to be rotational one. 

 
 

6.8. VELOCITY POTENTIAL FUNCTIONS 
 

When the flow is irrotational, a mathematical function called the velocity potential 
function φ may also be found to exist. A velocity potential function φ for a steady, irrotational 
flow in the xy-plane is defined as a function of x and y, such that the partial derivative φ with 
respect to displacement in any chosen direction is equal to the velocity in that direction. 
Therefore, for the x and y directions, 

 

x
u

∂
∂

=
φ                    (6.15) 
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y
v

∂
∂

=
φ                   (6.16) 

 
These equations indicate that the velocity potential increases in the direction of flow. 

When the velocity potential function φ is equated to a series of constants, equations for a 
family of equipotential lines are the result. 

 
The continuity equation 
 

0=
∂
∂

+
∂
∂

y
v

x
u                     (6.3) 

 
may be written in terms of φ by substitution Eqs. (6.15) and (6.16) into the Equ. (6.3), to yield 
The Laplacian differential equation, 
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∂
∂ φφφ

yx
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Thus all practical flows (which must conform to the continuity principle) must satisfy 

the Laplacian equation in terms of φ. 
 
 
 

 
Similarly, the equation of vorticity, 
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v
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may be put in terms of φ to give 
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from which a valuable conclusion may be drawn: Since, 

 

yxyx ∂∂
∂

=
∂∂

∂ φφ 22

 

 
the vorticity must be zero for the existence of a velocity potential. From this it may be deduced 
that only irrotational (ζ = 0) flow fields can be characterized by a velocity potential φ; for this 
reason irrotational flows are also known as potential flows. 

 
 

 RELATION BETWEEN STREAM FUNCTION AND VELOCITY POTENTIAL 
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A geometric relationship between streamlines and equipotential lines may be derived 
from the foregoing equations and restatement of certain mathematical definitions; the latter 
are (with definitions of u and v inserted) 

 

vdyudxdy
y

dx
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d

udyvdxdy
y

dx
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+=
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However, along a streamline ψ is constant and dψ = 0, so along a streamline, 

 

u
v

dx
dy

=  

 
also along any equipotential line φ is constant and dφ = 0, so along an equipotential line; 

 

u
v

dx
dy

−=  

 
The geometric significance of this is seen in Fig. 6.9. The equipotential lines are 

normal to the streamlines. Thus the streamlines and equipotential lines (for potential flows) 
form a net, called a flow net, of mutually perpendicular families of lines, a fact of great 
significance for the study of flow fields where formal mathematical expressions of φ and ψ 
are unobtainable. Another feature of the velocity potential is that the value of φ drops along 
the direction of the flow, that is, φ3<φ2<φ1. 
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Fig. 6.9 

 
It is important to note that the stream functions are not restricted to irrotational 

(potential) flows, whereas the velocity potential function exists only when the flow is 
irrotational because the velocity potential function always satisfies the condition of 
irrotationality (Equ. 6.8). The partial derivative of u in Equ. (6.15) is always equal to the 
partial derivative v in Equ. (6.16) 
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For any flow pattern the velocity potential function φ is related to the stream function 

ψ by the means of the two velocity components, u and v, at any point (x, y) in the Cartesian 
coordinate system in the form of the two following equations: 

 

yx
u

∂
∂

=
∂
∂

=
ψφ                      (6.18) 

 

xy
v

∂
∂

−=
∂
∂

=
ψφ                      (6.19) 

 
EXAMPLE 6.5: A stream function in a two-dimensional flow is ψ = 2xy. Show that 

the flow is irrotational (potential) and determine the corresponding velocity potential function 
φ. 

 
SOLUTION: The given stream function satisfies the condition of irrotationality, that 

is, 
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2

2

2
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⎡
∂
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+
∂
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= xy
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which shows that the flow is irrotational. Therefore, a velocity potential function φ will exist 
for this flow. 

By using Equ. (6.18) 
 

( ) xxy
yyx

22 =
∂
∂

=
∂
∂

=
∂
∂ ψφ  

 
Therefore, 

( )∫ +=∂= yfxxx 1
22φ                  (a) 

 
From Equ. (6.19) 

 

( ) yxy
xxy

22 −=
∂
∂

−=
∂
∂

−=
∂
∂ ψφ  

 
From this equation, 

 
( )xfyyy 2

22 +−=∂−= ∫φ             (b) 
 

The velocity potential function, 
 

Cyx +−= 22φ     
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satisfies both φ functions in Equations a and b. 
 

