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Abstract 

This study extends the adaptive scheme for the representation of images in λτ-space [1] to color images. The 
space, called λτ-space, is comprised of two dimensions: the scale dimension and the continuity dimension, 
controlling the smoothness and the continuity of the surface, respectively. The representation is obtained 
simply by filtering the image with the filter denoted as R(x,y;λ,τ). It has been shown that the representation is 
richer than the classical scale-space representation. But the authors in [2] adopted a linear two dimensional 
algorithm unable to fully exploit the properties of the representation. In our proposed scheme, we allow the 
space parameters, λ and τ, to vary through the image respecting the feature directions. Also we apply iterative 
smoothing scheme in which an image is smoothed at each iteration by controlling the space parameters also in 
time. The first aspect of the algorithm is connected with the robustness to noise. The second aspect of the 
algorithm concerns the way it treats the direction of the edges. The relation between the proposed algorithm 
and the anisotropic diffusion is also established in this study. The proposed representation have been tested 
both qualitatively and quantitatively on various real and synthetic images. Experimental results are presented  
including an analysis of the introduced scheme and the behavior of the images in the space.  
 
Keywords: λτ-space, scale space, nonlinear partial differential equations, nonlinear diffusion, smoothing, 
image enhancement, edge detection. 
 

1   Introduction 
 
Our purpose in this study is to introduce the adaptive scheme for λτ-space representation using 
regularization and partial differential equation framework. Nonlinear partial differential equations 
have been attracted great interest in solving many low-level image processing and computer vision 
problems including image restoration ([3][4]), edge detection ([5][6]), stereo ([7]) and curve 
evaluation [8,9]. This is due to their ability of modeling the image in continuous domain and high 
accuracy and stability properties when discretized.  
     Partial differential equations mostly arise from regularization stemming from the formulation of 
image processing problems as energy functionals. Regularization is a general framework used to 
convert an ill-posed problem to well-posed by restricting the class of admissible solutions using 
constraints such as smoothness. Smoothness could be imposed in the form of derivatives of the 
solution. Gökmen and Jain presented a method ([1]) based on regularization with filters in which 
regularization term consists of first and second order partial derivatives of the solution. First order 
derivatives correspond to membrane model and second order derivatives correspond to thin plate 
model. The smoothing filter, Rλτ(x,y), associated to the functional is obtained by solving Euler-
Lagrange equation resulting in forth-order partial differential equation. These filters and their 
properties are investigated in [2]. λτ-space representation of images and edges are formed by 
convolving the image with the filter, Rλτ(x,y). 
     One major drawback of the algorithm is that space parameters are constant throughout the image 
space causing the edges to be blurred while noise is removed elsewhere. This problem is due to the 
linear nature of the representation. To overcome this problem, we present an adaptive λτ-space image 
and edge representation allowing the space parameters, λ and τ, to vary through the image respecting 
the feature directions. Our approach involves two coupled PDE’s modeling inhomogeneous 
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membrane and thin-plate functionals expressed in ηξ-directions where η and ξ are the tangent 
direction and the normal directions. 
     We begin this paper with a brief overview to the λτ-space representation. The algorithm is then 
developed in Section 3. Implementation details and the experimental results on synthetic and natural 
data are presented in Section 4. Finally, we conclude in Section 5.  
 

