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Abstract—In many vision applications, there is a great
demand for an edge detector which can produce edge maps
with very different characteristics in nature, so that one of
these edge maps may meet the requirements of the problem
under consideration. Unfortunately it is not evident how
to choose the desired or the optimum edge maps from
these solutions that the edge detector offers. The proposed
solutions are usually too general that cannot be easily
adapted to the application needs by tuning edge detection
parameters. One edge detector that we have studied in
this study is Generalized Edge Detector which is capable
of producing edges with very different characteristics.
Although the edge maps based on this representation are
reasonable, no one set of scale parameters alone yields a
solution close to the desired edges. In this study, we have
developed powerful edge operators and have used them
under a goal-based edge detection framework. Proposed
framework is a two-stage process. First, user marks some
pixels in the database as edge and non-edge pixels. Then
feature vectors comprised of filter responses to G-Filters at
different scales are extracted at these marked pixels. Edge
detection problem is imposed as two-class classification
problem. Classifier itself is not adequate to extract desired
edges for the application under consideration. In the
second stage continuous edges are treated as one contour.
Then contours are matched with the contours in the
training set. Only matched contours are kept and the other
contours are eliminated. The purpose of the first stage is
to keep only prominent edges and remove irrelevant edges
with respect to the application. The classifier decides which
discontinuity is prominent or irrelevant. Experimental
studies on real license plate images show that the proposed
edge detector can successfully detects edges only on license
plate regions.

I. INTRODUCTION

The aim of edge detection is to provide a meaningful
description of object boundaries in a scene from intensity
surface. These boundaries are due to discontinuities
manifesting themselves as sharp variations in image
intensities. There are different sources for sharp changes
in images which are created by structure (e.g. texture,

occlusion) or illumination (e.g. shadows, highlights).
Extracting edges from a still image is certainly the
most significant stage of any computer vision algorithm
requiring high accuracy of location in the presence of
noise. In many contour-based vision algorithms, such
as, curved-based stereo vision [1], contour-based im-
age compression [2] and edge-based target recognition
[3], edge-based face detection [4] their performance is
highly dependent on the quality of the detected edges.
Therefore, edge detection is an important area of re-
search in computer vision. Despite considerable work
and progress made on this subject, edge detection is
still a challenging research problem due to the lack of a
robust and efficient general purpose algorithm. Any edge
detector should tackle with the tradeoff between good
localization property forcing the location of the detected
edges to be close as much as possible to the real edges
and good noise rejection property forcing the intensity
surface to be smooth. Without a priori assumption, one
can not select the best tradeoff. In fact, deciding whether
a pixel belongs to a contour is an ill-posed problem. The
detection of sharp changes in image intensity requires
the computation of derivatives of the noisy image at
different orders. As known, the numerical computation
of derivatives of the noisy data is an unstable process
since it amplifies the noise. To overcome the noise
problem, edge detection algorithms first employ a noise
suppression process prior to the differentiation operation.
This can be performed by smoothing the noisy image by
a low-pass filter. Most of the efforts in edge detection
have been devoted to the development of an optimum
edge detector which can resolve the tradeoff ( [5]–
[8]). Furthermore, extracting edges at different scales
and combining these edges have attracted a substantial
amount of interest. In the course of developing optimum
edge detectors that can resolve the tradeoff between
localization and detection performances, several different
approaches have resulted in either a Gaussian filter or a
filter whose shape is very similar to a Gaussian ( [5],



[6], [9]). Furthermore, these filters are very suitable for
obtaining scale space edge detection since the scale of
the filter can be easily controlled by means of a single
parameter. Although these filters are used very widely,
it is very difficult to claim that they can provide the
desired output for any specific problem. For instance,
there are some cases where the improved localization
performance is the primary requirement. In these cases,
a sub-optimum filter which promotes the localization
performance becomes more appropriate.

II. GOAL ORIENTED EDGE DETECTION

In many vision applications , there is a great demand
for an edge detector which can produce edge maps
with very different characteristics in nature, so that
one of these edge maps may meet the requirements
of the problem under consideration. Unfortunately it is
not evident how to choose the desired or the optimum
edge maps from these solutions that the edge detectors
offer. The proposed solutions are usually too general
that cannot be easily adapted to the application needs
by tuning edge detection parameters. One edge detector
that we have studied in this study is Generalized Edge
Detector (GED) [10] which is capable of producing
edges with very different characteristics as we change
the space parameters known as λ and τ . Although the
edge maps based on this representation are reasonable,
no one set of scale parameters alone yields a solution
close to the desired edges. In this study, our aim is to
find out powerful edge operators and use them under a
goal-oriented edge detection framework.

