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Abstract

In building a face recognition system for real-life
scenarios, one usually faces the problem that is the
selection of a feature-space and preprocessing methods
such as alignment under varying illumination conditions
and poses. In this study, we developed a robust face
alignment approach based on Active Appearance Model
(AAM) by inserting an illumination normalization module
into the standard AAM searching procedure and inserting
different poses of the same identity into the training set.
The modified AAM search can now handle both
illumination and pose variations in the same epoch, hence
it provides better convergence in both point-to-point and
point-to-curve senses. We also investigate how face
recognition performance is affected by the selection of
feature space as well as the proposed alignment method.
The experimental results show that the combined pose
alignment and illumination normalization methods
increase the recognition rates considerably for all feature-
spaces.

1. Introduction

Face recognition systems have matured from thesygst
working only in highly controlled indoor environntsrto
the systems allowing identification of individuals
indoor or outdoor environments under severe cahti
But some problems still remain, constraining tiseiccess
to a limited degree. Largely illumination and pose
variations are responsible for dramatic variatiomsthe
appearance of the same individual.
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Appearance Models (AAM) [2] [3], proposed by Coogts
al are two successful models for object localizatiaSM
uses local appearance models to find the candstape
and global model to constrain the searched shapdl A
combines the constraints on both shape and texture
variations in its characterization of facial apeae. In
searching for a solution, it assumes linear retatips
between appearance variation and texture varisdiath
between texture variation and position variatiam.this
study, we have used AAM to solve the pose-invariace
alignment problem.

Image variation due to lighting changes is lardent
that due to different personal identities. Becaligieting
direction changes alter the relative gray scal&ibigion
of face image. Consequently, illumination normdliaa is
required to reach acceptable recognition ratesyingr
illumination is a difficult problem and has receaivenuch
attention in recent years. Two studies among theen a
very important: symmetric shape from shading [4§ an
illumination cones [5] where face image variatiahg to
light direction changes are theoretically explainkdthe
later algorithm, both self shadow and cast-shad@wvew
considered and its experimental results outperfdrmest
of the existing methods. The major drawbacks of the
illumination cone model are the computational cast
the strict requirement of seven input images pesgre
Basri et al [6] represent lighting using a sphérica
harmonic basis wherein a low-dimensional linearspaloe
is shown to be quite effective for recognition. The
harmonic images can easily be computed analytically

Hence anygiven surface normals and the albedos. Shashua [7]

improvement in face appearance will enhance theemploy a very simple and practical image ratio roetto

recognition performance. These variations leacbtoplex
effects imposed on the acquired face image thatiper
little to the actual identity. Face recognition tgyss are
usually required to handle highly varying illumiiwat and
pose conditions. As face recognition techniquesaade,
more researchers have focused on solving issuss@ri
from illumination and pose in one shot.

Face alignment is a very important step to extgactd

map the face images into different lighting coradis.
There are several recent image-based studies on
illumination invariant face recognition. Image-bdse
methods are known to be robust to illumination atons

[8]. Main drawback of the image-based methods & th
they always assume the face image is already aligne
Usually it is not an easy assumption to satisfyeeidly
when the input image is poorly illuminated. AAM is

facial features to obtain high performance in face known to be very sensitive to illumination, partamly if
recognition, expression analysis and face animationthe lighting conditions during testing are sigrafitly
applications. Several face alignment methods weredifferent from the lighting conditions during trég.
proposed: Active Shape Models (ASM) [1] and Active Several variations of AAM appear in the literatuae



improve the original algorithm, namely view-basedM intensities. Training objects are defined by magkimp
[9], Direct Appearance Models [10]. Despite the cass each example image with point of correspondencevidA
of these methods, problems still remain to be gblve can be rapidly fitted to unseen images, given aaeable

