IHashing

Copyright © 2004, Binnur Kurt

Objectives

I ntroduce the concept of hashing

Examine the problem of choosing a good hashing
algorithm

Explore three approaches for reducing collisions
Develop and use mathematical tools for analyzing

performance differences resulting from the use of
different hashing techniques

Examine problems associated with file deterioration and
discuss some solutions

Examine effects of patterns of records access on
performance

vy VY

a3
g
a
T

v

v

File Organization 341
[)

Content

» I ntroduction to Hashing
» Hash functions

» Distribution of records among addresses, synonyms and
collisions

» Collision resolution by progressive overflow or linear
probing

a3
g
a
T

{ File Organization

342 |

Motivation

» Hashing is a useful searching technique, which can be
used for implementing indexes. The main motivation for
Hashing is improving searching time.

» Below we show how the search time for Hashing
compares to the one for other methods:

— Simple Indexes (using binary search): O(log,N)
— B Trees and B+ trees: O(log,N)
— Hashing: O(1)

a3
g
a
T

{ File Organization 343]

What is Hashing?

function.

a3
g
a
T

h:U— {0,1,...,999}

» The ideaisto discover the location of a key by simply
examining the key. For that we need to design a hash

» A Hash Function is afunction h(k) that transforms a key
into an address

» An address space is chosen before hand. For example, we
may decide the file will have 1,000 available addresses.

» If U isthe set of all possible keys, the hash function is
fromU to{0,1,...,999}, that is

[File Organization

Example
ASCII code
: HOME
NAME for first two | PRODUCT ADDRESS
letters
9
o BALL 66 65 66x65=4290 290
[
8
LOWELL 76 79 76x79=6004 004
TREE 84 82 84x82-6888 888

[File Organization

345)

What is Hashing?

LOWELL RRN FILE
0o
(1]
™ ‘ :
— : | 1
o h(n) u.;-: LOWI 1
% BAL L 280 BALI
T H
888 | TREE
TREE i

{ File Organization

346 |

What is Hashing?

» There is no obvious connection between the key and the
location (randomizing)

» Two different keys may be sent to the same address
generating a Collision

» Can you give an example of collision for the hash function
in the previous example?

a3
g
a
T

{ File Organization

347 |

Answer

» LOWELL, LOCK, OLIVER, and any word with first two
letters L and O will be mapped to the same address

h(L OWELL)=h(L OCK)=h(OL IVER)=004
» These keys are called synonyms. The address “ 004" is
said to be the home address of any of these keys.
» Avoiding collisions is extremely difficult
» Do you know the birthday paradox?
» So we need techniques for dealing with it.

a3
g
a
T

{ File Organization 348]

Reducing Collisions

1. Spread out the records by choosing a good hash function
2. Use extramemory: increase the size of the address space
— Example: reserve 5,000 available addresses rather

i than 1,000

I 3. Put more than one record at a single address: use of
a buckets

I

{ File Organization 349]

A Simple Hash Function

» To compute this hash function, apply 3 steps:
P> Step 1: transform the key into a number.

LOWELL

a3
g
a
T

LI O|W E |L|L

ASCII code
76|179|87|/69|76/76|132/32(32|32(32(32

{ File Organization

350 |

A Simple Hash Function (Con’t)

» Step 2: fold and add (chop off pieces of the

number and add them together) and take the mod
by a prime number

76|79|87(69|76|76(32|32(32(32|32|32

a3
g
a
T

7679 | 8769 | 7676 | 3232 | 3232 | 3232

7679+8769+7676+3232+3232+3232

33,820 mod 19937 = 13,883

{ File Organization

351)

A Simple Hash Function (Con’t)

» Step 3: divide by the size of the address space
(preferably a prime number)

13,883 mod 101 = 46

a3
g
a
T

{ File Organization

352 |

Distribution of Records among Addresses
» There are 3 possibilities

Uniform
(no synonyms)

Random

All synonyms
(a few synonyms)

Key Address Key Address Key Address

0

A A 0 A 0
B 1 B 1 B |
C 2 C > 2 (83 2
D 3 D 3 D 3
4 4 4
] 5 5
6 6 0

» Uniform distributions are extremely rare

» Random distributions are acceptable and more easily
obtainable.

