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Abstract: - In this study, we propose an adaptive scheme for the representation of images and edges in λτ-
space [1] introduced by Gökmen and Jain. The space, called λτ-space, is comprised of two dimensions: the
scale dimension and the continuity dimension, controlling the smoothness and the continuity of the surface,
respectively. The representation is obtained simply by filtering the image with the filter denoted as R(x,y;λ,τ).
It has been shown that the representation is richer than the classical scale-space representation. But the authors
in [1] adopted a linear one dimensional algorithm unable to fully exploit the properties of the representation. In
our proposed scheme, we allow the space parameters, λ and τ, to vary through the image respecting the feature
directions. Also we apply iterative smoothing scheme in which an image is smoothed at each iteration by
controlling the space parameters also in time. The first aspect of the algorithm is connected with the robustness
to noise. The second aspect of the algorithm concerns the way it treats the direction of the edges. The relation
between the proposed algorithm and the anisotropic diffusion is also established in this study. The proposed
representation and edge detection have been tested both qualitatively and quantitatively on various real and
synthetic images. Experimental results are presented  including an analysis of the introduced scheme and the
behavior of the edges.
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image enhancement, edge detection.
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1   Introduction

Our purpose in this study is to introduce the adaptive
scheme for λτ-space representation using
regularization and partial differential equation
framework. Nonlinear partial differential equations
have been attracted great interest in solving many
low-level image processing and computer vision
problems including image restoration [3,4], edge
detection [5,6], stereo [7] and curve evaluation [8,9].
This is due to their ability of modeling the image in
continuous domain and high accuracy and stability
properties when discretized.
     Partial differential equations mostly arise from
regularization stemming from the formulation of
image processing problems as energy functionals.
Regularization is a general framework used to
convert an ill-posed problem to well-posed by
restricting the class of admissible solutions using
constraints such as smoothness. Smoothness could
be imposed in the form of derivatives of the

solution. Gökmen and Jain presented a method ([1])
based on regularization with filters in which
regularization term consists of first and second order
partial derivatives of the solution. First order
derivatives correspond to membrane model and
second order derivatives correspond to thin plate
model. The smoothing filter, Rλτ(x,y), associated to
the functional is obtained by solving Euler-Lagrange
equation resulting in forth-order partial differential
equation. These filters and their properties are
investigated in [2]. λτ-space representation of
images and edges are formed by convolving the
image with the filter, Rλτ(x,y).
     One major drawback of the algorithm is that
space parameters are constant throughout the image
space causing the edges to be blurred while noise is
removed elsewhere. This problem is due to the
linear nature of the representation.
     To overcome this problem, we present an
adaptive λτ-space image and edge representation
allowing the space parameters, λ and τ, to vary
through the image respecting the feature directions.
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Our approach involves two coupled PDE’s modeling
inhomogeneous membrane and thin-plate
functionals expressed in ηξ-directions where η and
ξ are the tangent direction and the normal direction
     We begin this paper with a brief overview to the
λτ-space representation. The algorithm is then
developed in Section 3. Implementation details and
the experimental results on synthetic and natural
data are presented in Section 4. Finally, we conclude
in Section 5.

2   Overview

Image representation aims at producing images with
different details. This is one of the most challenging
issue in computer vision and image processing due
to lack of a robust representation. In general,
representations can be classified as linear and
nonlinear. Linear representations are constructed by
convolving the image by linear filters (kernels) with
varying scales. For instance, in classical scale-space
the kernel is a Gaussian and the scale-space
representation is constructed either by convolving
the image by a Gaussian with increasing standard
deviation or by solving the linear heat equation in
time. This representation is causal, since the
isotropic heat equation satisfies a maximum
principle. However, the Gaussian scale-space suffers
from serious drawbacks such as over-smoothing and
location uncertainty along edges at large scales due
to interactions between nearby edges and
displacements. Smoothing is done in a homogeneous
fashion at the same rate in all directions. This results
in blurring of edges at the same rate as smoothing of
object interiors. Such a filter results in poor edge
localization. A representation which is known to be
richer than the Gaussian scale-space is λτ-space
representation in which the kernel is derived from
the hybrid functional:

where d(x,y) is the given image, λ is the real-valued
regularization parameter and τ ∈ [0,1] is the real-
valued continuity control parameter. Here, the
hybrid functional is used to obtain a smooth
transition from membrane model to the plate model.
Note that, for τ=0, the functional reduces to the
membrane model, for τ=1 it reduces to the plate
model, and for the intermediate values of this
parameter we obtain hybrid surfaces. In order to
obtain these hybrid surfaces, the solution of the