Moreover, under the presence of partial occlusite, initialization.
PCA-based texture model of AAM causes the AAM works according to the following principle: A
reconstruction error to be globally spread overithage, face image is marked witlnlandmark points. The content

thus degrading alignment. In this paper, we propmse of the marked face is analyzed based on a Principal
approach based on histogram-fitting to overcome theComponent Analysis (PCA) of both face texture amcef
problem explained above. A detailed explanationthef shape. Face shape is defined by a triangular meshha
proposed approach is given in Section.2. vertex locations of the mesh. Mathematically thepsh
Yet another issue related to face recognition is tomodel is represented as follows:
recognize different poses of the same person. Pose-X:[Xl,X e XY Y Y ] Face texture is the
invariant face recognition requires pose alignmehere 2 o "
images are either captured by multiple camerasyoa b
single camera at different time instances. Theeesaveral
works related to pose normalization. Blanz and &l¢ft1]
use a statistical 3D morphable model to tackle \pitise form through PCA such that=x+®b and
and illumination variations. Since their method uiegs - ] ) ]
textured 3D scans of heads, it is computationally 9= 9+®b,. In this form,®;contains the eigenvectors
expensive. Cootes et al constructed three AAMscwhi  corresponding to the largest eigenvalues hnds a t-
are called as View-based AAMs [9]. These models aredimensional vector. By varying the parameterdgnthe
linear model of frontal, profile and half profiléews of shape can be varied. In the linear model of texmﬁe's a
faces. They also show how to estimate the pose flem  set of orthogonal modes of variation abglis a set of
model parameters. The approach in this study difiem  grey-level parameters. To remove the correlatidmwéen
their method in the way that we construct only éweV shape and texture model parameters, a third PCA is
rather than three models. The idea here is to eethree applied on the combined model parameters such that
searching procedures to only one fitting procedbye
using one statistically powerful model to genemlpose
variations. In order to do that we trained onedinmodel T T
by using a training dataset consisting of 8 diff¢éngoses b= [\Nsbs bg] andb = [Qs Qg] c.
of 3 individuals captured under similar illuminatio In this form,W; is a diagonal matrix of weights for each
conditions. In Section 3, we will study the AAM edype shape parameter, allowing for the difference intauni
of producing different poses of unseen person dmivs  between the shape and the grey modelis; a vector of
how we project a non-frontal face to a frontal face appearance parameters controlling both the shapahan
In this paper, we focus on the problems induced by grey-levels of the modelQ; and Q, are the eigenvectors

varying illumination and poses. Our primary aimts  of the shape and texture models respectively.
eliminate the negative effect of illumination andsp on

the face recognition system performance through
illumination and pose-invariant face alignment lthem

Active Appearance Model. The rest of the paper is
structured as follows: Section 2 introduces Active
Appearance Model (AAM) and illumination normalizati . .
inserted into the searching procedure of AAM. Sec8 is @) (b)
for the proposed pose invariant combined active rig re1 Face alignment using standard AAM under good and

appearance model. The experimental results and th@xtreme illumination.(a) Normal illumination, (b) Extreme
conclusion are presented in Section 4 and 5, réspbc illumination

intensities on these landmarks (color pixel values
normalized to shape) and is represented with thauta
(g). Face shape and texture are reduced to a morpatm

x=x+®W'Qc and g :§+<DQQQC where

2. Active Appearance M odel We propose an illumination normalization methodider

to increase the accuracy of AAM applied to images
captured under different illumination conditions by
inserting an illumination normalization module intbe
standard AAM searching procedure. The problem is
demonstrated in Fig.1. In Fig.1 (a) a correct AAdaich
result is shown where the input image containsoatél
face illuminated frontally.

Active Appearance Models (AAM) are generative
models capable of synthesizing image of a givereaibj
class. By estimating a compact and specific basis fa
training set, model parameters can be adjusteditto f
unseen images and hence perform image interpnetatio
The modeled object properties are usually shapepaadl



2.1. lllumination Nor malization algorithm is applied to the input image given ig.Ei(b).

: . - The normalization result is shown in Fig.2 (c) whéhe
We discuss here two light normalization methods and histogram of the restored image is very close te th

we analyze their behavior when used in AAM seaighin histogram of the reference image as expected.

