JBB GUI Event IHandling

356

Objectives

» Write code to handle events that occur in a GUI

» Describe the concept of adapter classes, including how
and when to use them

» Determine the user action that originated the event from
the event object details

»Create the appropriate interface and event handler
methods for a variety of event types

[Java Programming 357]

What is an Event? I

» Events - Objects that describe what happened
» Event sources - The generator of an event

» Event handlers - A method that receives an event object,
deciphers it, and processes the user's interaction

(L3ava Programming 358)

| Hierarchical Model (JDK1.0) |

» Is based on containment

action()
lostFocus()
mouseExit()
gotFocus()
mouseDown() Panel
mouseMove()
keyDown()
mouseDrag()
mouseUp()
keyUp()
mouseEnter()

-

Frame

Action event

(L3ava Programming 359)

» Advantages

It is simple and well suited to an object-oriented
programming environment.

» Disadvantages

P> An event can only be handled by the component from
which it originated or by one of the containers of the
originating component.

P In order to handle events, you must either subclass the
component that receives the event or create a
handleEvent() method at the base container.

(L3ava Programming 360)

Delegation Model (JDK1.1)

» Events are sent to the component from which the event originated,
but it is up to each component to propagate the event to one or more
registered classes called listener. Listeners contain event handlers that
receive and process the event. In this way, the event handler can be in
an object separate from the component. Listeners are classes that
implement the EventListener interface.

» Events are objects that are reported only to registered listeners.
Every event has corresponding listener interface that mandates which
methods must be defined in a class suited to receiving that type of
event. The class that implements the interface defines those methods,
and can be registered as a listener.

» Events from components that have no registered listeners are not
propagated.

(L3ava Programming 361)

Delegation Model

» Client objects (handlers) register with a GUI component they want

to observe.

» GUI components only trigger the handlers for the type of event that

has occurred

» Most components can trigger more than one type of event

P Distributes the work among multiple classes

Event Categories

Java.awt.event

[Java Programming 362] g Programming 363]
Event Class Listener Interface Listener Methods MouseEvent l MouseListener mouseClicked()
ActionEvent ActionListener actionPerformed() mouseEntered()
AdjustmentEvent | AdjustmentListener adjustmentValueChanged() mouseExited()
ComponentEvent | ComponentListener componentHidden() mousePressed()

componentMoved() mouseReleased()
componentResized() MouseMotionEvent l MouseMotionListener mouseDragged()
componentShown() mouseMoved()
ContainerEvent l ContainerListener componentAdded() TextEvent TextListener textValueChanged()
componentRemoved() WindowEvent WindowListener windowActivated()
FocusEvent l FocusListener focusGained() windowClosed()
focusLost() windowClosing()
ItemEvent ItemListener itemStateChanged() windowDeactivated()
KeyEvent KeyListener keyPressed() windowDeiconified()
keyReleased() windowIconified()
keyTyped() windowOpened()
(L3ava Programming 364) (L3ava Programming 365)
Component Events Generated | Meaning
Button ActionEvent User clicked on the button
Checkbox ItemEvent User selected or deselected an item Container ContainerEvent gzmi%ﬁ:}n:fded LR
CheckboxMenultem | ItemEvent User selected or deselected an item List ActionEvent User doublo-clicked on list item
Choice ItemEvent User selected or deselected an item TtemEvent User selected or deselocted an itom
Component ComponentEvent gg\r;;;oncnt moved, resized, hidden, or Menultem ActionEvent User selected a menu item
FocusEvent Component gained or lost focus Scrollbar AdjustmentEvent | User moved the scrollbar
KeyEvent User pressed or released a key TextComponent TextEvent User changed text
User pressed or released mouse button, TextField ActionEvent User finished editing text
mouse entered or exited component, or user " : N o Window opened, closed, iconified,
MouseEvent EOD\:JZ:EVK:‘; ::;gges”o mzz;_ec's]\the: Window WindowEvent deiconified, or close requested
ponding

listeners, MouseListener and MouseMotion
Listener.

