Exceptions

Program Errors

» Kinds of errors with programs

* Poor logic - bad algorithm
* Improper syntax - bad implementation
» Exceptions - Unusual, but predictable problems

» The earlier you find an error, the less it
costs to fix it

* Modern compilers find errors early

Paradigm Shift from C

* In C, the default response to an error is to continue,
possibly generating a message

e In C++, the default response to an error is to
terminate the program

e C++ programs are more “brittle”, and you have to
strive to get them to work correctly

e Can catch all errors and continue as C does

assert()

= a macro (processed by the precompiler)
= Returns TRUE if its parameter is TRUE
= Takes an action if it is FALSE
= abort the program

= throw an exception

= If DEBUG is not defined, asserts are collapsed so
that they generate no code

assert() (cont’d)

When writing your program, if you know something is true,
you can use an assert

If you have a function which is passed a pointer, you can do
= assert(pTruck);

= if pTruck is 0, the assertion will fail

Use of assert can provide the code reader with insight to your
train of thought

assert() (cont’d)

= Assert is only used to find programming errors
= Runtime errors are handled with exceptions
= DEBUG false => no code generated for assert
= Animal *pCat = new Cat;
= assert(pCat); // bad use of assert
= pCat->memberFunction();

assert() (cont’d)

= assert() can be helpful
= Don’t overuse it
= Don't forget that it “instruments” your code

= invalidates unit test when you turn DEBUG off
= Use the debugger to find errors

Exceptions

= You can fix poor logic (code reviews, debugger)
= You can fix improper syntax (asserts, debugger)
= You have to live with exceptions

= Run out of resources (memory, disk space)
= User enters bad data
= Floppy disk goes bad

Why are Exceptions Needed?

= The types of problems which cause exceptions

(running out of resources, bad disk drive) are found
at a low level (say in a device driver)

The low level code implementer does not know
what your application wants to do when the
problem occurs, so s/he “throws” the problem “up”
to you

How To Deal With Exceptions

Crash the program
Display a message and exit
Display a message and allow the user to continue

Correct the problem and continue without
disturbing the user

Murphy's Law: "Never test for a system
error you don't know how to handle."”

What is a C++ Exception?

= An object

= passed from the area where the problem occurs

= passed to the area where the problem is
handled

= The type of object determines which exception
handler will be used

Syntax

try {
// a block of code which might generate an exception
catch (xNoDisk) {

// the exception handler(tell the user to

// insert a disk)

}

catch (xNoMemory) {

// another exception handler for this “try block”

}

The Exception Class

= Defined like any other class:
= class Set {
= private:
int *pData;

= public:

class xBadIndex {}; // just like any other class

Throwing An Exception

In your code where you reach an error node:
» if (memberIndex < 0)
" throw xBadIndex () ;

Exception processing now looks for a catch block
which can handle your thrown object

If there is no corresponding catch block in the
immediate context, the call stack is examined

The Call Stack

= As your program executes, and functions are
called, the return address for each function is
stored on a push down stack

= At runtime, the program uses the stack to return to
the calling function

= Exception handling uses it to find a catch block

Passing The Exception

The exception is passed up the call stack until an appropriate
catch block is found

As the exception is passed up, the destructors for objects on the
data stack are called

There is no going back once the exception is raised

Handling The Exception

= Once an appropriate catch block is found, the code in the catch
block is executed

= Control is then given to the statement after the group of catch
blocks

= Only the active handler most recently encountered in the thread
of control will be invoked

Handling The Exception (cont’ d)

catch (Set::xBadIndex)

// display an error message

}

catch (Set::xBadData) {

// handle this other exception

}

//control is given back here

= If no appropriate catch block is found, and the stack is at main(),
the program exits

Default catch Specifications

= Similar to the switch statement

= catch (Set::xBadIndex)

« { // display an error message |}

= catch (Set::xBadData)

» { // handle this other exception }

= catch (..)

» { // handle any other exception }

Exception Hierarchies

» Exception classes are
just like every other

class; you can derive xBadIndex
classes from them | I |
So one try/catch block xNegative XToolarge

might catch all bad
indices, and another
might catch only
negative bad indices

10

Exception Hierarchies (cont’ d)

class Set {
private:
int *pData;
public:
class xBadIndex {};
class xNegative : public xBadIndex {};
class xTooLarge: public xBadIndex {};
}i
// throwing xNegative will be
// caught by xBadIndex, too

Datain Exceptions

= Since Exceptions are just like other classes, they
can have data and member functions

= You can pass data along with the exception object
= An example is to pass an error subtype

= for xBadIndex, you could throw the type of bad
index

11

Data in Exceptions (Continued)

