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CHAPTER 3 
 
 

KINEMATICS OF FLUIDS 
 

 
3.1. FLUID IN MOTION 

 
Fluid motion observed in nature, such as the flow of waters in rivers is usually rather 

chaotic. However, the motion of fluid must conform to the general principles of mechanics. 
Basic concepts of mechanics are the tools in the study of fluid motion. 

 
Fluid, unlike solids, is composed of particles whose relative motions are not fixed 

from time to time. Each fluid particle has its own velocity and acceleration at any instant of 
time. They change both respects to time and space. For a complete description of fluid motion 
it is necessary to observe the motion of fluid particles at various points in space and at 
successive instants of time. 

 
Two methods are generally used in describing fluid motion for mathematical analysis, 

the Lagrangian method and the Eulerian method. 
 

The Lagrangian method describes the behavior of the individual fluid during its course 
of motion through space. In rectangular Cartesian coordinate system, Lagrange adopted a, b, 
c, and t as independent variables. The motion of fluid particle is completely specified if the 
following equations of motion in three rectangular coordinates are determined: 
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Eqs. (3.1) describe the exact spatial position (x, y,z) of any fluid particle at different 

times in terms of its initial position (x0 = a, y0 = b, z0 = c) at the given initial time t = t0. They 
are usually referred to as parametric equations of the path of fluid particles. The attention here 
is focused on the paths of different fluid particles as time goes on. After the equations 
describing the paths of fluid particles are determined, the instantaneous velocity components 
and acceleration components at any instant of time can be determined in the usual manner by 
taking derivatives with respect to time. 
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In which u, v, and w, and ax, ay, and az are respectively the x, y, and z components of 

velocity and acceleration. 
 

In the Eulerian method, the individual fluid particles are not identified. Instead, a fixed 
position in space is chosen, and the velocity of particles at this position as a function of time is 
sought. Mathematically, the velocity of particles at any point in the space can be written, 
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Euler chose x, y, z, and t as independent variables in his method. 

 
The relationship between Eulerian and Lagrangian methods can be shown. According 

to the Lagrangian method, we have a set of Eqs. (3.2) for each particle which can be 
combined with Eqs. (3.3) as follows: 
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The integration of Eqs. (3.4) leads to three constants of integration, which can be 

considered as initial coordinates a, b, c of the fluid particle. Hence the solutions of Eqs. (3.4) 
give the equations of Lagrange (Eqs. 3.1). 

 
Although the solution of Lagrangian equations yields the complete description of 

paths of fluid particles, the mathematical difficulty encountered in solving these equations 
makes the Lagrangian method impractical. In most fluid mechanics problems, knowledge of 
the behavior of each particle is not essential. Rather the general state of motion expressed in 
terms of velocity components of flow and the change of velocity with respect to time at 
various points in the flow field are of greater practical significance. Therefore the Eulerian 
method is generally adopted in fluid mechanics. 
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With the Eulerian concept of describing fluid motion, Eqs. (3.3) give a specific 
velocity field in which the velocity at every point is known. In using the velocity field, and 
noting that x, y, z are functions of time, we may establish the acceleration components ax, ay, 
and az by employing the chain rule of partial differentiation, 
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The acceleration of fluid particles in a flow field may be imagined as the superposition 

of two effects: 
 
1) At a given time t, the field is assumed to become and remain steady. The particle, 

under such circumstances, is in the process of changing position in this steady 
field. It is thus undergoing a change in velocity because the velocity at various 
positions in this field will be different at any time t. This time rate of change of 
velocity due to changing position in the field is called convective acceleration, 
and is given the first parentheses in the preceding acceleration equations. 

2) The term within the second parentheses in the acceleration equations does not 
arise from the change of particle, but rather from the rate of change of the 
velocity field itself at the position occupied by the particle at time t. It is called 
local acceleration. 

 
 

3.2. UNIFORM FLOW AND STEADY FLOW 
 

Conditions in a body of fluid can vary from point to point and, at any given point, can 
vary from one moment of time to the next. Flow is described as uniform if the velocity at a 
given instant is the same in magnitude and direction at every point in the fluid. If, at the given 
instant, the velocity changes from point to point, the flow is described as non-uniform. 

 
A steady flow is one in which the velocity and pressure may vary from point to point 

but do not change with time. If, at a given point, conditions do change with time, the flow is 
described as unsteady. 

 
For example, in the pipe of Fig. 3.1 leading from an infinite reservoir of fixed surface 

elevation, unsteady flow exits while the valve A is being opened or closed; with the valve 
opening fixed, steady flow occurs under the former condition, pressures, velocities, and the 
like, vary with time and location; under the latter they may vary only with location. 

Prof. Dr. Atıl BULU 41



A

 
Fig. 3.1 

 
There are, therefore, four possible types of flow. 

