Objectives

» Define modeling concepts: abstraction, encapsulation,
and packages

o\l

P Discuss why you can reuse Java technology application
code

2 Object Oriented Programiming

» Define class, member, attribute, method, constructor, and
package

P Use the access modifiers private, and public as
appropriate for the guidelines of the encapsulation

P Invoke a method on a particular object

Object-Oriented Programming

33 Java Programming 34]
Objectives | ‘ Software Engineering
«~ » In a Java program, identify the following: - Toolkits / Frameworks / Object APls (1990s — up)
?—D - The package statement E{) Java 25DK AWT / Swing Jim lava Beans T
E = The import statements g Object-Oriented Languages (19805 — up)
;:‘D = Classes, methods, and attributes gﬁ — e e
3 2
E = Constructors % Libraries / Functional APls (1960s — ear |' |YBls)
Bl > Use the Java technology application programming g NASTRAN rer/w ISAM X-Windows — OpenLook
2 interface (API) online documentation 2 —
Q Q High-Level Languages (1950s —up) | Operating Systems (1960s — up)
g ‘g Fortran LIsp i COBOL O5/360 UNIX MacOS MS-Window
© © [Machine Code (late 1940s - up) I
Java Programming 35) Java Programming 36)
The Analysis and Design Phase | ‘ Abstraction

P Functions — Write an algorithm once to be used in many
situations

P Analysis describes what the system needs to do:

2
2

— Modeling the real-world: actors and activities, objects, and
behaviors

5
5

— Objects — Group a related set of attributes and behaviors into a
P Design describes how the system does it: class
— Frameworks and APIs — Large groups of objects that support a

Modeling the relationships and interactions between objects and Al
complex activity:

actors in the system

=5
=5

— Frameworks can be used “as is” or be modified to extend the
basic behavior

— Finding useful abstractions to help simplify the problem or
solution

o =t
= =
g g
g g
&i &I
=} =]
S S
Ay Ay
= =
o) L
3 3
£ =
.8 2
S S
' bt
Q
(5]

Object
Obj

(L3ava Programming 37) (L3ava Programming 38)

2

=3

0

5
=)
g
g
b
8
<

-9

)
o
<

2

S

g
=
Q

Obje

Classes as Blueprints for Objects |

P In manufacturing, a blueprint describes a device from
which many physical devices are constructed
P In software, a class is a description of an object:
— A class describes the data that each object includes
A class describes the behaviors that each object exhibits
P In Java technology, classes support three key features of
object-oriented programming (OOP):
— Encapsulation
— Inheritance

Polymorphism

Java Programming

(o]

Object-Oriented Programming

Declaring Java Technology Classes

P Basic syntax of a Java class:
< modifiers> class < class_name> {
[< attribute_declarations>]
[< constructor_declarations>]
[< method_declarations>]
¥
» Example:
public class Vehicle {
private double maxLoad;
public void setMaxLoad(double value{
maxLoad = value;
T
3

Java Programming

2

Object-Oriented Programming

Declaring Attributes |

P Basic syntax of an attribute:
< modifiers> <type> <name>;
» Examples:
public class Foo {
private int x;
private float y = 10000.0F;
private String name = "'Bates Motel";

}

Java Programming

2

5

&

ct-Oriented Programming

Obje

Declaring Methods

» Basic syntax of a method:
<modifiers> <return_type> <name>
([< argument_list>]) {
[< statements>]
}
» Examples:
public class Dog {
private int weight;
public int getWeight() {
return weight;
}

public void setWeight(int newWeight) {
weight = newWeight;
}
b3

Java Programming

2

5

=5

o
g
=)
<
5
)
2
a
=]
153
=]
2
=
S

Object

Accessing Object Members |

P The “dot” notation:
<object>.<member>

P This is used to access object members including attributes
and methods

» Examples:
d.setWeight(42);
d.weight = 42; // only permissible
//if weight is public

