
 

 

Abstract 
In building a face recognition system for real-life 

scenarios, one usually faces the problem that is the 
selection of a feature-space and preprocessing methods 
such as alignment under varying illumination conditions 
and poses. In this study, we developed a robust face 
alignment approach based on Active Appearance Model 
(AAM) by inserting an illumination normalization module 
into the standard AAM searching procedure and inserting 
different poses of the same identity into the training set. 
The modified AAM search can now handle both 
illumination and pose variations in the same epoch, hence 
it provides better convergence in both point-to-point and 
point-to-curve senses. We also investigate how face 
recognition performance is affected by the selection of 
feature space as well as the proposed alignment method. 
The experimental results show that the combined pose 
alignment and illumination normalization methods 
increase the recognition rates considerably for all feature-
spaces. 

1. Introduction 
Face recognition systems have matured from the systems 
working only in highly controlled indoor environments to 
the systems allowing identification of individuals in 
indoor or outdoor environments under severe conditions. 
But some problems still remain, constraining their success 
to a limited degree. Largely illumination and pose 
variations are responsible for dramatic variations on the 
appearance of the same individual. Hence any 
improvement in face appearance will enhance the 
recognition performance. These variations lead to complex 
effects imposed on the acquired face image that pertains 
little to the actual identity. Face recognition systems are 
usually required to handle highly varying illumination and 
pose conditions. As face recognition techniques advance, 
more researchers have focused on solving issues arising 
from illumination and pose in one shot.  

Face alignment is a very important step to extract good 
facial features to obtain high performance in face 
recognition, expression analysis and face animation 
applications. Several face alignment methods were 
proposed: Active Shape Models (ASM) [1] and Active 

Appearance Models (AAM) [2] [3], proposed by Cootes et 
al are two successful models for object localization. ASM 
uses local appearance models to find the candidate shape 
and global model to constrain the searched shape. AAM 
combines the constraints on both shape and texture 
variations in its characterization of facial appearance. In 
searching for a solution, it assumes linear relationships 
between appearance variation and texture variation and 
between texture variation and position variation. In this 
study, we have used AAM to solve the pose-invariant face 
alignment problem.  

Image variation due to lighting changes is larger than 
that due to different personal identities. Because lighting 
direction changes alter the relative gray scale distribution 
of face image. Consequently, illumination normalization is 
required to reach acceptable recognition rates. Varying 
illumination is a difficult problem and has received much 
attention in recent years. Two studies among them are 
very important: symmetric shape from shading [4] and 
illumination cones [5] where face image variations due to 
light direction changes are theoretically explained. In the 
later algorithm, both self shadow and cast-shadow were 
considered and its experimental results outperformed most 
of the existing methods. The major drawbacks of the 
illumination cone model are the computational cost and 
the strict requirement of seven input images per person. 
Basri et al [6] represent lighting using a spherical 
harmonic basis wherein a low-dimensional linear subspace 
is shown to be quite effective for recognition. The 
harmonic images can easily be computed analytically 
given surface normals and the albedos. Shashua [7] 
employ a very simple and practical image ratio method to 
map the face images into different lighting conditions. 
There are several recent image-based studies on 
illumination invariant face recognition. Image-based 
methods are known to be robust to illumination variations 
[8]. Main drawback of the image-based methods is that 
they always assume the face image is already aligned. 
Usually it is not an easy assumption to satisfy especially 
when the input image is poorly illuminated. AAM is 
known to be very sensitive to illumination, particularly if 
the lighting conditions during testing are significantly 
different from the lighting conditions during training. 
Several variations of AAM appear in the literature to 
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improve the original algorithm, namely view-based AAM 
[9], Direct Appearance Models [10]. Despite the success 
of these methods, problems still remain to be solved. 
Moreover, under the presence of partial occlusion, the 
PCA-based texture model of AAM causes the 
reconstruction error to be globally spread over the image, 
thus degrading alignment. In this paper, we propose an 
approach based on histogram-fitting to overcome the 
problem explained above. A detailed explanation of the 
proposed approach is given in Section.2.  