EXAMPLE 6.6: In a two-dimensional, incompressible flow the fluid velocity 
components are given by: u = x – 4y and v = -y - 4x. Show that the flow satisfies the 
continuity equation and obtain the expression for the stream function. If the flow is potential 
(irrotational) obtain also the expression for the velocity potential. 

 
SOLUTION: For incompressible, two-dimensional flow, the continuity equation is 

 

0=
∂
∂

+
∂
∂

y
v

x
u  

 
but u = x – 4y and v = -y – 4x. 

 

1=
∂
∂

x
u              1−=

∂
∂
y
v  

 
Therefore, 1 – 1 = 0 and the flow satisfies the continuity equation. 

 
To obtain the stream function, using Eqs. (6.12) and (6.13) 

 

yx
y

u 4−=
∂
∂

=
ψ           (a) 

xy
x

v 4+=
∂
∂

−=
ψ              (b) 

Therefore, from (a), 
 

( ) ( )

( ) Cxfyxy

Cxfyyx

++−=

++∂−= ∫

22

4ψ

 

 
But, if ψ0 = 0 at x = 0 and y = 0, which means that the reference streamline passes through the 
origin, then C = 0 and 

 
( )xfyxy +−= 22ψ                 (c) 

 
To determine f (x), differentiate partially the above expression with respect to x and equate to 
–v, equation (b): 

 

( )

( ) 224

4

xxxxf

xyxf
x

y
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+=
∂
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+=
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Substitute into (c) 
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22 22 yxyx −+=ψ  
 

To check whether the flow is potential, there are two possible approaches: 
 

(a) Since 
 

0=
∂
∂

−
∂
∂

y
u

x
v  

but 
( yxv +−= 4 )        and      yxu 4−=  

 
Therefore, 

 

4−=
∂
∂
x
v          and        4−=

∂
∂

y
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so that 
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∂
∂

−
∂
∂

y
u

x
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and flow is potential. 
 
 
 

(a) Laplace’s equation must be satisfied, 
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2

2
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=∇=
∂
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+
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∂ ψψψ

yx
 

 
22 22 yxyx −+=ψ  

 
Therefore, 

 

yx
x

+=
∂
∂ 4ψ     and    yx

y
4−=

∂
∂ψ  

 

42

2

=
∂
∂

x
ψ      and       42

2

−=
∂
∂

y
ψ   

 
Therefore 4 – 4 = 0 and flow is potential. 

 
Now, to obtain the velocity potential, 

 

yxu
x

4−==
∂
∂φ  
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( ) ( ) Gyfxyx ++∂−= ∫ 4φ  
 

But φ0 = 0 at x = 0 and y = 0, so that G = 0. Therefore, 
 

( )yfyxx
+−= 4

2

2

φ  

 
Differentiating with respect to y and equating to v, 

 

( ) yxyf
dy
dx

y
−−=+−=

∂
∂ 44φ  

 

( ) yyf
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d

−=        and       ( )
2

2yyf −=  

 
so that 

2
4

2

22 yyxx
−−=φ  

 
 
 
 
 
 

6.10. THE FLOW NET 
 

In any two-dimensional steady flow problem, the mathematical solution is to 
determine the velocity field of flow expressed by the following two velocity components: 

 
( )
( )yxfv

yxfu
,
,

2

1

=
=

 

 
However, if the flow is irrotational, the problem can also be solved graphically by 

means of a flow net such as the one shown in Fig.6.10. This is a network of mutually 
perpendicular streamlines and equipotential lines. The streamlines, which show the direction 
of flow at any point, are so spaced that there is an equal rate of flow Δq discharging through 
each stream tube. The discharge Δq is equal to the change in ψ from one streamline to the 
next. The equipotential lines are then drawn everywhere normal to the streamlines. The 
spacings of equipotential lines are selected in such a way that the change in velocity potential 
from one equipotential line to the next is constant. Furthermore, that is, Δψ = Δφ. As a result 
they form approximate squares (Fig. 6.10) 
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Fig.6.10 

Equipotential
lines

Δq

Δq
Δq
Δq

Streamlines

Square

 
From the continuity relationship, the distances between both sets of lines must 

therefore be inversely proportional to the local velocities. Thus the following relation is a key 
to the proper construction of any flow net. 

 

1

2

1

2

2

1

s
s

n
n

v
v

Δ
Δ

=
Δ
Δ

=  

 
Where Δn and Δs are respectively the distance between streamlines and between 

equipotential lines. 
 