Euler-Lagrange equation associated the hybrid
functional is needed. The derivation of these
solutions and their analysis are given in [2].
     The λτ-space representation is capable of
producing larger numbers of images each of which
have different characteristics of details. However the
use of constant space parameters throughout the
image causes the edges to be blurred for large λ
values regardless of the τ dimension. Next chapter
deals with this problem, introducing anisotropic λτ-
space representation.

3 Adaptive Scheme

Recall that the hybrid functional is comprised of two
terms containing first- and second-order derivatives
of the solution along x and y directions. We denote
these  terms as

where H designates the Hessian operator. The
hybrid functional is defined as a linear combination
of these two terms

Minimization of the functionals (1) and (2)
separately yields the following PDE’s

where the operator, Λ, is given as follows

such that
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The quasi-linear PDE given in the equation (4) is the
anisotropic (inhomogeneous) diffusion proposed by
Perona and Malik [5]. λ is called the diffusion
coefficient which is a function of the gradient of the
solution, f(x,y;t), and is chosen to be a decreasing
function of the gradient, ∇f, in such a way that a
higher rate of diffusion occurs for low values of
∇f and  vice-versa. This encourages smoothing
within a region in preference to smoothing across
edges, thereby also performing image enhancement.
     The minimization of the hybrid functional (3) can
be easily derived from the PDE’s (4) and (5) as

Equation (8) consists of the linear combination two
diffusion processes whose fluxes are controlled by
the λm and λp functions of the gradient. When the
image is corrupted by noise of high variance, higher
gradient terms are required to robust estimation of
the local image features such as edges and corners.
In order to control the direction of diffusion
allowing minimal smoothing in the direction across
to the image features, and maximal smoothing in the
direction normal to the image features, we express
the hybrid diffusion in ηξ-form such that new
directional operators, Λη and Λξ, are defined as

where

Also note that

Rewriting the hybrid diffusion given in the equation
(8) in terms of the directional operators yields

or in a simpler form

where

The functions λm and λp control the amount and the
direction of smoothness such that for large values of
the gradient, ∇f, we allow less diffusion and vice-
versa, and in the gradient direction, η, we have
always smaller amount of diffusion due to the
additive term inversely proportional to the gradient.
Note that for τ=0, the diffusion reduces to the
Perona-Malik equation, for τ=1 it reduces to the
second-order diffusion, and for intermediate values
of this parameter we obtain the surfaces
corresponding to the hybrid diffusion.
     Next chapter deals with the discretization issues
of the hybrid diffusion.

4   Implementation and Results

In this section, we briefly mention on the
discretization of the partial differential equation
given in (10) by using finite differences. At each
instance of time, the function u(x,y;t+1) is evaluated
through the forth-order procedure:
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where T(.)(k) denotes the value of the function of t
at k and V(.)(i,j) denotes the value of the function of
(x,y) at (i,j).
    The functions λm and λp are chosen as

where the function K(t) is a decreasing function of
time. The effect of K(t) on the solution is studied in
[10]. We have used a linear function, K(t)=Kmax-αt,
in our experiments where α=(Kmax-Kmin)/T and T is
the diffusion time.
     The algorithm was tested on 8 bit gray level
images. We now present these results on synthetic
and real images. In order to evaluate detection and
localization performance, we used noisy
checkerboard image with nmse=41.06. The original
and noisy checkerboard images are shown in Figure
1. Surfaces and detected edges for three τ values
(0.0, 0.5, and 1.0) are shown in Figure 2. We
calculated the conditional probability of a detected
edge pixel given an ideal edge pixel, Pr{DE|IE}, the
conditional probability of an ideal edge pixel given a
detected edge pixel, Pr{IE|DE}, the mean square
distance (MSD) between ideal and detected edge
pixels [11] and the Pratt’s Figure Of Merit (FOM).
These performance indices for checkerboard images
degraded at different amounts are given in Table 1.