Yet another issue related to face recognition is to 
recognize different poses of the same person. Pose-
invariant face recognition requires pose alignment where 
images are either captured by multiple cameras or by a 
single camera at different time instances. There are several 
works related to pose normalization. Blanz and Vettel [11] 
use a statistical 3D morphable model to tackle with pose 
and illumination variations. Since their method requires 
textured 3D scans of heads, it is computationally 
expensive.  Cootes et al constructed three AAMs which 
are called as View-based AAMs [9]. These models are 
linear model of frontal, profile and half profile views of 
faces. They also show how to estimate the pose from the 
model parameters. The approach in this study differs from 
their method in the way that we construct only one AAM 
rather than three models. The idea here is to reduce three 
searching procedures to only one fitting procedure by 
using one statistically powerful model to generalize pose 
variations. In order to do that we trained one linear model 
by using a training dataset consisting of 8 different poses 
of 3 individuals captured under similar illumination 
conditions. In Section 3, we will study the AAM capable 
of producing different poses of unseen person and show 
how we project a non-frontal face to a frontal face. 

In this paper, we focus on the problems induced by 
varying illumination and poses. Our primary aim is to 
eliminate the negative effect of illumination and pose on 
the face recognition system performance through 
illumination and pose-invariant face alignment based on 
Active Appearance Model. The rest of the paper is 
structured as follows: Section 2 introduces Active 
Appearance Model (AAM) and illumination normalization 
inserted into the searching procedure of AAM. Section 3 is 
for the proposed pose invariant combined active 
appearance model. The experimental results and the 
conclusion are presented in Section 4 and 5, respectively.  

2. Active Appearance Model 
Active Appearance Models (AAM) are generative 

models capable of synthesizing image of a given object 
class. By estimating a compact and specific basis from a 
training set, model parameters can be adjusted to fit 
unseen images and hence perform image interpretation. 
The modeled object properties are usually shape and pixel 

intensities. Training objects are defined by marking up 
each example image with point of correspondence. AAMs 
can be rapidly fitted to unseen images, given a reasonable 
initialization.  

AAM works according to the following principle: A 
face image is marked with n landmark points. The content 
of the marked face is analyzed based on a Principal 
Component Analysis (PCA) of both face texture and face 
shape. Face shape is defined by a triangular mesh and the 
vertex locations of the mesh. Mathematically the shape 
model is represented as follows: 

[ ]1 2 1 2
, , , , , , ,

n n
x x x x y y y= K K . Face texture is the 

intensities on these landmarks (color pixel values 
normalized to shape) and is represented with the formula 
(g). Face shape and texture are reduced to a more compact 

form through PCA such that
s s

x x b= + Φ

 

and 

g g
g g b= + Φ . In this form, Φs contains the t eigenvectors 

corresponding to the largest eigenvalues and bs is a t-
dimensional vector. By varying the parameters in bs, the 
shape can be varied. In the linear model of texture, Φg is a 
set of orthogonal modes of variation and bg is a set of 
grey-level parameters. To remove the correlation between 
shape and texture model parameters, a third PCA is 
applied on the combined model parameters such that 

1

s s s
x x W Q c−= + Φ  and 

g g
g g Q c= + Φ  where 

T

s s gb W b b=     and 
T

s gb cQ Q=    . 

In this form, Ws is a diagonal matrix of weights for each 
shape parameter, allowing for the difference in units 
between the shape and the grey models; c is a vector of 
appearance parameters controlling both the shape and the 
grey-levels of the model. Qs and Qg are the eigenvectors 
of the shape and texture models respectively. 
     

              (a)                                        (b) 
Figure.1 Face alignment using standard AAM under good and 
extreme illumination. (a) Normal illumination, (b) Extreme 
illumination 
 
We propose an illumination normalization method in order 
to increase the accuracy of AAM applied to images 
captured under different illumination conditions by 
inserting an illumination normalization module into the 
standard AAM searching procedure. The problem is 
demonstrated in Fig.1. In Fig.1 (a) a correct AAM search 
result is shown where the input image contains a frontal 
face illuminated frontally. 



 

 

2.1. Illumination Normalization 

We discuss here two light normalization methods and 
we analyze their behavior when used in AAM searching. 
The first proposed method is ratio-image [12] face 
illumination normalization method. Ratio-image is defined 
as the quotient between a face image whose lighting 
condition is to be normalized and a reference face image. 
These two images are blurred using a Gaussian filter, and 
the reference image is then updated by an iterative strategy 
in order to further improve the quality of the restored face. 
Using this illumination restoration method, a face image 
with arbitrary illumination can be restored to a face having 
frontal illumination.   