{ File Organization

a3
g
a
T

353)

Better than Random Distribution

» Examine keys for patterns
— Example: Numerical keys that are spread out naturally
such as keys are years between 1970 and 2004
f(year)=(year-1970) mod (2004-1970+1)
f(1970)=0, f(1971)=1,..., f(2004)=34
» Fold parts of the key.
— Folding means extracting digits from a key and adding
the parts together as in the previous example.

— In some cases, this process may preserve the natural
separation of keys, if there is a natural separation

a3
g
a
T

{ File Organization 354]

Better than Random Distribution (Con't)

» Use prime number when dividing the key.

— Dividing by a number is good when there are sequences
of consecutive numbers.

— If there are many different sequences of consecutive
numbers, dividing by a number that has many small

factors may result in lots of collisions. A prime number
Is a better choice.

a3
g
a
T

{ File Organization 355]

Randomization

» When there is no natural separation between keys, try
randomization.

» You can using the following Hash functions:
1. Squarethe key and take the middle
Example: key=453 4532 = 205209
Extract the middle = 52.

This address is between 00 and 99.

a3
g
a
T

{ File Organization

356 |

Randomization (Con't)

2. Radix transfor mation:

Transform the number into another base and then divide
by the maximum address

Example: Addresses from 0 to 99
key = 453 in base 11 = 382
hash address = 382 mod 99 = 85.

a3
g
a
T

{ File Organization 357]

Collision Resolution: Progressive Overflow

» Progressive overflow/linear probing works as follows:
1. Insertion of key k:

— Go to the home address of k: h(k)

— If free, place the key there

— If occupied, try the next position until an empty
position is found

(the ‘next’ position for the last position is position O,
I.e. wrap around)

a3
g
a
T

(FileOrganization 358 |
Example

key k |Home address - h(k) Complete Table:
COLE 20 4
wy | BATES 21 !
M [ADAMS 21 2
IS | DEAN 22 '
4 [EVANS 20 19
e 20
21
22

Table size = 23

{ File Organization 359]

Progressive Overflow (Con't)

2. Searchingfor key k:
— Go to the home address of k: h(k)
— If kisin home address, we are done.

— Otherwise try the next position until: key isfound or
empty space is found or home address is reached (in
the last 2 cases, the key is not found)

a3
g
a
T

{ File Organization 360]

Example

0 | DEAN
1 | EVANS

» A search for ‘EVANS probes places:
20,21,22,0,1, finding the record at position
1.

) p Search for ‘MOURA', if ((MOURA)=22, 19

o probes places 22,0,1,2 where it concludes 20 | COLE

ﬁ ‘MOURA’ in not in the table. 21 | BATES
= » Searchfor ‘SMITH’, if h(SMITH)=19, 22 | ADAMS

probes 19, and concludes ‘SMITH’ in not
in the table.

{ File Organization 361]

Advantages X Disadvantages

» Advantage: Simplicity

» Disadvantage: If there are lots of collisions of records can
form, as in the previous example

a3
g
a
T

{ File Organization

362 |

Search Length

» Number of accesses required to retrieve arecord.

sum of sear ch lengths
aver age sear ch length =

number of records

a3
g
a
T

{ File Organization

363 |

a3
g
a
T

Example

0 | DEAN key k |Home address - h(k)
1 | EVANS COLE 20
BATES 21
: = ADAMS 21
19 DEAN 22
20 | COLE EVANS 20
;; iﬁilidss key Search Length
COLE 1
BATES 1
» Average search length ADAMS 2
(1+1+2+2+5)/5=2.2 DEAN 2
EVANS 5