The first proposed method is ratio-image [12] face Ag™ it can be seen from Fig.3 and Fig.4 the
illumination normalization method. Ratio-image ifided normalization method can produce rﬁore suitablé @mag
as th? ql_Jotient be“’VeeF‘ a face image whose lighting, e ysed in AAM search mechanism. The classiéA
condition IS to be normalized and' a reference' fatage. search fails for all images given in the first rofvFig.3.
These two images are blurred using aGal_Jssml_n, fired We will show in the next section that AAM search
Fhe reference Image 1S then update_d by an iteratretegy procedure can now converge to the correct shapéhéor
in order to further improve the quality of the mstd face. restored image both in point-to-point error andnpeo-

Using this illumination restoration method, a faoege e sense. Fig.4 presents several results obitémeSet
with arbitrary illumination can be restored to adaaving 4 (left) and Set 3 (right) faces of different inidivals

frontal illumination. : ; . S
o . . ._having extremely dark and bright regions. A sigmfit
The second normalization method discussed in this_ o\t of improvement in the quality can be easily

study is based on image histogram techniques. [ | ified from the experimental results. The darkpaow

histogram equalization methods used in image psgs  hooome somehow noisy whereas there are still s@ne v
for normalization only transfers the holistic imafjem bright areas.
one gray scale distribution to another. This preces
ignores the face-specific information and cannatradize
these gray level distribution variations. To dedhvthis
problem, researchers have made many improvements in
recent years. The problem is that well-lit facesndbhave
a uniform histogram distribution and this procesgeg
rise to an unnatural illumination to the face. sAgygested
in [13], it is possible to normalize a poorly illimated
image via histogram fitting to a similar, well ithinated
image. In this study we used a special type ofogistm
fitting algorithm for face illumination normalizati.

We make our analysis on one particular case wheege 0

side of the face is dark and the other side ishibriffhe (a) (b) (c)

main idea here is to fit the histogram of the infate Figure.2_Ligh_t normalization using histog_ram_fittinga) Mean
image to the histogram of the mean face. The fadist zi)c‘f\lﬁrnql;t”szZ:jStfz%rea;nﬁﬁt)sﬁzgaf:rﬁnd its bista,

broken into two parts (left/right) and then thetbigam of gram.

each window is independently fitted to the histograf
mean face. For these two histograms, namely
histogram of the left window denoted &k(i) and the
histogram of the right window denoted &&(i), two

mapping functions are computedf,,  and f,

corresponding to the left and right windows. H&®) is
the histogram of the reference image also calledmfi@ce
in AAM. An artifact introduced by this mapping ibet
sudden discontinuity in illumination as we switcbrh the
left side of the face to the right side. The probie solved  Figure3 Light normalization results: On the top the input
by averaging the effects of the two mapping fum®io images are given, and on the bottom the normalimegjes are
with a linear weighting that slowly favors one foe other shown.

as we move from the left side to the right sid¢hef face.

This is implemented with the mapping functidi, ¢ 2.2. Experimental Results

defined as bellow: AAM combines the shape and texture model in onglsi
f, () =leftnessx f,, (i) +(1-leftness)x f, (). model. The alignment algorithm (also called AAM

o ! : searching) optimizes the model in the context dest
image of a face. The optimization criterion is theor
between a synthesized face texture and the comdsymp
texture of the test image.