The second normalization method discussed in this 
study is based on image histogram techniques. The global 
histogram equalization methods used in image processing 
for normalization only transfers the holistic image from 
one gray scale distribution to another. This processing 
ignores the face-specific information and cannot normalize 
these gray level distribution variations. To deal with this 
problem, researchers have made many improvements in 
recent years. The problem is that well-lit faces do not have 
a uniform histogram distribution and this process gives 
rise to an unnatural illumination to the face.  As suggested 
in [13], it is possible to normalize a poorly illuminated 
image via histogram fitting to a similar, well illuminated 
image. In this study we used a special type of histogram 
fitting algorithm for face illumination normalization.  

We make our analysis on one particular case where one 
side of the face is dark and the other side is bright. The 
main idea here is to fit the histogram of the input face 
image to the histogram of the mean face. The face is first 
broken into two parts (left/right) and then the histogram of 
each window is independently fitted to the histogram of 
mean face. For these two histograms, namely the 
histogram of the left window denoted as Hl(i) and the 
histogram of the right window denoted as Hr(i), two 

mapping functions are computed: 
lH Gf →  and 

rH Gf →  

corresponding to the left and right windows. Here G(i) is 
the histogram of the reference image also called mean face 
in AAM. An artifact introduced by this mapping is the 
sudden discontinuity in illumination as we switch from the 
left side of the face to the right side. The problem is solved 
by averaging the effects of the two mapping functions 
with a linear weighting that slowly favors one for the other 
as we move from the left side to the right side of the face. 

This is implemented with the mapping function 
totalH Gf →  

defined as bellow:
  

( ) ( ) (1 ) ( ).
total l rH G H G H Gf i leftness f i leftness f i→ → →= × + − ×  

Lighting normalization result is shown in Fig.2 obtained 
by using the histogram fitting method explained above 
together with the histogram plots. Fig.2 (a) shows the 
reference image and its histogram. The normalization 

algorithm is applied to the input image given in Fig.2 (b). 
The normalization result is shown in Fig.2 (c) where the 
histogram of the restored image is very close to the 
histogram of the reference image as expected.     

As it can be seen from Fig.3 and Fig.4 the 
normalization method can produce more suitable images 
to be used in AAM search mechanism. The classical AAM 
search fails for all images given in the first row of Fig.3. 
We will show in the next section that AAM search 
procedure can now converge to the correct shape for the 
restored image both in point-to-point error and point-to-
curve sense. Fig.4 presents several results obtained for Set 
4 (left) and Set 3 (right) faces of different individuals 
having extremely dark and bright regions. A significant 
amount of improvement in the quality can be easily 
verified from the experimental results. The dark parts now 
become somehow noisy whereas there are still some very 
bright areas. 
 

 

    

    
 
Figure.3 Light normalization results: On the top the input 
images are given, and on the bottom the normalized images are 
shown. 

2.2. Experimental Results 

 AAM combines the shape and texture model in one single 
model. The alignment algorithm (also called AAM 
searching) optimizes the model in the context of a test 
image of a face. The optimization criterion is the error 
between a synthesized face texture and the corresponding 
texture of the test image.  

   

   

(a) (b) (c) 
Figure.2 Light normalization using histogram fitting: (a) Mean    

face and its histogram, (b) Test face and its histogram,  
(c) Normalized face and its histogram. 



 

 

  
Due to the illumination problems the error can be high and 
the classic searching algorithm fails. In the proposed 
approach, we normalize the corresponding texture in the 
test image just before we compute the error. We tested the 
proposed method on the Yale-B [14] face dataset. The 
total number of images under different lighting conditions 
for each individual is 64. The database is portioned into 
four sets identified as Set 1-4. Set 1 contains face images 
whose light direction is less than ±20 degrees. Set 2 
contains face images whose light directions are between 
±20 and ±50 degrees. Set 3 contains face images whose 
light directions are between ±50 and ±70 degrees. Set 4 
contains face images whose light directions are greater 
than ±70 degrees. All details about the Yale B dataset are 
given in [14]. We manually labeled 4920 images. To 
establish the models, 73 landmarks were placed on each 
face image; 14 points for mouth, 12 points for nose, 9 
points for left eye, 9 points for right eye, 8 points for left 
eyebrow, 8 points for right eyebrow and 11 points for 
chin. The warped images have approximately 32533 pixels 
inside the facial mask. We constructed a shape space to 
represent 95% of observed variation. Then we warped all 
images into the mean shape using triangulation. Using 
normalized textures, we constructed a 21-dimensional 
texture space to represent 95% of the observed variation in 
textures and for shapes we constructed a 12-dimensional 
shape space to represent 95% of the observed variation in 
shapes. Finally, we constructed a 15-dimensional 
appearance space to represent 95% of the total variation 
observed in the combined (shape and texture) coefficients. 

