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CHAPTER 1 
 
 

FUNDAMENTALS 
 

 
1.1. INTRODUCTION 

 
Man’s desire for knowledge of fluid phenomena began with his problems of water 

supply, irrigation, navigation, and waterpower. 
 
Matter exists in two states; the solid and the fluid, the fluid state being commonly 

divided into the liquid and gaseous states. Solids differ from liquids and liquids from gases in 
the spacing and latitude of motion of their molecules, these variables being large in a gas, 
smaller in a liquid, and extremely small in a solid. Thus it follows that intermolecular 
cohesive forces are large in a solid, smaller in a liquid, and extremely small in a gas. 
 
 

1.2. DIMENSIONS AND UNITS 
 

Dimension = A dimension is the measure by which a physical variable is expressed 
quantitatively. 
 

Unit = A unit is a particular way of attaching a number to the quantitative dimension. 
 

Thus length is a dimension associated with such variables as distance, displacement, 
width, deflection, and height, while centimeters or meters are both numerical units for 
expressing length. 
 

In fluid mechanics, there are only four primary dimensions from which all the 
dimensions can be derived: mass, length, time, and force. The brackets around a symbol like 
[M] mean “the dimension” of mass. All other variables in fluid mechanics can be expressed in 
terms of [M], [L], [T], and [F]. For example, acceleration has the dimensions [LT-2]. Force [F] 
is directly related to mass, length, and time by Newton’s second law, 
 

onAcceleratiMassForce
maF

×=
=

                                                                           (1.1) 

 
From this we see that, dimensionally, [F] = [MLT-2]. 
 

1 kg-force = 9.81 Newton of force = 9.81 N 
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Primary Dimensions in SI and MKS Systems 
 

Primary Dimension MKS Units SI Units
 

Force [F] Kilogram (kg) Newton (N=kg.m/s2) 
 

Mass [M] M=G/g = (kgsec2/m) Kilogram 
 

Length [L] Meter (m) Meter (m) 
   

Time [T] Second (sec) Second (sec) 
                     

 
Secondary Dimensions in Fluid Mechanics 

 
Secondary Dimension MKS Units SI Units

 
Area [L2] m2 m2

 
Volume [L3] m3 m3

 
Velocity [LT-1] m/sec m/sec 

 
Acceleration [LT-2] m/sec2 m/sec2

 
Pressure or stress 
[FL-2] = [ML-1T-2] kg/m2 Pa= N/m2(Pascal) 

 
Angular Velocity [T-1] sec-1 sec-1

 
Energy, work 

[FL] = [ML2T-2] kg.m J = Nm (Joule) 

 
Power 

[FLT-1] = [ML2T-3] kg.m/sec W = J/sec (Watt) 

 
Specific mass (ρ) 
[ML-3] = [FT2L-4] kg.sec2/m4 kg/m3

 
Specific weight (γ) 
[FL-3] = [ML-2T-2] Kg/m3 N/m3

 

 
Specific mass = ρ = The mass, the amount of matter, contained in a volume. This will 

be expressed in mass-length-time dimensions, and will have the dimensions of mass [M] per 
unit volume [L3]. Thus, 
 

Volume
MassssSpecificMa =  
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Specific weight= γ = will be expressed in force-length-time dimensions and will have 

dimensions of force [F] per unit volume [L3]. 
 

[ ] ( )3
223 , mkg
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F
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Because the weight (a force), W, related to its mass, M, by Newton’s second law of motion in 
the form 
 

MgW =  
 

In which g is the acceleration due to the local force of gravity, specific weight and specific 
mass will be related by a similar equation, 
 

gργ =                                                                                                              (1.2) 
 

EXAMPLE 1.1: Specific weight of the water at 4oC temperature is γ = 1000 kg/m3. 
What is its the specific mass? 
 