{ File Organization 364]

a3
g
a
T

Predicting Record Distribution

» \We assume a random distribution for the hash function.
— N = number of available addresses
—r = number of records to be stored

» Let p(x) be the probability that a given address will have x
records assigned to it

» It is easy to see that

{ File Organization 365]

Predicting Record Distribution (Con't)

» For N and r large enough this can be approximated by

- (r/N)X e—(r/N)
- p(x) N X!
%
I
(FileOrganization 366 |
Example

- 0
2 p(1)= (1);6_1 =0.368
g 2. ~1
p(2) = (1)2!6 0184
p(3)= (1);6_1 - 0,061

{ File Organization 367]

Predicting Record Distribution (Con't)

recordsis
N. p(x)
» N=1000, r=1000

a3
g
a
T

1000x p(0) =368

1000x p(1) =368
1000x p(2) =184

1000x p(3) =61

» For N addresses, the expected number of addresses with x

{ File Organization

368 |

Reducing Collision by using more Addresses

number of available addresses.
» Definition: packing density =r/N
» Example:

500 records to be spread over 1000 addresses result in
packing density =500/1000 = 0.5 = 50%

a3
g
a
T

» Now, we see how to reduce collisions by increasing the

{ File Organization

369 |

Questions

1. How many addresses go unused? More precisely: What

IS the expected number of addresses with no key mapped
toit?

> Nxp(0)=1000 x0.607 = 607

a3
g
a
T

{ File Organization

370 |

Questions (Con't)

2. How many addresses have no synonyms? More
precisely: What is the expected number of address with
only one key mapped to it?

» Nxp(1)=1000 x0.303 = 303

a3
g
a
T

{ File Organization 371]

Questions (Con't)

3. How many addresses contain 2 or more synonyms? More
precisely: What is the expected number of addresses with
two or more keys mapped to it?

> Nx(p(2)+p(3)+...)= Nx(1-p(0)-p(1))= 1000 x0.09 = 90

a3
g
a
T

{ File Organization 372]

Questions (Con't)

4. Assuming that only one record can be assigned to an
address. How many overflow records are expected?

IXNXp(2) + 2xNxp(3) + 3xXNxp(4)+... =
NXx(2xp(2)+3xp(4)+...) = 107

» Thejustification for the above formulais that there is
going to be (i-1) overflow records for all the table

positions that have i records mapped to it, which are
expected to be as many as N-p(i)

a3
g
a
T

{ File Organization 373]

A Simpler Formula

» Expected # of overflow records =
#records — Expected # of non-overflow records
=r—(N-p(1)*N - p(2)+N - p(3)+ - -)
=r—(1-p(0)
=N p(0) — (N-)

a3
g
a
T

{ File Organization 374]

Questions (Con't)

5. What is the expected percentage of overflow records?
107/500 = 0.214 = 21.4%

» Note that using either formula, the percentage of

™ overflow records depend only on the packing density
o (PD =r/N) and not on the individual values of N or r.
% » The percentage of overflow recordsis
- -N(@-p(0) . 1
=1-—(1-p(0
r -5 (1= p(0))

» Poisson function that approximates p(0) is a function of
r/N which is equal to PD (for hashing without buckets).

{ File Organization 375]

Packing Density-Overflow Records

Packing Overflow
Density % Records %
10% 4.8%
- 20% 9.4%
= 30% 13.6%
2 40% 17.6%
E& 50% 21.4%
60% 24.8%
70% 28.1%
80% 31.2%
90% 34.1%
100% 36.8%
(FileOrganization 376 |

Hashing with Buckets

» Thisisavariation of hashed files in which more than one
record/key is stored per hash address.