2   Overview 
 
Image representation aims at producing images with different details. This is one of the most 
challenging issue in computer vision and image processing due to lack of a robust representation. In 
general, representations can be classified as linear and nonlinear. Linear representations are 
constructed by convolving the image by linear filters (kernels) with varying scales. For instance, in 
classical scale-space the kernel is a Gaussian and the scale-space representation is constructed either 
by convolving the image by a Gaussian with increasing standard deviation or by solving the linear 
heat equation in time. This representation is causal, since the isotropic heat equation satisfies a 
maximum principle. However, the Gaussian scale-space suffers from serious drawbacks such as over-
smoothing and location uncertainty along edges at large scales due to interactions between nearby 
edges and displacements. Smoothing is done in a homogeneous fashion at the same rate in all 
directions. This results in blurring of edges at the same rate as smoothing of object interiors. Such a 
filter results in poor edge localization. A representation which is known to be richer than the 
Gaussian scale-space is λτ-space representation in which the kernel is derived from the hybrid 
functional:  
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where d(x,y) is the given image, λ is the real-valued regularization parameter and τ ∈ [0,1] is the 
real-valued continuity control parameter. Here, the hybrid functional is used to obtain a smooth 
transition from membrane model to the plate model. Note that, for τ=0, the functional reduces to the 
membrane model, for τ=1 it reduces to the plate model, and for the intermediate values of this 
parameter we obtain hybrid surfaces. In order to obtain these hybrid surfaces, the solution of the 
Euler-Lagrange equation associated the hybrid functional is needed. The derivation of these solutions 
and their analysis are given in [2].   
     The λτ-space representation is capable of producing larger numbers of images each of which have 
different characteristics of details. However the use of constant space parameters throughout the 
image causes the edges to be blurred for large λ values regardless of the τ dimension. Next chapter 
deals with this problem, introducing anisotropic λτ-space representation.   
 
3 Adaptive Scheme 
  
Recall that the hybrid functional is comprised of two terms containing first- and second-order 
derivatives of the solution along x and y directions. We denote these  terms as 
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where H designates the Hessian operator. The hybrid functional is defined as a linear combination of 
these two terms     
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Minimization of the functionals (1) and (2) separately yields the following PDE’s  
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where the operator, Λ, is given as follows 
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The quasi-linear PDE given in the equation (4) is the anisotropic (inhomogeneous) diffusion 
proposed by Perona and Malik [5]. λ is called the diffusion coefficient which is a function of the 
gradient of the solution, f(x,y;t), and is chosen to be a decreasing function of the gradient, ⎟∇f⏐, in 
such a way that a higher rate of diffusion occurs for low values of ⎟∇f⏐ and  vice-versa. This 
encourages smoothing within a region in preference to smoothing across edges, thereby also 
performing image enhancement. 
     The minimization of the hybrid functional (3) can be easily derived from the PDE’s (4) and (5) as     
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Equation (8) consists of the linear combination two diffusion processes whose fluxes are controlled 
by the λm and λp functions of the gradient. When the image is corrupted by noise of high variance, 
higher gradient terms are required to robust estimation of the local image features such as edges and 
corners. In order to control the direction of diffusion allowing minimal smoothing in the direction 
across to the image features, and maximal smoothing in the direction normal to the image features, 
we express the hybrid diffusion in ηξ-form such that new directional operators, Λη and Λξ, are 
defined as 

Λη=Λη ˆ  

Λξ=Λξ ˆ  
where  
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Also note that  
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Rewriting the hybrid diffusion given in the equation (8) in terms of the directional operators yields 
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or in a simpler form 
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The functions λm and λp control the amount and the direction of smoothness such that for large values 
of the gradient, ⎟∇f⏐, we allow less diffusion and vice-versa, and in the gradient direction, η, we 
have always smaller amount of diffusion due to the additive term inversely proportional to the 
gradient. Note that for τ=0, the diffusion reduces to the Perona-Malik equation, for τ=1 it reduces to 
the second-order diffusion, and for intermediate values of this parameter we obtain the surfaces 
corresponding to the hybrid diffusion.  
     Next chapter deals with the discretization issues of the hybrid diffusion. 
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4   Implementation and Results  
 
In this section, we briefly mention on the discretization of the partial differential equation given in 
(10) by using finite differences. At each instance of time, the function u(x,y;t+1) is evaluated through 
the forth-order procedure: 
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where T(.)(k) denotes the value of the function of t at k and V(.)(i,j) denotes the value of the function 
of (x,y) at (i,j). 
    The functions λm and λp are chosen as 
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where the function K(t) is a decreasing function of time. The effect of K(t) on the solution is studied 
in [10]. We have used a linear function, K(t)=Kmax-αt, in our experiments where α=(Kmax-Kmin)/T and 
T is the diffusion time. 
     The algorithm was implemented and tested on various real 24-bit color images. We now present 
these results. We compare the success of the adaptive representation over the linear representation on 
clear and noisy images. Table-1 contains the linear λτ-space representation of clear Parrot image for 
λ=1,4,16 and τ=0.0, 0.5, and 1.0. The SNR values are also given in Table-3. The linear algorithm 
always degrades the image structure the least for τ=0.5. Adaptive representation of the same image 
for τ=0.0, 0.5, and 1.0 is given in Table-2. The SNR values for the adaptive scheme are given in 
Table-4. On contrary to the linear space, the image structure is preserved the most, corresponding to 
largest SNR value, when τ is close to 1. Table-5 contains the adaptive smoothing of clear images. 
SNR values corresponding to the reconstructed surfaces are given in Table-6.        
 