Proposed framework is a two-stage process. First, user
marks some pixels in the database as edge and non-edge
pixels. Then feature vectors comprised of filter responses
to G−Filters at different scales are extracted at these
marked pixels. Edge detection problem is imposed as
two-class classification problem. Support vector machine
(SVM) is used as a classifier. Classifier itself is not ad-
equate to extract desired edges for the application under
consideration. In the second stage continuous edges are
treated as one contour. Then contours are matched with
the contours in the training set. Only matched contours
are kept and the other contours are rejected.

The purpose of the first stage is to keep only prominent
edges and remove irrelevant edges with respect to the
applications requirements. The classifier decides which
discontinuity is prominent or irrelevant. So how the
training set is constructed is very important for the
performance of the detector. Training set should contain
almost equal number of edge and non-edge examples.

III. STAGE I: EXTRACTING FEATURE VECTOR

One of the key element in the framework is feature
extraction. A user guides the algorithm by labeling
the pixels as edge pixels and non-edge pixels. Since
edges are discontinuity points, user should be careful
in marking these edge pixels. Non-edge points usually
belong to regions where intensity values are homoge-
neously distributed. When compared to An example
is given in Fig. 1. Labeling is performed over noisy
checkerboard image (Fig. 1b). Edge pixels are colored as
black and non-edge pixels are colored as gray (Fig. 1c)
and Fig. 1d). Non-edge points are labeled as blobs rather
than labeling as pixel. Totally 502 edge pixels and 614
non-edge pixels are marked in Fig. 1c and 502 edge
pixels and 1257 non-edge pixels are marked in Fig. 1d.

We first discretized λτ − space by taking samples at
regular intervals (λi, τi) where λi = λ0 + i ∗ Δλ and
τj = τ0 + j ∗ Δτ ,i = 0, 1, . . . , I , and j = 0, 1, . . . , J .
The corresponding edge detection filters are given by
Gx(λi, τj) and Gy(λi, τj). These filters are applied to
the training images denoted by fk(m,n) only at labeled
edge pixels (edgefk(r) : R

2 × N → N2) and non-edge
pixels (nonefk(r) : R

2 × N → N2). Filter responses
are then aggregated into two feature vectors denoted by
u and v; one for edge samples and one for non-edge
samples. Formal definitions of the feature vectors are
given as follows

ui,j,r (fk) = (‖[Gx (λi, τj) ∗ fk] (edgefk (r))‖) ,
vi,j,s (fk) = (‖[Gy (λi, τj) ∗ fk] (nonedgefk (s))‖)

(1)
In order to study how sampling the λτ−space effects

the feature vector distribution in the feature space, we
set I to 2 and J to 1. In this case, the feature space is
two dimensional where the feature vectors are reduced
to the following form

ur(fk) = (u1,1,r, u2,1,r),
vs(fk) = (v1,1,s, v2,1,s).

(2)

We have used six different sampling and two labeling
schemes in our experiments for the two dimensional fea-
ture space. The corresponding λ and τ parameters used
in the experiments and the feature space distributions are
given in Fig. 2 and Fig. 3. Although noisy checkerboard
image (Fig. 1b) is used in feature vector extraction, the
vector distribution is very appropriate for classification
for all sampling and marking schemes. Please note
that the original checkerboard image (Fig. 1a) contains
only step transitions and there are several topological
structures in the intensity surface such as corners and



(a) (b) (c) (d)

Fig. 1. Labeling pixels as edge and non-edge pixels (a) Original
checkerboard image, (b) Noisy checkerboard image (c) Marked pixels
(black pixels are edge points, gray pixels are non-edge points (d)
Another marking used in training.

crossings. Since the marking in the Fig. 1d contains
non-edge labels near these topological structures, we
may expect that the edge detector trained with this
labels yields better results compared to the edge detector
trained with the other one. Let us call the edge detector
trained with the labels in Fig. 1c as Detector-1 and
the edge detector trained with the labels in Fig. 1d as
Detector-2.

The noisy checkerboard image shown in Fig. 1b is
used in training, whereas the noisy checkerboard image
with smaller SNR value (18dB) shown in Fig. 1c is used
in testing. Edge detection results are shown in Fig. 4 and
Fig. 5. Experimental results verify that marking process
is the heart of the algorithm. Whereas Detector-1 fails
in detecting edges in the noisy checkerboard image with
SNR = 18dB, Detector-2 successfully captures the step
transitions.