SOLUTION:  
 

( )

( )42

3

sec94.101
81.9

1000

1000

mkg

mkgg

==

==

ρ

ργ

 

 
EXAMPLE 1.2: A body weighs 1000 kg when exposed to a standard earth gravity     

g = 9.81 m/sec2.  a) What is its mass? b) What will be the weight of the body be in Newton if 
it is exposed to the Moon’s standard acceleration gmoon = 1.62 m/sec2? c) How fast will the 
body accelerate if a net force of 100 kg is applied to it on the Moon or on the Earth?  
 

SOLUTION: 
 

a) Since, 
( )

( )42sec94.101
81.9

1000

1000

mkg
g

WM

kgmgW

===

==
 

b) The mass of the body remains 101.94 kgsec2/m regardless of its location. Then, 
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( )kgmgW 14.16562.194.101 =×==  

 
In Newtons, 
 

( )Newton162081.914.165 =×  
 

c) If we apply Newton’s second law of motion, 
 

( )

( )2sec98.0
94.101

100

100

ma

kgmaF

==

==
 

 
This acceleration would be the same on the moon or earth or anywhere. 
 

All theoretical equations in mechanics (and in other physical sciences) are 
dimensionally homogeneous, i.e.; each additive term in the equation has the same dimensions. 
 

EXAMPLE 1.3: A useful theoretical equation for computing the relation between the 
pressure, velocity, and altitude in a steady flow of a nearly inviscid, nearly incompressible 
fluid is the Bernoulli relation, named after Daniel Bernoulli. 
 

gzVpp ρρ ++= 2
0 2

1  

 
Where 

p0 = Stagnation pressure 
p = Pressure in moving fluid 
V = Velocity 
ρ = Specific mass 
z = Altitude 
g = Gravitational acceleration 

 
a) Show that the above equation satisfies the principle of dimensional homogeneity, 

which states that all additive terms in a physical equation must have the same 
dimensions. b)  Show that consistent units result in MKS units. 

 
SOLUTION: 

 
a) We can express Bernoulli equation dimensionally using brackets by entering the 

dimensions of each term. 
 

[ ] [ ] [ ] [ ]gzVpp ρρ ++= 2
0 2

1  

 
The factor ½ is a pure (dimensionless) number, and the exponent 2 is also dimensionless. 
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For all terms. 
 
b) If we enter MKS units for each quantity: 
 
 

( ) ( ) ( )( ) ( )( )( )mmmkgmmkgmkgmkg 242224222 secsecsecsec ++=  
 

( )2mkg=  
 

Thus all terms in Bernoulli’s equation have units in kilograms per square meter when 
MKS units are used. 
 

Many empirical formulas in the engineering literature, arising primarily from 
correlation of data, are dimensional inconsistent. Dimensionally inconsistent equations, 
though they abound in engineering practice, are misleading and vague and even dangerous, in 
the sense that they are often misused outside their range of applicability. 
 

EXAMPLE 1.4: In 1890 Robert Manning proposed the following empirical formula 
for the average velocity V in uniform flow due to gravity down an open channel. 
 

2
1

3
21 SR

n
V =  

 
Where 

R = Hydraulics radius of channel 
S= Channel slope (tangent of angle that bottom makes with horizontal) 
n = Manning’s roughness factor 

 
And n is a constant for a given surface condition for the walls and bottom of the channel. Is 
Manning’s formula dimensionally consistent? 

 
SOLUTION:  Introduce dimensions for each term. The slope S, being a tangent or 

ratio, is dimensionless, denoted by unity or [F0L0T0]. The above equation in dimensional form 
 

[ ]0003
21 TLFL

nT
L

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡  

 
This formula cannot be consistent unless [L/T] = [L1/3/T]. In fact, Manning’s formula is 
inconsistent both dimensionally and physically and does not properly account for channel-
roughness effects except in a narrow range of parameters, for water only. 
 