(L3ava Programming

366)

(L3ava Programming

367)

Example

import java.awt.* ;
import java.awt.event.® ;

public class TwoListener implements MouseMotionListener,
MouseListener

f
v
private Frame f

private TextField tf;

public TwoListener() {
f=new Frame("Two listeners example") ;
tf = new TextField(30) ;

1
s

public void launchFrame() {
Label label = new Label("Click and drag the mouse") ;
f.add(label, BorderLayout NORTH) ;
f.add(tf, BorderLayout. SOUTH) ;
f.addMouseMotionListener(this) ;
f.addMouseListener(this) ;
f.setSize(300,200) ;
f.setVisible(true) ;
}
// These are MouseMotionListener events
public void mouseDragged(MouseEvent e) {
String s = "Mouse dragging: X="+e.getX() + "Y=""+e.getY() ;
tf.setText(s) ;
1

5
[Java Programming 368] E Programming 369]
public void mouseEntered(MouseEvent e) {
String s = "The mouse entered" ;
tf.setText(s) ;
}
public void mouseExited(MouseEvent e) { publlc static void main(String[] args) {
String s = "The mouse has left the building" ; . .
fsetText(s) TwoListener two = new TwoListener() ;
} two.launchFrame();
// Unused MouseMotionListener method 1
/I All methods of a listener must be present in the !
class even if they are not used }
public void mouseMoved(MouseEvent e) { }
Unused MouseListener methods
public void mousePressed(MouseEvent e) { }
public void mouseClicked(MouseEvent e) { }
public void mouseReleased(MouseEvent e) { }
(L3ava Programming 370) (L3ava Programming a1)
s Multiple Listeners
e Multiple listeners cause unrelated parts of a program to react to the
same event.
[e wtirad [T mowae nas wa e buaeg
e The handlers of all registered listeners are called when the event
aloi=l W almiz occurs
[Fisne savgng = vaEe 117 [wvgprg = v AT
(L3ava Programming a2) (L3ava Programming 373)

Event Adapters

o The listener classes that you define can extend adapter classes and

override only the methods that you need.
e Example:

import java.awt.* ;
import java.awt.event.* ;
public class MouseClickHandler extends MouseAdapter {
public void mouseClicked(MouseEvent e) {
/I do stuff with the mouse click...

Event Handling Using Anonymous Classes

» You can include an entire class definition within the scope
of an expression.

» This approach defines what is called an anonymous inner
class and creates the instance all at once.

» For example:

Gnext slide

§
}
[Java Programming 374] Java Programming 375]
import java.awt.* ;
import java.awt.event.* ;
public class TestAnonymous { f.addMouseListener(new MouseClickHandler(tf)) ;
private Frame f f.setSize(300,200) ;
private TextField tf; f.setVisible(true) ;
public TestAnonymous() { }
f=new Frame(' Anonvmous class example") ;
) tf= new TextField(30) ; public static void main(String[] args)
public void launchFrame() { {
Label label = new Label("Click and drag the mouse") ; TestAnonymous obj = new TestAnonymous() ;
f.add(label, BorderLayout.NORTH) ; i1z hFra .
f.add(tf, BorderLayout.SOUTH) ; . obj.launchFrame();
f.addMouseMotionListener(new MouseMotionAdapter() s
!
1
public void mouseDragged(MouseEvent ¢) {
String s = "Mouse dragging: X="+ e.getX() +
"Y="+e.getY();
tf.setText(s) ;
}
DE
(L3ava Programming 376) (L3ava Programming 377)
import java.awt.* ; . .
portjava.aw Event Handling Using Inner Classes
import java.awt.event.* ;
gt mdler Gxiaml coA\dktiar 4
public class MouseClickHandler extends MouseAdapter { » You can 1mplement event handlers as inner class.
private TextField tf ;
public static int count= 0 ; » This allows access to the private data of the outer class.
public MouseClickHandler(TextField tf) {
o » For example:
this.tf =tf;
} .
public void mouseClicked(MouseEvent e) { Q>1’le)(t Sllde
count++;
String s = "Mouse has been clicked " + count + " times so far." ;
tf.setText(s) ;
\
§
i
(L3ava Programming 378) (L3ava Programming 379)

import java.awt.* ;
import java.awt.event.* ;

public class TestInner {

private Frame f class MyMouseMotionListener extends MouseMotionAdapter {
private TextField tf public void mouseDragged(MouseEvent e) {
public Testinner() { String s = "Mouse dragging: X="+ e.getX() +
f=new Frame("Inner classes example") ; "y="+ e.getY() R
tf = new TextField(30) ; .
, tf.setText(s) ;
public void launchFrame() { }
Label label = new Label("Click and drag the mouse") ; public static void main(String[] args) {

f.add(label, BorderLayout. NORTH) ; .
f.add(tf, BorderLayout.SOUTH) ; TestInner ObJ =new TeStInner() 5
f.addMouseMotionListener(new MyMouseMotionListener()) ; Obj .launchFrame();
f.addMouseListener(new MouseClickHandler(tf)) ; Y
f.setSize(300,200) ; s
f.setVisible(true) ; }

!
§

[Java Programming 380] [Java Programming 381]