Another issue related to the proposed approach is
the sampling scale space parameters (λ and τ ). In
two dimensional feature space case, detectors obtained
with distant and large scale parameters such as (λ1 =
32.0, τ1 = 0.5), (λ2 = 64.0, τ1 = 0.5) and (λ1 =
8.0, τ1 = 0.5), (λ2 = 16.0, τ1 = 0.5) have poor detection
performance.

Here we have used two different sampling and two
labeling schemes in our experiments for this case. The
corresponding λ and τ parameters used in the experi-
ments and the feature space distributions are given in
Fig. 6 and Fig. 7. Edge detection results are shown
in Fig. 8. Three dimensional vector space performs
better than the two dimensional space. Note that no post
processing such as thinning or hysteresis thresholding is
applied to the edge detection results. Let us call the edge
detector trained with the labels in Fig. 1c as Detector-3
and the edge detector trained with the labels in Fig. 1d
as Detector-4.
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Fig. 2. Feature vector scatter diagrams with respect to different
λτ−space sampling schemes when the labels given in Fig. 1(c)
is used. (a) (λ1 = 1.0, τ1 = 0.5), (λ2 = 8.0, τ1 = 0.5), (b)
(λ1 = 1.0, τ1 = 0.5), (λ2 = 16.0, τ1 = 0.5), (c) (λ1 = 8.0, τ1 =
0.5), (λ2 = 16.0, τ1 = 0.5), (d) (λ1 = 8.0, τ1 = 0.5), (λ2 =
32.0, τ1 = 0.5), (e) (λ1 = 1.0, τ1 = 0.5), (λ2 = 32.0, τ1 = 0.5), (f)
(λ1 = 32.0, τ1 = 0.5), (λ2 = 64.0, τ1 = 0.5).
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Fig. 3. Feature vector scatter diagrams with respect to different
λτ−space sampling schemes when the labels given in Fig. 1(d)
is used. (a) (λ1 = 1.0, τ1 = 0.5), (λ2 = 8.0, τ1 = 0.5), (b)
(λ1 = 1.0, τ1 = 0.5), (λ2 = 16.0, τ1 = 0.5), (c) (λ1 = 8.0, τ1 =
0.5), (λ2 = 16.0, τ1 = 0.5), (d) (λ1 = 8.0, τ1 = 0.5), (λ2 =
32.0, τ1 = 0.5), (e) (λ1 = 1.0, τ1 = 0.5), (λ2 = 32.0, τ1 = 0.5), (f)
(λ1 = 32.0, τ1 = 0.5), (λ2 = 64.0, τ1 = 0.5).

IV. STAGE II: CONTOUR MATCHING

Proposed framework has two steps. In the first, user
marks some pixels in the database as edge and non-edge
pixels. Then feature vectors comprised of filter responses
to G−Filters at different scales are extracted at these
labeled pixels. Edge detection problem is imposed as
two-class classification problem. Classifier itself is not
adequate to extract desired edges for the application
under consideration. In the second step continuous edges
are treated as one contour. Then contours are matched



(a) (b) (c)

(d) (e) (f)

Fig. 4. Edge detection test results for the noisy checkerboard
image (18dB). The labels given in Fig. 1(c) is used. The follow-
ing λτ−space sampling schemes are used: (a) (λ1 = 1.0, τ1 =
0.5), (λ2 = 8.0, τ1 = 0.5), (b) (λ1 = 1.0, τ1 = 0.5), (λ2 =
16.0, τ1 = 0.5), (c) (λ1 = 8.0, τ1 = 0.5), (λ2 = 16.0, τ1 = 0.5), (d)
(λ1 = 8.0, τ1 = 0.5), (λ2 = 32.0, τ1 = 0.5), (e) (λ1 = 1.0, τ1 =
0.5), (λ2 = 32.0, τ1 = 0.5), (f) (λ1 = 32.0, τ1 = 0.5), (λ2 =
64.0, τ1 = 0.5).

with the contours in the training set. Only matched
contours are kept and the other contours are rejected. In
contour matching we have used the algorithm developed
in this study. The algorithm is explained in [11].

Contour matching stage will be explained using li-
cense plate recognition system. Applications such as
traffic measurement and management, traffic surveil-
lance, car park automation require successful license
plate recognition (LPR) system. A typical LPR system
is comprised of two parts: license plate detection (LPD)
and license plate localization (LPL), each targets differ-
ent aims. LPD aims at detecting the presence of plate
in an image, while LPL aims at extracting the actual
boundary and segmenting the plate characters which are
ready for the optical character recognition.