 
 
 

Prof. Dr. Atıl BULU 5



Engineering results often are too small or too large for the common units, with too 
many zeros one way or the other. For example, to write F = 114000000 ton is long and 
awkward. Using the prefix “M” to mean 106, we convert this to a concise F = 114 Mton 
(megatons). Similarly, t = 0.000003 sec is a proofreader’s nightmare compared to the 
equivalent t = 3 μsec (microseconds) 
 
 

TABLE 1.1 
CONVENIENT PREFIXES FOR ENGINEERING UNITS 

 
Multiplicative Factor                Prefix                  Symbol 

               
1012 tera T 
109 giga G 
106 mega M 
103 kilo k 
10 deka da 
10-1 deci d 
10-2 centi c 
10-3 milli m 
10-6 micro μ 
10-9 nano n 
10-12 pico p 
10-15 femto f 
10-18 atto a 

 
 

1.3 MOLECULAR STRUCTURE OF MATERIALS 
 

Solids, liquids and gases are all composed of molecules in continuous motion. 
However, the arrangement of these molecules, and the spaces between them, differ, giving 
rise to the characteristics properties of the three states of matter. In solids, the molecules are 
densely and regularly packed and movement is slight, each molecule being strained by its 
neighbors. In liquids, the structure is loser; individual molecules have greater freedom of 
movement and, although restrained to some degree by the surrounding molecules, can break 
away from the restraint, causing a change of structure. In gases, there is no formal structure, 
the spaces between molecules are large and the molecules can move freely. 

 
In this book, fluids will be assumed to be continuous substances, and, when the 

behavior of a small element or particle of fluid is studied, it will be assumed that it contains so 
many molecules that it can be treated as part of this continuum. Quantities such as velocity 
and pressure can be considered to be constant at any point, and changes due to molecular 
motion may be ignored. Variations in such quantities can also be assumed to take place 
smoothly, from point to point. 
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1.4. COMPRESSIBILITY: BEHAVIOR OF FLUIDS AGAINST PRESSURE 
 

For most purposes a liquid may be considered as incompressible. The compressibility 
of a liquid is expressed by its bulk modulus of elasticity. The mechanics of compression of a 
fluid may be demonstrated by imagining the cylinder and piston of Fig.1.1 to be perfectly 
rigid (inelastic) and to contain a volume of fluid V. Application of a force, F, to piston will 
increase the pressure, p, in the fluid and cause the volume decrease –dV. The bulk modulus of 
elasticity, E, for the volume V of a liquid 
 

VdV
dpE −=                    (1.3) 

                                        

V
dv

F

A

 
Fig. 1.1 

 
Since dV/V is dimensionless, E is expressed in the units of pressure, p. For water at 

ordinary temperatures and pressures, E = 2×104 kg/cm2. 
 

For liquids, the changes in pressure occurring in many fluid mechanics problems are 
not sufficiently great to cause appreciable changes in specific mass. It is, therefore, usual to 
ignore such changes and to treat liquids as incompressible. 
 

ρ = Constant 
 
 

1.5. VISCOSITY: BEHAVIOR OF FLUIDS AGAINST SHEAR STRESS 
 

When real fluid motions are observed carefully, two basic types of motion are seen. 
The first is a smooth motion in which fluid elements or particles appear to slide over each 
other in layers or laminae; this motion is called laminar flow. The second distinct motion that 
occurs is characterized by a random or chaotic motion of individual particles; this motion is 
called turbulent flow. 
 

Now consider the laminar motion of a real fluid along a solid boundary as in Fig. 1.2. 
Observations show that, while the fluid has a finite velocity, u, at any finite distance from the 
boundary, there is no velocity at the boundary. Thus, the velocity increases with increasing 
distance from the boundary. These facts are summarized on the velocity profile, which 
indicates relative motion between adjacent layers. Two such layers are showing having 
thickness dy, the lower layer moving with velocity u, the upper with velocity u+du. Two 
particles 1 and 2, starting on the same vertical line, move different distances d1 = udt and      
d2 = (u+du) dt in an infinitesimal time dt. 
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Fig. 1.2 

 
It is evident that a frictional or shearing force must exist between the fluid layers; it 

may be expressed as a shearing or frictional stress per unit of contact area. This stress, 
designated by τ, has been found for laminar (nonturbulent) motion to be proportional to the 
velocity gradient, du/dy, with a constant of proportionality, μ, defined as coefficient of 
viscosity or dynamic viscosity. Thus, 
 

dy
duμτ =                  (1.4) 

 
All real fluids possess viscosity and therefore exhibit certain frictional phenomena 

when motion occurs. Viscosity results fundamentally from cohesion and molecular 
momentum exchange between fluid layers and, as flow occurs, these effects appear as 
tangential or shearing stresses between the moving layers. This equation is called as Newton’s 
law of viscosity. 
 