(

Java Programming

2

5

=5

&
=]
g
=]
=
&l
&l
9)
-
~
=
2
2
=
3
S
&5
133

Obje

Information Hiding

» The Problem:

MyDate d = new MyDate();

MyDay
(from Logical View) d.day = 32;:
d
magnth // invalid day
Byear d.month = 2; d.day = 30;

// plausible but wrong
d.day = d.day + 1;

// no check for wrap around

Client code has direct access to internal data:

(L3ava Programming

2

=3

0

5
=)
g
g
b
8
<

-9

)
o
<

2

S

g
=
Q

Obje

Information Hiding

» The Solution:

MyDay
(from Logical View)

internal data:

MyDate d = new MyDate();
d.setDay(32);

// invalid day, returns false
d.setMonth(2);

d.setDay(30);

[getDay() : Integer
[®getMonth() : Integer
[¥getYear() : Integer

verify days in month ﬁ

// plausible but wrong
d.setDay(d.getDay() + 1);

Client code must use setters/getters to access

Java Programming

(o]

Object-Oriented Programming

Encapsulation

P Hides the implementation details of a class
Forces the user to use an interface to access data
— Makes the code more maintainable

day

EsetDay(: Integer) : Void
B®setMonth(: Integer) : Void
®setYear(: Integer) : Void
®getDay() : Integer
®getMonth() : Integer
®getYear() : Integer
BEvalidDay(: Integer)

MyDay
(from Logical View)

Java Programming

2

Object-Oriented Programming

Declaring Constructors

1 public class Dog {

2 private int weight;

3

4 public Dog() {

5 weight = 42;

6 3

7

8 public int getWeight() {
9 return weight;

10 3}

11 public void setWeight(int newWeight) {
12 weight = newWeight;

13 3

14%

Java Programming

2

5

&

ct-Oriented Programming

Obje

The Default Constructor

P There is always at least one constructor in every class.

»If the writer does not supply any constructors, the default

constructor is present automatically:
The default constructor takes no arguments
— The default constructor has no body
P Enables you to create object instances with new
Xxx()without having to write a constructor.

Java Programming

2

5

=5

o
g
=)
<
5
)
-
a
=]
153
=]
2
=
S

Object

Source File Layout

» Basic syntax of a Java source file:
[< package_declaration>]
[< import_declarations>]
< class_declaration>+
» Example, the VehicleCapacityReport.java file:
package shipping.reports;
import shipping.domain.*;
import java.util.List;
import java.io.*;
public class VehicleCapacityReport {
private List vehicles;
public void generateReport(Writer output)
{---}
}

(

Java Programming

49)

2

5

=5

&
=]
g
=]
=
&l
&l
9)
-
~
=
2
2
=
3
S
&5
133

Obje

Software Packages

P Packages help manage large software systems.

P Packages can contain classes and sub-packages.

shipping

] S

Gul domain

:

| Truck | |R:u—:5.u-go'

l reports

(L3ava Programming

50)

The package Statement |

P Basic syntax of the package statement:
package < top_pkg_name>[.< sub_pkg_name>]*;

2

=3

» Example:
package shipping.reports;

0

P Specify the package declaration at the beginning of the
source file.

P Only one package declaration per source file.

P If no package is declared, then the class “belongs” to the
default package.

5
=)
g
g
o
<

-9

)
o
<

2

S

g
=
Q

Obje

P Package names must be hierarchical and separated by
dots.

Java Programming 51]

‘ The Import Statement

P Basic syntax of the import statement:

import

<pkg_name>[.<sub_pkg_name>] .<class_name>;
» OR

import <pkg_name>[.< sub_pkg_name>].*;

o\l

» Examples:
import shipping.domain.*;
import java.util.List;
import java.io.*;

P Precedes all class declarations

Object-Oriented Programming

P Tells the compiler where to find classes to use

Java Programming 52]

Directory Layout and Packages |

P Packages are stored in the directory tree containing the
package name.