Lighting normalization result is shown in Fig.2 ainted
by using the histogram fitting method explained \&bo
together with the histogram plots. Fig.2 (a) shaws
reference image and its histogram. The normalimatio



Figure4 Light normalization results for extreme cases: tBa
top the input images are given, and on the bottdm t
normalized images are sho

Due to the illumination problems the error can lghtand
the classic searching algorithm fails. In the ps®zb
approach, we normalize the corresponding texturthén
test image just before we compute the error. Wiedethe
proposed method on the Yale-B [14] face dataset Th
total number of images under different lighting dibions

for each individual is 64. The database is portibireéo
four sets identified as Set 1-4. Set 1 contains fatrages
whose light direction is less than +20 degrees. Bet
contains face images whose light directions arevéen
+20 and +50 degrees. Set 3 contains face imagesevho
light directions are between #50 and +70 degrees.4S
contains face images whose light directions areatgre
than 70 degrees. All details about the Yale B skitare
given in [14]. We manually labeled 4920 images. To
establish the models, 73 landmarks were placedash e
face image; 14 points for mouth, 12 points for ndse
points for left eye, 9 points for right eye, 8 psirfior left
eyebrow, 8 points for right eyebrow and 11 points f
chin. The warped images have approximately 32588 pi
inside the facial mask. We constructed a shapeesfac
represent 95% of observed variation. Then we waghed
images into the mean shape using triangulationndJsi

Dpt.pt.=2\/()§ = Xyt )2+(yi _ygt,i)z (1)

The other distance measure is called point to cerver,
defined as the Euclidean distance between a landofar
the fitted shapexj to the closest point on the border given

as the linear splinet (t) = (rx (t) Ty (t)) it D[O,]] , of
the landmarks from the ground trutyX:

Dy . :%iz:‘mtin\/(x -, (t))2 +(yi -, (t))2 @)

We have calculated these errors for all for dasa@fiebm

Set 1 to Set 4). The AAM searching is known to beyv
sensitive to the selection of initial configuratidle tested

the proposed method against the selection of Initia
configuration. We translate, rotate and scale dhiti
configurations and see how the proposed method can
handle the poor initialization. We made 10 experitae
for each test image with different initializatioasad took

the average error. These experiments include meapes
configuration, +5 degrees rotation, scaling by 0&8%
0.95, translation by 10% im andy directions. Table.1
summarizes the averages of point-to-point and goint
curve errors when classical AAM search is used auth
any illumination normalization. Point-to-point amaint-
to-curve errors obtained by the proposed illumonati
normalization method are much less than the errors
obtained by the classical AAM (Table.2).

Ratio-image method is not suitable for AAM seardhin
at least for the first iterations of the algorithret's
suppose that we start searching in a positionviaydrom
the ground truth location. The model synthesizdaca
that best fits the current location. Then the teedwf the
synthesized face and corresponding part in theiresge
are analyzed and an error coefficient is computed,
reflecting the similarity degree of the two textiréVe
normalize the corresponding texture in the testgena

normalized textures, we constructed a 21-dimensionapefore computing the error. The main problem wiik t

texture space to represent 95% of the observedtiariin
textures and for shapes we constructed a 12-dimeglsi
shape space to represent 95% of the observedivariat
shapes. Finally,
appearance space to represent 95% of the totadticari
observed in the combined (shape and texture) cierffis.
Using a ground truth given by a finite set of laraatks
for each example, performance can be easily catmildn
a leave-one-out setting, a distance measiDfgy.x), is
computed that gives a scalar interpretation of fie
between the two shapes, i.e. the ground trgih &nd the
optimized shapexj. Two distance measures defined over
landmarks are wused to obtain the
performance. The first one is called point to pantor,
defined as
corresponding landmark:

ratio-image method is that when it is applied t@gion of
an image that is not face-like, the normalizatiesuit will
have a lot of information of the mean-face, puttimgther

we constructed a 15-dimensionalwords it will be mean-face-like. Thus the error Iwdle

much smaller than the real one, and it will introeldalse
alarm in the searching process creating additidoel
minima. On the other hand, the histogram based
normalization method will never change the genasalect

of an image, only the pixel intensities follow dfelient
distribution. Thus the chances of introducing fedégrms
are reduced using this normalization method. Th®-ra
image can produce very good results provided that t

convergenceshape is already aligned. But this is not the cas®AM

searching. We assume that the best fit returnedhby

the Euclidean distance between eachsearching algorithm using histogram-based normtadiza

is a good approximation of the real face, and tthes
alignment requirement is satisfied.