Using a ground truth given by a finite set of landmarks 
for each example, performance can be easily calculated. In 
a leave-one-out setting, a distance measure, D(xgt,x), is 
computed that gives a scalar interpretation of the fit 
between the two shapes, i.e. the ground truth (xgt) and the 
optimized shape (x). Two distance measures defined over 
landmarks are used to obtain the convergence 
performance. The first one is called point to point error, 
defined as the Euclidean distance between each 
corresponding landmark: 

( ) ( )2 2

. . , ,pt pt i gt i i gt iD x x y y= − + −∑       (1) 

The other distance measure is called point to curve error, 
defined as the Euclidean distance between a landmark of 
the fitted shape (x) to the closest point on the border given 

as the linear spline, ( ) ( ) ( )( ) [ ], , 0,1x yr t r t r t t= ∈ , of 

the landmarks from the ground truth (xgt): 

( )( ) ( )( )22

. .
1

1
min

n

pt crv i x i yt
i

D x r t y r t
n =

= − + −∑ (2) 

We have calculated these errors for all for datasets (from 
Set 1 to Set 4). The AAM searching is known to be very 
sensitive to the selection of initial configuration. We tested 
the proposed method against the selection of initial 
configuration. We translate, rotate and scale initial 
configurations and see how the proposed method can 
handle the poor initialization. We made 10 experiments 
for each test image with different initializations and took 
the average error. These experiments include mean-shape 
configuration, ±5 degrees rotation, scaling by 0.85 and 
0.95, translation by 10% in x and y directions. Table.1 
summarizes the averages of point-to-point and point-to-
curve errors when classical AAM search is used without 
any illumination normalization. Point-to-point and point-
to-curve errors obtained by the proposed illumination 
normalization method are much less than the errors 
obtained by the classical AAM (Table.2).  

Ratio-image method is not suitable for AAM searching, 
at least for the first iterations of the algorithm. Let’s 
suppose that we start searching in a position far away from 
the ground truth location. The model synthesizes a face 
that best fits the current location. Then the textures of the 
synthesized face and corresponding part in the test image 
are analyzed and an error coefficient is computed, 
reflecting the similarity degree of the two textures. We 
normalize the corresponding texture in the test image 
before computing the error. The main problem with the 
ratio-image method is that when it is applied to a region of 
an image that is not face-like, the normalization result will 
have a lot of information of the mean-face, putting in other 
words it will be mean-face-like. Thus the error will be 
much smaller than the real one, and it will introduce false 
alarm in the searching process creating additional local 
minima. On the other hand, the histogram based 
normalization method will never change the general aspect 
of an image, only the pixel intensities follow a different 
distribution. Thus the chances of introducing false alarms 
are reduced using this normalization method. The ratio-
image can produce very good results provided that the 
shape is already aligned. But this is not the case in AAM 
searching. We assume that the best fit returned by the 
searching algorithm using histogram-based normalization 
is a good approximation of the real face, and thus the 
alignment requirement is satisfied.   

  

  
 
Figure.4 Light normalization results for extreme cases: On the 
top the input images are given, and on the bottom the 
normalized images are shown.  



 

 

Table.1 Standard AAM fitting performance. 

 Set 1 Set 2 Set 3 Set 4 
Pt.pt. 4.9±0.20 11.4±0.57 19.4±0.58 36.6±1.64 

Pt.Crv. 2.9±0.11 6.8±0.33 12.9±0.36 33.2±1.44 
 

Table.2 Proposed AAM fitting performance. 

