
271Java Programming

EXCEPTIONSEXCEPTIONS8

272

Ex
ce

pt
io

ns
8

Java Programming

ObjectivesObjectives

►Define exceptions

►Use try, catch and finally statements

►Describe exception categories

►Identify common exceptions

►Develop programs to handle your own exceptions

273

Ex
ce

pt
io

ns
8

Java Programming

ExceptionsExceptions

►The exception class defines mild error conditions that your program
encounters.

►Exceptions can occur when

The file you try to open does not exist

The network connection is disrupted

Operands being manipulated are out of prescribed ranges

The class file you are interested in loading is missing

►An error class defines serious error conditions

274

Ex
ce

pt
io

ns
8

Java Programming

1 public class HelloWorld {
2 public static void main (String args[]) {
3 int i = 0;
4
5 String greetings [] = {
6 "Hello world!",
7 "No, I mean it!",
8 "HELLO WORLD!!"
9 };
10
11 while (i < 4) {
12 System.out.println (greetings[i]);
13 i++;
14 }
15 }
16 }

275

Ex
ce

pt
io

ns
8

Java Programming

Hello world!
No, I mean it!
HELLO WORLD!!
java.lang.ArrayIndexOutOfBoundsException

at HelloWorld.main(HelloWorld.java:12)
Exception in thread "main" Process Exit...

276

Ex
ce

pt
io

ns
8

Java Programming

The try and catch StatementsThe try and catch Statements

try {

// code that might throw a particular exception

}

catch (MyExceptionType e) {

// code to execute if a MyExceptionType exception is thrown

}

catch (Exception e) {

// code to execute if a general Exception exception is thrown

}

277

Ex
ce

pt
io

ns
8

Java Programming

Call Stack MechanismCall Stack Mechanism
►If an exception is not handled in the current try/catch
block, it's thrown to the caller of that method.

►If the exception gets back to the main method and is not
handled there, the program is terminated abnormally.

278

Ex
ce

pt
io

ns
8

Java Programming

Call Stack MechanismCall Stack Mechanism

►Consider a case where a method calls another method
named openConnection(), and this, in turn calls another
method named sendRequest(). If an exception occurs in
sendRequest(), it is thrown back to openConnection(),
where a check is made to see if there is a catch for that
type of exception. if no catch exists in openConnection(),
the next method in the call stack, main(), is checked. if the
exception is not handled by the last method on the call
stack, then a runtime error occurs and the program stops
executing.

279

Ex
ce

pt
io

ns
8

Java Programming

What if we have some clean up to do before we exit our method from
one of the catch clauses? To avoid duplicating the code in each catch
branch and to make the cleanup more explicit, Java supplies the
finally clause. A finally clause can be added after a try and any
associated catch clauses. Any statements in the body of the finally
clause are guaranteed to be executed, no matter why control leaves
the try body:

next slide

The finally StatementThe finally Statement

280

Ex
ce

pt
io

ns
8

Java Programming

try {
// Do something here

}
catch (FileNotFoundException e){

...
}
catch (IOException e) {

...
}
catch (Exception e) {

...
}
finally {

// Cleanup here
}

281

Ex
ce

pt
io

ns
8

Java Programming

If the statements in the try execute cleanly, or even if we perform a
return, break, or continue, the statements in the finally clause are
executed. To perform cleanup operations, we can even use try and
finally without any catch clauses:

try { try {

// Do something here // Do something here

return; return;

} }

finally { finally {

System.out.println(System.out.println(““DoDo not ignore menot ignore me!");!");

} }

282

Ex
ce

pt
io

ns
8

Java Programming

public class HelloWorldRevisited {
public static void main (String args[]) {

int i = 0;
String greetings [] = {

"Hello world!",
"No, I mean it!",
"HELLO WORLD!!“ };

while (i < 4) {
try {

System.out.println (i+" "+greetings[i]);
} catch (ArrayIndexOutOfBoundsException e){

System.out.println("Re-setting Index Value");
break;

} finally {
System.out.println("This is always printed");

}
i++;

} // end while()
} // end main()

}

283

Ex
ce

pt
io

ns
8

Java Programming

Exception CategoriesException Categories
►Error indicates a severe problem from which recovery is difficult,
if not impossible. An example is running out of memory. A program is
not expected to handle such conditions.
►RuntimeException indicates a design or implementation
problem. That is, it indicates conditions that should never happen if the
program is operating properly.An ArrayOutOfBoundsException
exception, for example, should never be thrown if the array indices do
not extend past the array bounds. This would also apply, for example,
to referencing a null object variable.
►Other exceptions indicate a difficulty at runtime that is usually
caused by environmental effects and can be handled. Examples include
a file not found or invalid URL exceptions. Because these usually
occur as a result of user error, you are encouraged to handle them.