 
1) Steady uniform flow. Conditions do not change with position or time. The 

velocity of fluid is the same at each cross-section; e.g. flow of a liquid through a 
pipe of constant diameter running completely full at constant velocity. 

2) Steady non-uniform flow. Conditions change from point to point but not with 
time. The velocity and cross-sectional area of the stream may vary from cross-
section to cross-section, they will not vary with time; e.g. flow of a liquid at a 
constant rate through a conical pipe running completely full. 

3) Unsteady uniform flow. At a given instant of time the velocity at every point is 
the same, but this velocity will change with time; e.g. accelerating flow of a 
liquid through a pipe of uniform diameter running full, such as would occur when 
a pump is started up. 

4) Unsteady non-uniform flow. The cross-sectional area and velocity vary from 
point to point and also change with time; a wave travelling along a channel. 

 
 

3.3. STREAMLINES AND STREAM TUBES 
 

If curves are drawn in a steady flow in such a way that the tangent at any point is in 
the direction of the velocity vector at that point, such curves are called streamlines. Individual 
fluid particles must travel on paths whose tangent is always in the direction of the fluid 
velocity at any point. Thus, path lines are the same as streamlines in steady flows. 
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Streamlines for a flow pattern in the xy-plane are shown in Fig. 3.2, in which a 
streamline passing through the point P (x, y) is tangential to the velocity vector V

r
 at P. If u 

and v are the x and y components of V
r

, 
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Where dy and dx are the y and x components of the differential displacement ds along 

the streamline in the immediate vicinity of P. Therefore, the differential equation for 
streamlines in the xy-plane may be written as 
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The differential equation for streamlines in space is, 
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Obviously, a streamline is everywhere tangent to the velocity vector; there can be no 

flow occurring across a streamline. In steady flow the pattern of streamlines remains 
invariant with time. 

 
A stream tube such as that shown in Fig. 3.3 may be visualized as formed by a bundle 

of streamlines in a steady flow field. No flow crosses the wall of a stream tube. Often times in 
simpler flow problems, such as fluid flow in conduits, the solid boundaries may serve as the 
periphery of a stream tube since they satisfy the condition of having no flow crossing the wall 
of the tube. 
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Fig. 3.3 

 
In general, the cross-sectional area may vary along a stream tube since streamlines are 

generally curvilinear. Only in the steady flow field with uniform velocity will streamlines be 
straight and parallel. By definition, the velocities of all fluid particles in a uniform flow are 
the same in both magnitude and direction. If either the magnitude or direction of the velocity 
changes along any one streamline, the flow is then considered non-uniform. 
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3.4. ONE, TWO AND THREE-DIMENSIONAL FLOW 

 
Although, in general, all fluid flow occurs in three dimensions, so that, velocity, 

pressure and other factors vary with reference to three orthogonal axes, in some problems the 
major changes occur in two directions or even in only one direction. Changes along the other 
axis or axes can, in such cases, be ignored without introducing major errors, thus simplifying 
the analysis. 

 
Flow is described as one-dimensional if the factors, or parameters, such as velocity, 

pressure and elevation, describing the flow at a given instant, vary only along the direction of 
flow and not across the cross-section at any point. If the flow is unsteady, these parameters 
may vary with time. The one dimension is taken as the distance along the streamline of the 
flow, even though this may be a curve in space, and the values of velocity, pressure and 
elevation at each point along this streamline will be the average values across a section 
normal to the streamline (Fig.3.4). 

X

X
Ideal fluid Real fluidCross-section

of flow  
Fig. 3.4 

 
In two-dimensional flow it is assumed that the flow parameters may vary in the 

direction of flow and in one direction at right angles, so that the streamlines are curves lying 
in a plane and identical in all planes parallel to this plane. 

 
Fig. 3.5 

 
Thus, the flow over a weir of constant cross-section (Fig.3.5) and infinite width 

perpendicular to the plane of the diagram can be treated as two-dimensional. 
 

In three-dimensional flow it is assumed that the flow parameters may vary in space, x 
in the direction of motion, y and z in the plane of the cross-section. 
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3.5. EQUATION OF CONTINUITY: ONE-DIMENSIONAL STEADY FLOW 

 
The application of the principle of conservation of mass to a steady flow in a stream 

tube results in the equation of continuity, which expresses the continuity of flow from section 
to section of the stream. Consider a physical system that is a particular collection of matter 
and is identified and viewed as being separated from everything external to the system by an 
imagined or real closed boundary. The fluid system retains its mass, but not its position or 
shape. This suggest needs to define a more convenient object for analysis. This objet is a 
volume fixed in space and is called a control volume, through whose boundary matter, mass, 
momentum, energy, and the like may flow. The boundary of the control volume is the control 
surface. The fixed control volume can be of any useful size (finite or infinitesimal) and shape, 
provided only that the bounding control surface is a closed (completely surrounding) 
boundary. Neither the control volume not the control shape changes shape or position with 
time. 