Because Equ. (1.4) is basic to all problems of fluid resistance, its implications and 
restrictions are to be emphasized: 
 

1) The nonappearance of pressure in the equation shows that both τ and μ are 
independent of pressure, and that therefore fluid friction is different from that between 
moving solids, where plays a large part, 

2) Any shear stress τ, however small, will cause flow because applied tangential forces 
must produce a velocity gradient, that is, relative motion between adjacent fluid 
layers, 

3) Where du/dy = 0, τ = 0, regardless of the magnitude of μ, the shearing stress in 
viscous fluids at rest will be zero, 

4) The velocity profile cannot be tangent to a solid boundary because this would require 
an infinite velocity gradient and infinite shearing stress between fluids and solids, 

5) The equation is limited to nonturbulent (laminar) fluid motion, in which viscous action 
is strong. 

6) The velocity at a solid boundary is zero, that is, there is no slip between fluid and solid 
for all fluids that can be treated as a continuum. 
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Fig. 1.3 

 
Equ. (1.4) may be usefully visualized on the plot of Fig.1.3 on which μ is the slope of 

a straight line passing through the origin, here du will be considered as displacement per unit 
time and the velocity gradient du/dy as time of strain. Fluids that follow Newton’s viscosity 
law are commonly known as Newtonian fluids. It is these fluids with which this book is 
concerned. Other fluids are classed as non-Newtonian fluids. The science of Rheology, which 
broadly is the study of the deformation and flow of matter, is concerned with plastics, blood, 
suspensions, paints, and foods, which flow but whose resistance is not characterized by Equ. 
(1.4). 
 

The dimensions of the (dynamic) viscosity μ may be determined from dimensional 
homogeneity as follows: 
 

[ ] [ ]
[ ]

[ ]
[ ] [ ]TFL

LLT
FL

dydu
2

11

2
−

−−

−

===
τμ    , )sec.( 2mkg  

 
In SI units, (Pa×sec). These combination times 10-1 is given the special name poises. 
 

Viscosity varies widely with temperature. The shear stress and thus the viscosity of 
gases will increase with temperature. Liquid viscosities decrease as temperature rises. 

 
Owing to the appearance of the ratio μ/ρ in many of the equations of the fluid flow, 

this term has been defined by, 
 

ρ
μϑ =                          (1.5) 

 
in which υ is called the kinematic viscosity. Dimensional considerations of Equ. (1.5) shows 
the units of υ to be square meters per second, a combination of kinematic terms, which 
explains the name kinematic viscosity. The dimensional combination times 10-4 is known as 
stokes. 
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1.6.VAPOR PRESSURE AND CAVITATION 
 

Vapor pressure is the pressure at which a liquid boils and is in equilibrium with its 
own vapor. For example, the vapor pressure of water at 100C is 0.125 t/m2, and at 400C is 
0.75 t/m2. If the liquid pressure is greater than the vapor pressure, the only exchange between 
liquid and vapor is evaporation at the interface. If, however, the liquid pressure falls below the 
vapor pressure, vapor bubbles begin to appear in the liquid. When the liquid pressure is 
dropped below the vapor pressure due to the flow phenomenon, we call the process 
cavitation. Cavitation can cause serious problems, since the flow of liquid can sweep this 
cloud of bubbles on into an area of higher pressure where the bubbles will collapse suddenly. 
If this should occur in contact with a solid surface, very serious damage can result due to the 
very large force with which the liquid hits the surface. Cavitation can affect the performance 
of hydraulic machinery such as pumps, turbines and propellers, and the impact of collapsing 
bubbles can cause local erosion of metal surfaces. 
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