 Set 1 Set 2 Set 3 Set 4 
Pt.pt. 4.1±0.12 8.06±0.34 13.03±0.41 21.3±0.58 

Pt.Crv. 2.4±0.08 5.24±0.23 8.76±0.29 14.71±0.42 
 

    

    
(a) (b) (c) (d) 

Figure.5 Searching results First row is the classical AAM 
searching results, second row is the proposed method  (a) 
Initial configuration (b) Mean face (c) Searching result 
obtained in the 3th iteration (d) Searching result obtained in 
the 6th iteration 

3. Pose Normalization 
Pose normalization is required before recognition in 

order to reach acceptable recognition rates. There are 
several works related to pose normalization. Blanz and 
Vettel [11] use a statistical 3D morphable model to tackle 
with pose and illumination variations. Since their method 
requires textured 3D scans of heads, it is computationally 
expensive.  Cootes et al constructed three AAMs which 
are called as View-based AAMs [9]. We developed AAM 
based pose normalization method which uses only one 
AAM. There are two important contributions over the 
previous studies. By using the proposed method: 

i.  One can synthetically generate appearances for 
different poses when only frontal face image is 
available.  

ii. One can generate frontal appearance of the face when 
there is only non-frontal face image is available.  

Next section explains the proposed pose normalization and 
generation method. 

3.1. Pose Generation from 2D Images 

The same variation in pose imposes similar effect on the 
face appearance for all individuals. Deformation mostly 
occurs on the shape whereas the texture is almost constant. 
Since the number of landmarks in AAM is constant, the 
wireframe triangles are translated or scaled as pose 

changes. So as we change pose, only wireframe triangles 
undergo affine transformation but the gray level 
distribution within these triangles remains the same. One 
can easily generate frontal face appearance if AAM is 
correctly fitted to any given non-frontal face of the same 
individual provided that there is no self-occlusion on face. 
Self-occlusion usually is not a problem for angles less than 
±45. 

For 2D pose generation, we first compute how each 
landmark point translates and scales with respect to the 
corresponding frontal counterpart landmark point for 8 
different poses, and obtain a ratio vector for each pose. We 
use the ratio vector to create the same pose variation over 
the shape of another individual. Appearances are also 
obtained through AAM using synthetically generated 
landmarks. These are shown in Fig.6. First column in 
Fig.6 shows the frontal faces and the second column 
shows appearances for various poses. It is important to 
note that the generated faces contain no information about 
the individual used in building the ratio matrix.              

3.2. Training AAM for Pose Normalization 

An AAM model trained by using only frontal faces can 
only fit into frontal faces well and fail to fit into non-
frontal faces. Our purpose here is to enrich the training 
database by inserting synthetically generated faces at 
different poses so that AAM model trained by frontal 
faces can now converge to images at any pose.  

We manually labeled 73 landmarks on 4920 images. Let 
us denote the landmark points on ith frontal image as 

( ) ( ) ( )( )0 2
,1 ,1 ,2 ,2 , ,, , , , , , K

i i i i i i K i KS x y x y x y R= ∈K  

where 1,2, ,i N= K . N is 4920 and K=73 in our 

database. The shape-ratio vector explained in the previous 
subsection (3.1) is defined between the p-posed shape and 
the frontal shape as 

    
,1 ,1 , ,0

0,1 0,1 0, 0,

( , ) , , , ,p p p K p Kp
p

K K

x y x y
r S S

x y x y

    
=         

    
K  

Shape of any unseen individual at pose p can now be easily 
obtained from frontal shape using shape-ratio vector rp as  

0ˆ p
unseen p unseenS r S= . 

We synthesize shapes from frontal-view images in the 
database for P=8 different poses as, 

0ˆ p
i p iS r S= ,i=1,2,…,10, and p=1,2,..,8. 

AAM shape component is constructed from these aggregated 

shapes ˆ p
iS and 0

iS by applying principal component 

analysis as sS S Q s= + where S  is the mean shape, Qs  

contains k eigenvector of the covariance matrix 
corresponding to the highest k eigenvalues. 



 

 

  

  
(a) (b) 

Figure.6 Synthetic pose generation from frontal face: 
     a) Frontal face, b) Synthetically generated non-frontal faces. 

 
Next step is to warp each face in the training database to 

mean shape (S ) and apply principal component analysis 

to the texture this time as tT T Q t= +  where T  is called 

mean face. Any shape (S) and texture (T) can be steadily 

mapped to the AAM subspace as ( )T
ss Q S S= −  and 

( )T
tt Q T T= − .  