5   Summary and Conclusions 
 
We have presented nonlinear image and edge representation derived from the λτ-space representation 
in which the space parameters are adaptively determined controlling the amount and the direction of 
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smoothness. We have showed experimentally that our proposed scheme is capable of locating the 
feature direction robustly when the both terms in the hybrid diffusion are used as contrary to the 
Perona-Malik equation. Using this approach one may obtain surfaces having different characteristics for the 
choice of different τ. 
 
REFERENCES 
 
[1] B. Kurt, H.T. Demiral, “Adaptive λτ-Space Representation of Images and Edges”, Recent 

Advances in Signal Processing and Communications, Part I, pp. 53-59, World Scientific Pub. 
[2] B. Kurt, M. Gökmen, “Two Dimensional Generalized Edge Detector”, IEEE Int. Conf. On Image 

Analysis and Processing, pp. 148-153, Venice Italy, 1999. 
[3] F. Torkomani-Azar and K.-E. Tait, “Image Recovery Using the Anisotropic Diffusion Equation”,  
IEEE Trans. On Image Processing”, Vol. 11, No. 2, 1997, pp. 1573-1577.   
[4] René A. Carmona, Sifen Zhong, “Adaptive Smoothing Respecting Feature Directions”, IEEE 

Trans. On Image Processing, Vol. 7, No. 3, 1998, pp. 353-358. 
[5] P. Perona and J. Malik, “Scale-space and Edge Detection using Anisotropic Diffusion”, IEEE 

Trans. on PAMI, Vol. 12, 1990, pp. 629-639.   
[6] F. Catte, P.-L. Lions, J.-M. Morel, and T. Coll, “Image Selective Smoothing and Edge Detection 

by Nonlinear Diffusion”, SIAM J. Numerical Analysis, Vol. 29, 1992, pp. 182-193. 
[7] O. Faugeras and R. Keriven, “Variational Principles, Surface Evaluation, PDE’s and the Stereo 

Problem”, IEEE Trans. On Image Processing, Vol. 7, No. 3, 1998, pp. 336-344.  
[8] J. Shah, “A Common Framework for Curve Evaluation, Segmentation and Anisotropic 

Diffusion”, IEEE Proc. Conf. Computer Vision and Pattern Recognition, San Francisco, CA, June 
1996, pp. 136-142.  

[9] L. Moisan, “Affine Plane Curve Evolution: A Fully Consistent Scheme”, IEEE Trans. On Image 
Processing, Vol. 7, No. 3, 1998, pp. 411-420.  

[10] X. Li and T. Chen, “Nonlinear Diffusion with Multiple Edginess Thresholds”, Pattern 
Recognition, Vol. 27, No. 8, 1994, pp. 1029-1037.  

[11] M. Gökmen and C. Li, “Multiscale Edge Detection using first-order R-filter”, Proceeding of  
Int. Conf. on Pattern Recognition, 1992, pp. 307-310. 

 
 
 

 

Table 3. SNR values 
 

     λ/τ 0.0 0.5 1.0 
      1   12.92   15.43   14.52 
      4   11.06   13.63   13.27 
     16    8.20    9.62   12.12 
Adaptive   18.10   18.53   19.03 

 
 

 

Table 6. SNR values 
 

 Image/τ     0.0     0.5     1.0 
   Hats   17.62   18.10   18.76 
  House   19.24   19.57   19.87 
 Mandril   15.30   16.20   17.46 
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Table 1. λτ-Space representation of Parrot image 
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Table 2. Adaptive λτ-Space representation of Parrot image 
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Table 5. Adaptive λτ-Space representation of real images 
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Table 7. Adaptive λτ-Space representation of noisy Lenna image 
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