Since there is only one possible pattern of flow for a given set of boundary conditions, 
a flow net, if properly constructed, represents a unique mathematical solution for a steady, 
irrotational flow. Whenever the flow net is used, the hydrodynamic condition of irrotationality 
(Equ. 6.8) must be satisfied. 

 
 
The flow net must be used with caution. The validity of the interpretation depends on 

the extent to which the assumption of ideal (nonviscous) fluid is justified. Fortunately, such 
fluids as water and air have rather small viscosity so that, under favorable conditions of flow, 
the condition of irrotationality can be approximately attained. In practice, flow nets can be 
constructed for both the flow within solid boundaries (Fig.6.11) and flow around a solid body 
(Fig. 6.12).  

υ0

 
Fig. 6.11  
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0υ

 
Fig. 6.12 

 
In either flow the boundary surfaces also represent streamlines. Other streamlines are 

then sketched in by eye. Next, the equipotential lines are drawn everywhere normal to the 
streamlines. The accuracy of the flow net depends on the criterion that both sets of lines must 
form approximate squares. Usually a few trials will be required before a satisfactory flow net 
is produced. 

 
After a correct flow net is obtained, the velocity at any point in the entire field of flow 

can be determined by measuring the distance between the streamlines (or the equipotential 
lines), provided the magnitude of velocity at a reference section, such as the velocity of flow 
v0 in the straight reach of the channel in Fig. 6.11, or the velocity of approach v0 in Fig. 6.12, 
is known. It is seen from both that the magnitude of local velocities depends on the 
configuration of the boundary surface. Both flow nets give an accurate picture of velocity 
distribution in the entire field of flow, except for those regions in the vicinity of solid 
boundaries where the effect of fluid viscosity becomes appreciable. 

 
 
 
 
 
 
 
 

6.11. GROUND WATER FLOW 
 

The flow net and flow field superposition techniques may also be applied to the flow 
of real fluids under some restrictions, which are frequently encountered in engineering 
practice. Consider the one-dimensional flow of an incompressible real fluid in a stream tube. 
The Bernoulli equation written in differential form is 

 

Ldhz
g

Vpd −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

2

2

γ
 

 
Suppose now that V is small (so that dV2/2g may be neglected) and the head loss dhL 

given by 

Vdl
K

dhL
1

=                        (6.20) 
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in which dl is the differential length along the stream tube and K is a constant. The Bernoulli 
equation above then reduces to 
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and, if this may be extended to the two-dimensional case, 
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and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ zpK

γ
 is seen to be the velocity potential of such flow field. 

 
The conditions of the foregoing hypothetical problem are satisfied when fluid flows in 

a laminar condition through a homogenous porous medium. The media interest are those 
having a set of interconnected pores that will pass a significant volume of fluid, for example, 
sand, and the certain rock formations. The head-loss law (Equ. 6.20) is usually written as  

 

dl
dhK

dl
dhKV L −==  

 
(where h=p/γ+z) and is an experimental relation called Darcy’s law; K is known as the 
coefficient of permeability, has the dimensions of velocity, and ranges in value from 3×10-11 
m/sec for clay to 0.3 m/sec for gravel. 

 
A Reynolds number is defined for porous media flow as Re = Vd/ν, where V is the 

apparent velocity or specific discharge (Q/A) and d is a characteristic length of the medium, 
for example, the effective or median grain size in sand. When Re<1 the flow is laminar and 
Darcy’s linear law is valid. If Re>1 it is likely that the flow is turbulent, that V2/2g is not 
negligible, and Equ. 6.20 is not valid. Note that V is not the actual velocity in the pores, but is 
the velocity obtained by measuring the discharge Q through an area A. The average velocity 
in the pores is Vp = V/n where n is the porosity of the medium; 

 
n=(Volume of voids) / (Volume of solids plus voids) 

 
Even though the actual fluid flow in the porous medium is viscous dominated and 

rotational, the “apparent flow” represented by V and the velocities u and v (Equations 6.21 
and 6.22) is irrotational. Both the flow net and superposition of flow field concepts can be 
used. The flow net is very useful in obtaining engineering information for the “seepage flow” 
of water through or under structures, to wells and under drains, or for the flow of petroleum 
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through the porous materials of subsurface “reservoirs”. Flow field superposition is most 
useful in defining the flow pattern in ground water aquifers under the action of recharge and 
withdrawals wells.  
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