system boundary 
at time t + dt

 R 

ds

Control surface and
system boundary at time t
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Fig. 3.6 

 
Now consider the element of a finite stream tube in Fig. 3.6 through which passes a 

steady, one-dimensional flow of an incompressible fluid (note the uniform velocities at 
sections 1 and 2). In the tube near section 1 the cross-sectional area is A1 and near section 2, 
A2. With the control surface shown coinciding with the stream tube walls and the cross 
sections at 1 and 2, the control volume comprises volumes I and R. Let a fluid system be 
defined as the fluid within the control volume (I + R) at time t. The control volume is fixed in 
space, but in time dt the system moves downstream as shown. From the conservation of 
system mass 
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(Mass of fluid in zones I and R at time t) = (Mass of fluid in zones O and R at time t+dt) 

 
In a steady flow the fluid properties at points in space are not functions of time so (mR) 

t = (mR) t+dt and consequently 
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( ) ( ) dttOtI mm +=  
These two terms are easily in terms of the mass of fluid moving across the control 

surface in time dt. The volume of I is A1ds1, and that of O is A2ds2; accordingly, 
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Dividing by dt, 
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However, ds1/dt and ds2/dt are recognized as the velocities past sections 1 and 2, 

respectively, therefore, if m = ρAV is the mass flow rate, then 
 

2211 VAVAm ρρ ==  
 

2211 VAVAQ ==                        (3.8) 
 

Which is the equation of continuity. Thus for incompressible fluids, along a stream 
tube the product of velocity and cross-sectional area will be constant. This product, Q, s 
designated as (flowrate) discharge and has dimensions of [L3T-1] and units of cubic meters 
per second (m3/sec). 

A

dA

V

υ

 
Fig. 3.7 

 
Frequently in fluid flows the velocity distribution through a flow cross-section may be 

non-uniform, as shown in Fig. 3.7. From consideration of mass, it is evident at once that non-
uniformity of velocity distribution does not invalidate the continuity principle. Thus, for 
steady flow of the incompressible fluid, Equ. (3.8) applies as before. Here, however, the 
velocity V in the equation is the mean velocity defined by V = Q/A in which the discharge Q 
is obtained from the summation of the differential discharges, dQ, passing through the 
differential areas, dA. Thus, V is a fictitious uniform velocity that will transport the same 
amount of mass through the cross-section as will the actual the velocity distribution; 
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From which the mean velocity may be obtained by performing the indicated 
integration (Equ. 3.9). With the velocity mathematically defined, formal integration may be 
employed; when the velocity profile is known but not mathematically defined, graphical or 
numerical methods may be used to evaluate integral. 

 
The fact that the product AV remains constant along a stream tube allows a partial 

physical interpretation of streamline pictures. As the cross-sectional area of a stream tube 
increases, the velocity must decrease; hence the conclusion; streamlines widely spaced 
indicate regions of low velocity, streamlines closely spaced indicate regions of high velocity. 

 
The continuity of flow equation is one of he major tools of fluid mechanics, providing 

a means of calculating velocities at different points in a system. 
A
V
Q

2

2

2

A
V
Q 3

3

3

A
V
Q1

1

1

 
 

Fig. 3.8 
 

The continuity equation can also be applied to determine the relation between the 
flows into and out of a junction. In Fig. 3.8, for steady conditions, 

 
Total inflow to junction = Total outflow from junction 

 
321 QQQ +=  

or 
332211 VAVAVA +=  

 
In general, if we consider flow towards the junction as positive and flow away from 

the junction as negative, then for steady flow at any junction the algebraic sum of the 
discharges must be zero. 

0=∑Q
 

EXAMPLE 3.1: Water flows through a pipe AB (Fig.3.9) of diameter d1 = 50 mm, 
which is in series with a pipe BC of diameter d2 = 75 mm in which the mean velocity V2 = 2 
m/sec. 
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Fig. 3.9 

At C the pipe forks and one branch CD is of diameter d3 such that the mean velocity 
V3 = 1.5 m/sec. The other branch CE is of diameter d4 = 30 mm and conditions are such that 
the discharge Q2 from BC divides so that Q4 = 0.5Q3. Calculate the values of Q1, V1, Q2, Q3, 
d3, Q4 and V4. 

 
SOLUTION: Since pipes AB and BC in series, the volume rate of flow (discharge) 

will be the same in each pipe, Q1 = Q2. 
 

Q2 = Area of pipe×Mean velocity = 2
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Considering pipes BC, CD and DE, the discharge from BC must be equal to the sum 

of discharges through CD and CE. Therefore, Q2 = Q3 + Q4, and since Q4 = 0.5Q3, we have Q2 
= 1.5Q3, from which 
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Also, since 
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