284

Ex
ce

pt
io

ns
8

Java Programming

285

Ex
ce

pt
io

ns
8

Java Programming

286

Ex
ce

pt
io

ns
8

Java Programming

287

Ex
ce

pt
io

ns
8

Java Programming

Common ExceptionsCommon Exceptions
►ArithmeticException

int i = 12 / 0 ;
►NullPointerException

Date d = null ;
System.out.println(d.toString()) ;

►NegativeArraySizeException

►ArrayIndexOutOfBoundsException

►SecurityException

Access a local file
Open a socket to the host that is not the same host that served

the applet
Execute another program in runtime environment

288

Ex
ce

pt
io

ns
8

Java Programming

The Handler or Declare RuleThe Handler or Declare Rule

►Handle exceptions by using the try-catch-finally
block

►Declare that the code causes an exception by using the
throws clause

►A method may declare that it throws more than one
exception

►You do not need to handle or declare runtime exceptions
or errors.

289

Ex
ce

pt
io

ns
8

Java Programming

Method Overriding and ExceptionsMethod Overriding and Exceptions

The overriding method:

►Can throw exceptions that are subclasses of the exceptions
being thrown by the overridden method

For example, if the superclass method throws an
IOException, then the overriding method can throw an
IOException, a FileNotFoundException (a
subclass of IOException), but not an Exception (the
superclass of IOException)

290

Ex
ce

pt
io

ns
8

Java Programming

public class TestA {
public void methodA() throws RuntimeException {

// do some number crunching
}

}
public class TestB1 extends TestA {

public void methodA() throws ArithmeticException {
// do some number crunching

}
}
public class TestB2 extends TestA {

public void methodA() throws Exception {
// do some number crunching

}
}

291

Ex
ce

pt
io

ns
8

Java Programming

public class TestMultiA {
public void methodA()

throws IOException, RuntimeException {
// do some IO stuff

}
}
public class TestMultiB1 extends TestMultiA {

public void methodA()
throws FileNotFoundException, UTFDataFormatException,

ArithmeticException {
// do some number crunching

}
}

292

Ex
ce

pt
io

ns
8

Java Programming

import java.io.* ;
import java.sql.* ;

public class TestMultiB2 extends TestMultiA {
public void methodA()
throws FileNotFoundException, UTFDataFormatException,

ArithmeticException, SQLException {
// do some IO, number crunching, and SQL stuff

}
}

293

Ex
ce

pt
io

ns
8

Java Programming

public class ServerTimedOutException extends Exception {
private int port;
public ServerTimedOutException (String reason,int port){

super(reason);
this.port = port;

}
public int getPort() {

return port;
}

}

To throw an exception of the above type, write

throwthrow newnew ServerTimedOutExceptionServerTimedOutException((““CouldCould not not connectconnect””,60) ;,60) ;

294

Ex
ce

pt
io

ns
8

Java Programming

public void connectMe(String serverName)
throws ServerTimedOutException {

int success;
int portToConnect = 80 ;
success = open(serverName,portToConnect) ;
if(success == -1)

throw new ServerTimedOutException(“Could not connect”,
portToConnect);

}
public void findServer() {

try {
connectMe(defaultServer) ;

} catch (ServerTimedOutException e) {
System.out.println(“Server timed out, trying alternative”) ;
try{

connectMe(alternativeServer) ;
} catch (ServerTimedOutException e1) {

System.out.println(“Error : ” + e1.getMessage() +
“connecting to port” + e1.getPort()) ;

}
}

}

295

Ex
ce

pt
io

ns
8

Java Programming

1 // Fig. 14.10: UsingExceptions.java
2 // Demonstrating the getMessage and printStackTrace
3 // methods inherited into all exception classes.
4 public class UsingExceptions {
5 public static void main(String args[])
6 {
7 try {
88 method1();
9 }
10 catch (Exception e) {
1111 System.err.println(e.getMessage() + "\n");
12
1313 e.printStackTrace();
14 }
15 }
16 public static void method1() throws Exception
17 {
18 method2();
19 }
20
21 public static void method2() throws Exception
22 {
23 method3();
24 }
25 public static void method3() throws Exception
26 {
27 throw new Exception("Exception thrown in method3");
28 }
29 }

Call method1, which calls method2,
which calls method3, which throws an
exception.

getMessage prints the String the
Exception was initialized with.

printStackTrace prints the methods in this order:

method3
method2
method1
main

(order they were called when exception occurred)

296

Ex
ce

pt
io

ns
8

Java Programming

Exception thrown in method3
java.lang.Exception: Exception thrown in method3

at UsingExceptions.method3(UsingExceptions.java:28)
at UsingExceptions.method2(UsingExceptions.java:23)
at UsingExceptions.method1(UsingExceptions.java:18)
at UsingExceptions.main(UsingExceptions.java:8)