» Bucket = block of records corresponding to one addressin
the hash table

» The hash function gives the Bucket Address
» Example:

a3
g
a
T

{ File Organization 377]

Example

» For a bucket holding 3 records, insert the following keys

key Home Address L

™ LOYD 34

> KING 33

= LAND 33 ' '

g A - 33] KING
NUTT 33 LD
PLUM 34 MRS
REES - 34| LOYD

{ File Organization 378]

Effects of Buckets on Performance

» We should slightly change some formulas

. . r
acking density = ——
P g y b N

We will compare the following two alternatives

1. Storing 750 data records into a hashed file with 1000
addresses, each holding 1 record.

2. Storing 750 data records into a hashed file with 500
bucket addresses, each bucket holding 2 records

» In both cases the packing density is 0.75 or 75%.
» Inthefirst case r/N=0.75.
» In the second case r/N=1.50

{ File Organization 379]

a3
g
a
T

Effects of Buckets on Performance

» Estimating the probabilities as defined before:

p(0) | p(1) | p(2) | p(3) | p(4)
1) r/N=0.75 (b=1) | 0.472 | 0.354 [0.133 | 0.033 | 0.006
2) r/N=1.50 (b=2) 0.223|0.335|0.251 | 0.126 | 0.047

a3
g
a
T

{ File Organization

380 |

Effects of Buckets on Performance

Calculating the number of overflow records in each case
1. b=1(r/N=0.75):

Number of overflow records=

=N-[1-p(2)+2-p(3)+3-p(4)+-]

=r—-N-(1-p(0))

= 750-1000- (1-0.472) = 750528 = 222
This is about 29.6% overflow

a3
g
a
T

{ File Organization

381 |

Effects of Buckets on Performance

2. b=2(r/N=1.5):
Number of overflow records=
=N-[1-p(3)+2- p(4)+3 p(5)+-]
=r=N-p(1)-2-N:[p(2)+ p(3)+--]
=r—N-[p(1)+2(1 p(0 p(l)]
=r-N-[2-2-p(0)- p(l)]
= 750-500- (2—2-(0.223)-0.335) =140.5=140

a3
g
a
T

Thisis about 18.7% overflow

{ File Organization 382]

Percentage of Collisionsfor Different Bucket Sizes

‘ Bucket Size
Packing Density % | 1 2 5 10 100
75% 29.6% 18.7% 8.6% 4.0% 0.0%

a3
g
a
T

{ File Organization 383]

| mplementation | ssues

1. Bucket Structure

» A Bucket should contain a counter that keeps track of the
number of records stored in it.

» Empty slots in a bucket may be marked ‘//.../
» Example: Bucket of size 3 holding 2 records

| 2| JONES 1///111]]]--./]/ | ARNSWORTH |

a3
g
a
T

{ File Organization 384]

| mplementation |ssues

N

Initializing a file for hashing
Decide on the Logical Size (number of available
addresses) and on the number of buckets per address.

» Create afile of empty buckets before storing records. An
empty bucket will look like

OV L1

\4

a3
g
a
T

{ File Organization

385 |

| mplementation | ssues

3. Loading ahashfile
» When inserting a key, remember to:
» Be careful with infinite loops when hash file is full

a3
g
a
T

{ File Organization 386]

Making Deletions
» Deletions in a hashed file have to be made with care
Record ADAMS | JONES | MORRIS | SMITH
Home Address 5 6 6 5
9
9 : g
a 417111111111
T 5 ADAMS
Hashed File using Progressive Overflow 0| JONES
71 MORRIS
8 | SMITH

{ File Organization 387]

Making Deletions: Delete ‘MORRIS

»If ‘MORRIS issimply erased, a search for ‘SMITH’
would be unsuccessful

T777777]] «Empty Siot

- T

B 5| ADAMS

= 6 | JONES

;7 /)]« Empty Slot
8

SMITH Problem: you cannot find ‘SMITH’

» Search for * SMITH’ would go to home address (position
5) and when reached 7 it would conclude * SMITH’ is not
in the file!