                  
               (a)                  (b)

Figure 1 (a) Original checkerboard image
               (b) Noisy checkerboard image

                  
                                 (a)   τ=0.0

                  
                                 (b)   τ=0.5

                  
                                 (c)   τ=1.0
Figure 2 Reconstructed surfaces and detected edges
               for τ=0.0, 0.5, and 1.0.

Table 1 Quantitative results for noisy checkerboard
             Images
    MSE      41.06      30.47     25.43
       τ 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
Pr{IE|DE} 0.94 0.97 0.95 0.9740.97 0.99 0.99 0.99 0.99
Pr{IE|DE} 0.95 0.98 0.97 0.9850.99 0.99 0.99 0.99 0.99
   MSD 0.22 0.13 0.17 0.13 0.11 0.06 0.08 0.06 0.06
   FOM 0.94 0.98 0.95 0.97 0.97 0.99 0.99 0.99 0.99

Table 2 Quantitative results for noisy checkerboard
             Images
    MSE      41.06      30.47     25.43
       τ 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
   MSE 14.4 13.0 13.6 8.7 9.4 7.6  5.8 4.4 4.2

  NMSE 0.31 0.28 0.30 0.1950.20 0.16 0.12 0.09 0.09

     For highly noisy images the detected edges for
τ=0.5 are always better in the sense of the
performance indices introduced above while in other
cases  the results for τ=1.0 are better.
     Table 2 contains  mean square error (MSE) and
normalized mean square error (NMSE) between the
reconstructed and the original surfaces. The
reconstructed surfaces obtained for τ=0.5 result in
smaller MSE for highly noisy images. As compared
to the Perona-Malik`s diffusion, hybrid diffusion
always results in better replica of the original image.
     Finally, we present a comparison of the proposed
scheme and linear λτ-space representation and
generalized edge detector (GED). We see that for
the case of no noise (Figure 5,8), the proposed
algorithm performs as well as GED and in the
presence of high noise (Figure 4,7), it performs
much better than GED. The original and noisy
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Airfield and Bridge images are given in Figure 3 and
in Figure 6, respectively.

5   Summary and Conclusions

We have presented nonlinear image and edge
representation derived from the λτ-space
representation in which the space parameters are
adaptively determined controlling the amount and
the direction of smoothness. We have showed
experimentally that our proposed scheme is capable
of locating the feature direction robustly when the
both terms in the hybrid diffusion are used as
contrary to the Perona-Malik equation. The edge
detection performance has been assessed by using
quantitative measures such as FOM (Figure-Of-
Merit), missing and false alarm characteristics with
promising results.
     We have experimentally showed that introduced
diffusion mechanism provides additional details
when compared to the Perona-Malik's diffusion.
Using this approach one may obtain edges and
surfaces having different characteristics for the
choice of different τ's.
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                                    (a)

                                    (b)
Figure 3
    (a) Original Airfield image
    (b) Degraded Airfield image with Gaussian
          noise with σ2=451.36.

                                      (a)

                                      (b)
Figure 4
(a) Reconstructed surface and detected edges

through the linear λτ-space representation.
(b) Reconstructed surface and detected edges
      through the proposed adaptive representation.

                                      (a)

                                      (b)
Figure 5
(a) Reconstructed surface and detected edges

through the linear λτ-space representation.
(b) Reconstructed surface and detected edges
      through the proposed adaptive representation.
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                                    (a)

                                    (b)
Figure 6
    (a) Original Bridge image
    (b) Degraded Bridge image with Gaussian
          noise with σ2=375.73.

                                      (a)

                                      (b)
Figure 7
(a) Reconstructed surface and detected edges

through the linear λτ-space representation.
(b) Reconstructed surface and detected edges
      through the proposed adaptive representation.

                                      (a)

                                      (b)
Figure 8
(a) Reconstructed surface and detected edges

through the linear λτ-space representation.
(b) Reconstructed surface and detected edges

through the proposed adaptive representation.