// Add member data,ctor,dtor,accessor method
class xBadIndex {
private:
int badIndex;
public:
xBadIndex (int iType) :badIndex (iType) {}
int GetBadIndex () { return badIndex; }

~xBadIndex() {}

-
~e

Passing Data In Exceptions

// the place in the code where the index is used
if (index < 0)

throw xBadIndex (index) ;
if (index > MAX)

throw xBadIndex (index) ;

// index is ok

12

Getting Data From Exceptions

catch (Set::xBadIndex theException)

{
int badIndex = theException.GetBadIndex() ;
if (badIndex < 0)
cout << “Set Index “ << badIndex << ™ less than 0”;
else
cout << “Set Index “ << badIndex << “ too large”;
cout << endl;
}

Caution

= When you write an exception handler, stay aware
of the problem that caused it

= Example: if the exception handler is for an out of
memory condition, you shouldn’t have statements
In your exception object constructor which allocate
memory

13

Exceptions With Templates

= You can create a single exception for all instances of
a template

= declare the exception outside of the template

= You can create an exception for each instance of the
template

= declare the exception inside the template

Single Template Exception

class xSingleException {};

template <class T>
class Set {
private:

T *pType:;
public:

Set();

T& operator[] (int index) const;

};:

14

Each Template Exception

template <class T>
class Set {
private:
T *pType;
public:
class xEachException {};
T& operator[] (int index) const;
}i

// throw xEachException();

Catching Template Exceptions

= Single Exception (declared outside the template class)

= catch (xSingleException)
= Each Exception (declared inside the template class)

= catch (Set<int>::xEachException)

15

Standard Exceptions

= The C++ standard includes some predefined
exceptions, in <stdexcept.h>

= The base class is exception

= Subclass logic_error is for errors which could
have been avoided by writing the program
differently

= Subclass runtime_error is for other errors

Logic Error Hierarchy

logic_error

domain_error Invalid_argument length_error out_of_range

16

Runtime Error Hierarchy

runtime_error

overflow_error range_error

The idea is to use one of the specific classes
(e.g. range_error) to generate an exception

Data For Standard Exceptions

// standard exceptions allow you to specify
// string information

throw overflow error (“Doing float division in function div”);

// the exceptions all have the form:
class overflow error : public runtime error
public:

overflow_error (const string& what arg)

: runtime_error (what_arg) {};

17

Catching Standard Exceptions

catch (overflow error)

{

cout << “Overflow error” << endl;

catch (exception& e)

{

cout << typeid(e) .name() << “: “ << e.what() << endl;

More Standard Exception Data

catch (exceptioné& e)
= Catches all classes derived from exception

= If the argument was of type exception, it would be converted
from the derived class to the exception class

= The handler gets a reference to exception as an argument,
so it can look at the object

18

typeid

typeid is an operator which allows you to access the
type of an object at runtime

This is useful for pointers to derived classes

typeid overloads ==, !=, and defines a member
function name

if (typeid(*carType) == typeid(Ford))

cout << “This is a Ford” << endl;

typeid().name

cout << typeid(*carType) .name() << endl;

// If we had said:

// carType = new Ford() ;

// The output would be:

// Ford

So:

cout << typeid(e) .name()

returns the name of the exception

19

ewhat()

= The class exception has a member function what

. virtual char* what();

= This is inherited by the derived classes

= what() returns the character string specified in the throw
statement for the exception

throw
overflow error (“Doing float division in function div”);

cout << typeid(e) .name() << “: “ << e.what() << endl;

Deriving New exception Classes

class xBadIndex : public runtime error ({
public
xBadIndex (const char *what arg = “Bad Index”)
runtime error (what arg) {}
// we inherit the virtual function what

// default supplementary information character string

20

template <class T>
class Array{
private:
T *data ;
int Size ;
public:
Array(void);
Array(int);
class eNegativeIndex{};
class eOutOfBounds{};
class eEmptyArray(};
Té& operator[](int) ;

template <class T>

Array<T>i:Array(void){
data = NULL ;
Size=0 ;

template <class T>
Array<T>::Array(int size){
Size = size ;
data = new T[Size];
}

21

template <«class T>

T& Array<T>::operator[](int index){
if(data == NULL) throw eEmptyArray() ;
if(index < 0) throw eNegativeIndex() ;
if(index »>= Size) throw eOutOfBounds() ;

return data[index] ;

Array<int>a(10) ;

try{
int b=2a[200] ;

}

catch(Array<int>::eEmptyArray){
cout << "Empty Array" ;

}

catch(Array<int>::eNegativel ndex){
cout << "Negative Array" ;

}

catch(Array<int>::eOutOfBounds){
cout << "Out of bounds" ;

}

22