{ File Organization 388]

Solution

» Replace deleted records with a marker indicating that a
record once lived there

g 41 /111111111
- 5| ADAMS
= 6 | JONES
8 7|44 | + Deleted St
8 [SMITH you can find * SMITH’

» A search must continue when it finds a tombstone, but can
stop whenever an empty slot is found

{ File Organization 389]

Be careful in Deleting and Adding a Record

» Only insert a tombstone when the next record is occupied
or is atombstone

» | nsertions should be modified to work with tombstones: if

either an empty slot or atombstone is reached, place the
new record there.

a3
g
a
T

{ File Organization

390 |

Effects of Ddetions and Additions on Performance

» The presence of too many tombstones increases search
length.

» Solutions to the problem of deteriorating average search
lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address

2. Complete reorganization: re-hashing
3. Useadifferent type of collision resolution technique

a3
g
a
T

{ File Organization 391]

Other Collision Resolution Techniques

1. DoubleHashing
» The first hash function determines the home address

» If the home address is occupied, apply a second hash
function to get anumber c (c relatively prime to N)

» cisadded to the home address to produce an overflow
addresses: if occupied, proceed by adding c to the
overflow address, until an empty spot is found.

a3
g
a
T

{ File Organization 392]

Example
k (key) ADAMS | JONES | MORRIS | SMITH
hi(k) (101119 address) 5 6 6 5
ha(k) = 2 3 4 3
i S . 2
_ Hashed file using double hashing 3
= 4
g 5 | ADAMS
6 | JONES
7
8 |SMITH
9
10 | MORRIS

{ File Organization 393]

A Question

» Suppose the above table is full, and that a key

k has h,(k)=6 and h,(k)=3. XXXXX

» What would be the order in which the 1 XAXKX

- addresses would be probed when trying to 2 | XXXXX
= insert k? 3 | XXXXX
o 4 [XXXXX
% Answer: 6,9, 1,4,7, 10, 2,5,8,0, 3 5 | XXXXX
T 6 | XXXXX
7 | XXXXX

8 | XXXXX

9 | XXXXX

10 | XXXXX

{ File Organization 394]

Other Collision Resolution Techniques (Con't)

2. Chained Progressive Overflow

» Similar to progressive overflow, except that synonyms
are linked together with pointers.

» The objective is to reduce the search length for records
within clusters.

a3
g
a
T

{ File Organization 395]

Example

Key Home Progressive Chained Progr.
Overflow Overflow
o ADAMS 20 1 1
Ml | BATES | 21 1 1
k=4 | COLES 20 3 2
| DEAN 21 3 9
ol EVANS | 24 1 1
FLINT 20 6 3
Average Search Length : 2.5 1.7

{ File Organization

3% |

Example (Con’t)

Progressive Overflow

a3
g
a
T

20
21
gl
23
24
25

data

ADAMS

BATES

COLES

DEAN

EVANS

FLINT

Chained Progressive Overflow

data |next
20 | ADAMS | 22
21| BATES | 23
22| COLES | 25
23| DEAN -1
24 | EVANS | -1
25| FLINT | -1

{ File Organization

397 |

Other Collision Resolution Techniques (Con't)

3. Chained with a Separate Overflow Area
» Move overflow records to a Separate Overflow Area

» A linked list of synonyms start at their home address in

the Primary data area, continuing in the separate
overflow area

» When the packing density is higher than 1 an overflow
areais required

a3
g
a
T

{ File Organization 398]

Example

Primary Data Area Overflow Area

20 | ADAMS | 0 0| COLES 2
- 21 | BATES 1 1| DEAN -1
) 22 2| FLINT -1
=2 23 3
g 24| EVANS |-1
T 25

{ File Organization 399]

Other Collision Resolution Techniques (Con't)

4. Scatter Tables: Indexing Revisited

» Similar to chaining with separate overflow, but the
hashed file contains no records, but only pointers to data

® records.

o index (hashed)

@ 20

- 21
22
23
24

0

datefile

U = W= D

data

next

ADAMS

2

BATES

COLES

DEAN

EVANS

FLINT

{ File Organization

400)