Table.l Standard AAM fitting performance. changes. So as we change pose, only wireframegleisn
Set 1 Set 2 Set 3 Set 4 undergo affine transformation but the gray level

Pt.pt. 4.9+0.20 11.4+0.57 19.4+0.58| 36.6+1.64 distribution within these triangles remains the sa@ne

Pt.Crv. | 2.9+0.11] 6.8+0.33] 12.9+0.35 33.2+1.44 can easily generate frontal face appearance if AM

correctly fitted to any given non-frontal face tietsame
Table.2 Proposed AAM fitting performance. individual provided that there is no self-occlusimm face.
Set 1 Set 2 Set 3 Set 4 Self-occlusion usually is not a problem for andéss than

Pt.pt. | 4.1+0.12] 8.06+0.34| 13.030.41] 21.3:0.58| *45.

Pt.Crv. | 2.4+0.08] 5.24:0.23| 8.7620.29| 14.71x0.42 FOr 2D pose generation, we first compute how each

" landmark point translates and scales with respe¢hé
corresponding frontal counterpart landmark point &
different poses, and obtain a ratio vector for gaate. We
use the ratio vector to create the same pose iaariaver
the shape of another individual. Appearances ase al
obtained through AAM using synthetically generated
landmarks. These are shown in Fig.6. First column i
Fig.6 shows the frontal faces and the second column
shows appearances for various poses. It is impottan
note that the generated faces contain no informatbmut
the individual used in building the ratio matrix.

(b) (c) (d) 3.2. Training AAM for Pose Nor malization

Figure5 Searching results Firsbw is the classical AAM

searching results, second row is the proposed mietita) An AAM model trained by using only frontal facesnca
Initial configuration (b) Mean face (c) Searchingsult only fit into frontal faces well and fail to fit in non-
obtained in the 3th iteration (d) Searching resbitained in frontal faces. Our purpose here is to enrich thnimg
the 6th iteratio database by inserting synthetically generated faates

different poses so that AAM model trained by frdnta

3. Pose Normalization faces can now converge to images at any pose.

We manually labeled 73 landmarks on 4920 imageis. Le

Pose normalization is required before recognition i ! : ;
d g us denote the landmark points @ frontal image as

order to reach acceptable recognition rates. Tlese
several works related to pose normalization. Blang 0 :( VAKX LY L) X LY ) 2K
Vettel [11] use a statistical 3D morphable modelackle S' (x’l y"l) (X 2) ’2) (X koY) K) HR
with pose and illumination variations. Since theiethod ~ wherei =1,2,... ,N. N is 4920 andK=73 in our
requires textured 3D scans of heads, it is comiouaity database. The shape-ratio vector explained in inqus
expensive. Cootes et al constructed three AAMsclwhi  subsection (3.1) is defined between fhaposed shape and
are called as View-based AAMs [9]. We developed AAM the frontal shape as
based pose normalization method which uses only one
AAM. There are two important contributions over the r (s SO): h Yoa Xox Yok
previous studies. By using the proposed method: p ! ’ !

. . X0,1 yO,l 0K yOK

i. One can synthetically generate appearances for o _

different poses when only frontal face image is Shape of any unseen individual at pgsean now be easily

available obtained from frontal shape using shape-ratio vegtas
. - p — 0
ii. One can generate frontal appearance of the faca whe nseen = 1 pSngeen -

there is only non-frontal face image is available.
Next section explains the proposed pose normatizatnd
generation method.

We synthesize shapes from frontal-view images i th

database for P=8 different poses as,
SP=r,S.i=12,...,10, ang=12,.. 8.