The license plate image database contains 8321 gray-
scale digit characters segmented from the real vehicle
license plates. Edge detector explained in the previous
section is trained with the digit characters and their
boundaries in the database. Fig. 9a contains a vehicle
image. After the first stage the edges given in Fig. 9b
are detected. Contour matching is applied to the detected
contour. Since non-digit contours are not matched, they
are eliminated. After the contour elimination, the con-
tours given in Fig. 9c are obtained.

V. CONCLUSION

This study presents a new approach to edge detection.
We presented a new edge detection formulation within
a goal-based, regularized, shape-aware framework. This
framework provides mechanisms for achieving detection

(a) (b) (c)

(d) (e) (f)

Fig. 5. Edge detection test results for the noisy checkerboard
image (18dB). The labels given in Fig. 1(d) is used. The follow-
ing λτ−space sampling schemes are used: (a) (λ1 = 1.0, τ1 =
0.5), (λ2 = 8.0, τ1 = 0.5), (b) (λ1 = 1.0, τ1 = 0.5), (λ2 =
16.0, τ1 = 0.5), (c) (λ1 = 8.0, τ1 = 0.5), (λ2 = 16.0, τ1 = 0.5), (d)
(λ1 = 8.0, τ1 = 0.5), (λ2 = 32.0, τ1 = 0.5), (e) (λ1 = 1.0, τ1 =
0.5), (λ2 = 32.0, τ1 = 0.5), (f) (λ1 = 32.0, τ1 = 0.5), (λ2 =
64.0, τ1 = 0.5).

without requiring any thresholding or parameter tuning,
also taking the contour geometry into account. We pro-
posed a two-stage framework. In the first stage, a user
marks some pixels in the database as edge and non-
edge pixels as the underlying application requires. Then
feature vectors comprised of filter responses to G-Filters
at different scales are extracted at these marked pixels.
Edge detection problem is imposed to two-class classifi-
cation problem. Classifier itself is not adequate to extract
desired edges for the application under consideration. In
the second stage continuous edges are treated as one
contour. Then contours are matched with the contours in
the training set. Only matched contours are kept and the
other contours are eliminated.

The purpose of the first stage is to keep only prominent
edges and remove irrelevant edges with respect to the
application. The classifier decides which discontinuity
is prominent or irrelevant. So how the training set is
constructed is very important for the performance of
the detector. Training set should contain almost equal
number of edge and non-edge examples.

The use of goal-oriented approach will find its appli-
cations in robust, accurate, efficient edge and contour
extraction. We believe that the approach developed here
leads to powerful edge/contour-based systems especially
for applications involving face recognition and license
plate detection.
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Fig. 6. Feature vector scatter diagrams with respect to different
λτ−space sampling schemes when the labels given in Fig. 1(c) is
used. (a) (λ1 = 1.0, τ1 = 0.5), (λ2 = 2.0, τ1 = 0.5), (λ3 =
4.0, τ1 = 0.5), (b) (λ1 = 1.0, τ1 = 0.5),(λ2 = 4.0, τ1 = 0.5),(λ3 =
8.0, τ1 = 0.5).
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Fig. 7. Feature vector scatter diagrams with respect to different
λτ−space sampling schemes when the labels given in Fig. 1(d) is
used. (a) (λ1 = 1.0, τ1 = 0.5), (λ2 = 2.0, τ1 = 0.5), (λ3 =
4.0, τ1 = 0.5), (b) (λ1 = 1.0, τ1 = 0.5), (λ2 = 4.0, τ1 = 0.5),
(λ3 = 8.0, τ1 = 0.5).

(a) (b)

(c) (d)

Fig. 8. Edge detection test results for the noisy checkerboard image
(18dB). The labels given in Fig. 1(c) is used in (a) and (b). The labels
given in Fig. 1(d) is used in (c) and (d). The following λτ−space
sampling schemes are used: (a),(c) (λ1 = 1.0, τ1 = 0.5), (λ2 =
2.0, τ1 = 0.5), (λ3 = 4.0, τ1 = 0.5), (b),(d) (λ1 = 1.0, τ1 = 0.5),
(λ2 = 4.0, τ1 = 0.5), (λ3 = 8.0, τ1 = 0.5)

(a) (b) (c)

Fig. 9. Edge detection results (a) Vehicle image (b) Detected edges
(c) Detected contours.
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