AAM is comprised of both shape (Qs) and texture (Qt) 
subspaces. Any change in face shape leads to a change in 
face texture and vice versa. Face appearance (A) is 
dependent on shape and textures. This dependency is 

expressed as [ ]T
A s t= Λ . In order to exploit the 

dependency between shape and texture modeled by the 
diagonal matrix (Λ), one further PCA is applied to the 
shape and texture components collectively and we 
obtained the combined model called appearance model as 

aA Q a= . Any appearance is obtained by a simple 

multiplication as T
aa Q A= .  

 

  
  

Figure.7 Randomly synthesized faces from leading 5 AAM 
parameters.  

 
In order to show how rich representation AAM provides 

us, we used the first 5 coefficients and select random 
points in 5-dimensional space. The corresponding faces 
are plotted in Fig.7. Even this simple experiment proves 
that AAM trained as explained above can generate pose 
variations not governed by any shape ratio vector (rp).  We 
also conducted another experiment to see how close we fit 
into unseen faces at different poses. Fig.8 summarizes the 
alignment results for these unseen faces.   

 

4. Experimental Results 
We also analyze how the proposed alignment method 

affects the recognition performance. We used the following 

feature spaces in our experiments: PCA, LDA. Randomly 
selected 25 images of each person from Set 1 dataset are 
used in training. All datasets (Set 1 through Set 4) contain 
faces of all poses. The remaining faces in Set 1 dataset are 
used as test data. Recognition rates for two feature spaces 
(i.e., PCA and LDA) in Set 1-4 are plotted in Fig.9 for 
increasing dimensions. The recognition rates obtained when 
the original images are used as input to the classifier are 
denoted as ORG-PCA and ORG-LDA. The recognition rates 
obtained when the images restored by RI are used as input 
are denoted as RI-PCA and RI-LDA. Finally, the recognition 
rates obtained when the images restored by HF are used as 
input are denoted as HF-PCA and HF-LDA. PCA is known 
to be very sensitive to misalignment in faces. Our 
experimental studies also verify this behavior. When the 
original images are used, the PCA recognition rates for all 
sets are poor. LDA is more successful for dimensions closer 
to 9. ORG-PCA reaches to 74.36% at most, while ORG-
LDA reaches to 91.26% at most for Set 1. This performance 
drops to 30.99% for ORG-PCA and to 41.13% for ORG-
LDA for Set 4. 

One important observation is that AAM alignment with 
histogram fitting always leads to better recognition rates in 
all test sets (Set 1- 4) compared to case where original faces 
are used and ratio-image normalization is used right after the 
AAM alignment. Another advantage of the proposed method 
is that similar recognition performance is obtained at lower 
dimensions. Recognition rate for ORG-LDA is just 32.81% 
while LDA performance for the proposed approach (called 
HF-LDA) is 83.38% when the dimension is set to 3. ORG-
LDA catches this rate when the dimension is set to 5.  
 

 

 
 

Figure.8 Face alignment result for unseen faces. 
 
For the challenging test set, i.e. Set 4, both ORG-LDA and 
ORG-PCA fails. The recognition rate is at most 30.99% 
for ORG-PCA and 41.13% for ORG-LDA. On the other 
hand, HF-PCA reaches at most to 76.20% and HF-LDA  
reaches at most to 82.68%. This is a significant 
improvement when compared to the results obtained 
without applying any preprocessing (41%). Note that all 
test sets include faces of 8 different poses selected from 
Yale B dataset.  
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Figure.9 PCA and LDA recognition rates for Set 1 (a), Set 2 (b), 
Set 3 (c), and Set 4 (d) when original face (ORG), Ratio Image (RI) 
and the proposed restoration (HF) are used. 
 

5. Conclusion 
In this study we developed AAM based face alignment 

method which handles illumination and pose variations. 
The classical AAM fails to model the appearances of the 
same identity under different illuminations and poses. We 
solved this problem by inserting histogram fitting based 
normalization into the searching mechanism and inserting 
different poses of the same identity into the training set.  

From the experimental results, we showed that the 
proposed face restoration scheme for AAM provides 
higher accuracy for face alignment in point-to-point error 
sense. Recognition results based on PCA and LDA feature 
spaces showed that the proposed illumination and pose 
normalization outperforms standard AAM. 
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Figure.10 Initialization (first row) and alignment/restoration 
results of proposed method (second row) for different pose 
and illumination variations. 