3.1. Pose Generation from 2D I mages AAM shape component is constructed from these aggee

The same variation in pose imposes similar effadhe shapes Sp and SO by applying principal component

face appearance for all individuals. Deformationstho . _a S -
occurs on the shape whereas the texture is almastant. analysis asS = S+Q,Swhere S is the mean shap®,

Since the number of landmarks in AAM is constahg t contains k eigenvector of the covariance matrix
wireframe triangles are translated or scaled ase pos corresponding to the highdseigenvalues.



feature spaces in our experiments: PCA, LDA. Rarilgom
selected 25 images of each person from Set 1 dagase
used in training. All datasets (Set 1 through Setahtain
faces of all poses. The remaining faces in Settaset are
used as test data. Recognition rates for two feaspaces
(i.e., PCA and LDA) in Set 1-4 are plotted in Fig&
increasing dimensions. The recognition rates obthiwhen
the original images are used as input to the dlassire
(b) denoted as ORG-PCA and ORG-LDA. The recognitioasrat
Figure.6 Synthetic pose generation from frontal face: obtained when the images restored by Rl are usedpas
a) Frontal face, b) Synthetically generated-frontal faces.  5re denoted as RI-PCA and RI-LDA. Finally, the grtition
. ) . rates obtained when the images restored by HF sed as
Next step is to warp each face in the traininglo@se t0 5t are denoted as HF-PCA and HF-LDA. PCA is know
mean shape$) and apply principal component analysigo be very sensitive to misalignment in faces. Our
to the texture this time ab ='F+Qtt whereT is called €Xperimental studies also verify this behavior. Withe
_original images are used, the PCA recognition rétesall
mean face. Any shap&)(and textureT) can be steadily gets are poor. LDA is more successful for dimersicoser
mapped to the AAM subspace as:QST (S—é) and to 9. ORG-PCA reaches to 74.36% at most, while ORG-
. LDA reaches to 91.26% at most for Set 1. This perémce
t=Q' (T —T). drops to 30.99% for ORG-PCA and to 41.13% for ORG-

AAM is comprised of both shap&){) and texture @,) LDA for Set 4.

subspaces. Anv chanae in face shape leads to aekhan One important observation is that AAM alignment hwit
P - ANy 9 P gel histogram fitting always leads to better recognitrates in
face texture and vice versa. Face appearawgeiq

dependent on shape and textures. This dependencyalII fest sets (Set 1- 4) compared to case wheginafifaces

are used and ratio-image normalization is used &fler the
expressed asA= [/\S t] . In order to exploit the AAM alignment. Another advantage of the proposedhoe
éhat similar recognition performance is obtairsedower
imensions. Recognition rate for ORG-LDA is just&®6
hile LDA performance for the proposed approacHi¢da

dependency between shape and texture modeled by
diagonal matrix A), one further PCA is applied to the

shape and texture components collectively and . o . o
obtained the combined model called appearance nazdel "LDA) is 83'.38A’ when the dlr_nensm_m Is set to R®
LDA catches this rate when the dimension is sét to

A= Qaa. Any appearance is obtained by a simple
multiplication asa = Q, A.

!Q'!tlgig fﬁ'f' -4

Figure7 Randomly synthesized faces from leading 5 A
parameters.

In order to show how rich representation AAM prasd
us, we used the first 5 coefficients and selecdoan
points in 5-dimensional space. The correspondingda
are plotted in Fig.7. Even this simple experimeraves  por the challenging test set, i.e. Set 4, both QR®-and
that AAM trained as explained above can generagepo ORG-PCA fails. The recognition rate is at most 96
variations not governed by any shape ratio veeipr We  or ORG-PCA and 41.13% for ORG-LDA. On the other

also conducted another experiment to see how @lesit  hang, HF-PCA reaches at most to 76.20% and HF-LDA
into unseen faces at different poses. Fig.8 sunzemthe reaches at most to 82.68%. This is a significant

Figure.8 Face alignment result for unseen faces.

alignment results for these unseen faces. improvement when compared to the results obtained
without applying any preprocessing (41%). Note talat
4. Experimental Results test sets include faces of 8 different poses sdefrom

We also analyze how the proposed alignment methodYale B dataset.

affects the recognition performance. We used tiieviing
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