2

» Example, the “shipping” application packages:

hipping/

Object-Oriented Programming

Java Programming 53)

‘ Development

2

5

&

ct-Oriented Programming

» Compiling using -d ' X
cd JavaProjects/BankPrj/src
javac -d ../class banking/domain/*._java

Obje

Java Programming 54)

Using the Java API Documentation |

P A set of Hypertext Markup Language (HTML) files
provides information about the API.

2

5

P One package contains hyperlinks to information on all of
the classes.

=5

P A class document includes the class hierarchy, a
description of the class, a list of member variables, a list
of constructors, and so on.

o
8
g
<
&t
2)
2
-9
=]
Q
=
2
9

Object

Java Programming 55
()

‘ Example API Documentation Page

2

5

Java= 2 Platbare, Stasshard Editio, v 149
[TEs—

=5

&
=]
g
=]
=
&l
&l
9)
-
~
=
2
2
=
3
S
&5
133

Obje

Java Programming 56
()

o

Object-Oriented Programming

Declaring Java Technology Classes

public class Circle {
private double x, y, r; // The center and the radius of the circle
public Circle (double x, double y, double r) {
this.x =x; thisy =y; this.r=r;
j
public void setCenter(double a,double b){ x=a ; y=b ; }
public void setRadius(double R){ r=R; }

public double circumference() { return 2 * 3.14159 *r; }

public double area() { return 3.14159 * r¥r; }

1
s

(o]

Object-Oriented Programming

Declaring Attributes

public class Circle {
private double x, y, r; // The center and the radius of the circle
public Circle (double x, double y, double r) {
thisx =x; thisy =y; this.r=r;

1
S

public void setCenter(double a,double b){ x=a ; y=b ; }
public void setRadius(double R){ r=R; }
public double circumference() { return 2 * 3.14159 *r; }

public double area() { return 3.14159 * r*r; }

1
S

Java Programming 57] Java Programming 58]
Declaring Methods Accessing Object Members
! public class Circle {] > The “dot” notation : <object>.<member>
o
private double x, y, r; // The center and the radius of the circle o . . .
= o B P This is used to access object members including
-5 public Circle (double x, double y, double r) { £ attributes and methods
;:; this.x = x; this.y =vy; this.r=r; §
& l 2 > Examples:
& d &
E public void setCenter(double a,double b){ x=a ; y=b ; } :03 c.setCenter(8.7,23.5) ;
5 public void setRadius(double R){ r=R; } 5 c.setRadius(3.14) ;
] public double circumference() { return 2 * 3.14159 *r; } 3 double a = c.area() ;
é public double area() { return 3.14159 * r*r; } 5
}
Java Programming 59) Java Programming 60)

2

5

=5

o
g
g
<
&t
°)
2
[-»
=}
]
8
=1
RO
=
S

Object

Information Hiding

Circle c ;

c = new Circle(Q);
c.x = 2.0;
c.y = 2.0;
c.r = 1.0;

(

Java Programming

2

5

=5

&
=]
g
=]
=
&l
&l
9)
-
~
=
2
2
=
3
S
&5
133

Obje

Declaring Constructors

public class Circle {
private double x, y, r; // The center and the radius of the circle
public Circle (double x, double y, double r) {
thisx =x; thisy =y; this.r=r;
§
public void setCenter(double a,double b){ x=a ; y=b ; }
public void setRadius(double R){ r=R; }
public double circumference() { return 2 * 3.14159 * r; }

public double area() { return 3.14159 * r*r; }

Java Programming 62
()

The Default Constructor

2

=3

constructor is present automatically:

= The default constructor has no body.

P Enables you to create object instances with

ct-Oriented Programming

new ClassName() without having
constructor.

Obje

P There is always at least one constructor in every class,

P If the writer does not supply any constructors, the default

= The default constructor takes no arguments,

to write a

[Java Programming

6)

2# Object-Oriented Programming

» Exercise-1: “Java 2 Platform API Specification”

» Exercise-2: “Encapsulation”

P Exercise-3: “Creating a Simple Bank Package”

HanmDs-0OMN LAaR

