
Copyright © 2004, Binnur Kurt

HashingHashing13

341

H
as

hi
ng

13

File Organization

ObjectivesObjectives

► Introduce the concept of hashing
► Examine the problem of choosing a good hashing

algorithm
► Explore three approaches for reducing collisions
► Develop and use mathematical tools for analyzing

performance differences resulting from the use of
different hashing techniques

► Examine problems associated with file deterioration and
discuss some solutions

► Examine effects of patterns of records access on
performance

342

H
as

hi
ng

13

File Organization

ContentContent

►Introduction to Hashing

►Hash functions

►Distribution of records among addresses, synonyms and
collisions

►Collision resolution by progressive overflow or linear
probing

343

H
as

hi
ng

13

File Organization

MotivationMotivation

►Hashing is a useful searching technique, which can be
used for implementing indexes. The main motivation for
Hashing is improving searching time.

►Below we show how the search time for Hashing
compares to the one for other methods:

– Simple Indexes (using binary search): O(log2N)

– B Trees and B+ trees: O(logkN)

– Hashing: O(1)

344

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

►The idea is to discover the location of a key by simply
examining the key. For that we need to design a hash
function.

►A Hash FunctionHash Function is a function h(k) that transforms a key
into an address

►An address space is chosen before hand. For example, we
may decide the file will have 1,000 available addresses.

►If U is the set of all possible keys, the hash function is
from U to {0,1,...,999}, that is

h : U → {0,1,...,999}

345

H
as

hi
ng

13

File Organization

ExampleExample

8888888484××82=682=6888888
84 8284 82TRTREEEE

0040047676××79=679=600400476 7976 79LOLOWELLWELL

2902906666××65=465=429029066 6566 65BABALLLL

HOME HOME
ADDRESSADDRESSPRODUCTPRODUCT

ASCII code ASCII code
for first two for first two
lettersletters

NAMENAME

346

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

LOLOWELLWELL

hh((nn))

BABALLLL

TRTREEEE

347

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

►There is no obvious connection between the key and the
location (randomizing)

►Two different keys may be sent to the same address
generating a CollisionCollision

►Can you give an example of collision for the hash function
in the previous example?

348

H
as

hi
ng

13

File Organization

AnswerAnswer

►LOWELL, LOCK, OLIVER, and any word with first two
letters LL and OO will be mapped to the same address

h(LOLOWELL)=h(LOLOCK)=h(OLOLIVER)=004004

►These keys are called synonyms. The address “004004” is
said to be the home address of any of these keys.

►Avoiding collisions is extremely difficult

►Do you know the birthday paradox?

►So we need techniques for dealing with it.

349

H
as

hi
ng

13

File Organization

Reducing CollisionsReducing Collisions

1. Spread out the records by choosing a good hash function

2. Use extra memory: increase the size of the address space

– Example: reserve 5,000 available addresses rather
than 1,000

3. Put more than one record at a single address: use of
buckets

350

H
as

hi
ng

13

File Organization

A Simple Hash FunctionA Simple Hash Function

►To compute this hash function, apply 3 steps:
►►Step 1Step 1: transform the key into a number.

LOWELLLOWELL

LL OO WW EE LL LL

7676 7979 8787 6969 7676 7676 3232 3232 3232 3232 3232 3232

ASCII code

351

H
as

hi
ng

13

File Organization

A Simple Hash Function (Con’t)A Simple Hash Function (Con’t)

►►Step 2Step 2: fold and add (chop off pieces of the
number and add them together) and take the mod
by a prime number

7676 7979 8787 6969 7676 7676 3232 3232 3232 3232 3232 3232

76797679 87698769 76767676 32323232 32323232 32323232

7679+8769+7676+3232+3232+32327679+8769+7676+3232+3232+3232

33,820 33,820 modmod 19937 = 13,88319937 = 13,883

352

H
as

hi
ng

13

File Organization

A Simple Hash Function (Con’t)A Simple Hash Function (Con’t)

►►Step Step 33: divide by the size of the address space
(preferably a prime number)

13,883 13,883 modmod 101 = 46101 = 46

353

H
as

hi
ng

13

File Organization

Distribution of Records among AddressesDistribution of Records among Addresses
►There are 3 possibilities

►Uniform distributions are extremely rare
►Random distributions are acceptable and more easily

obtainable.

354

H
as

hi
ng

13

File Organization

Better than Random DistributionBetter than Random Distribution

►Examine keys for patterns

– Example: Numerical keys that are spread out naturally
such as keys are years between 1970 and 2004

f(year)=(year-1970) mod (2004-1970+1)

f(1970)=0, f(1971)=1,..., f(2004)=34

►Fold parts of the key.

– Folding means extracting digits from a key and adding
the parts together as in the previous example.

– In some cases, this process may preserve the natural
separation of keys, if there is a natural separation

355

H
as

hi
ng

13

File Organization

Better than Random Distribution (Con’t)Better than Random Distribution (Con’t)

►Use prime number when dividing the key.

– Dividing by a number is good when there are sequences
of consecutive numbers.

– If there are many different sequences of consecutive
numbers, dividing by a number that has many small
factors may result in lots of collisions. A prime number
is a better choice.

356

H
as

hi
ng

13

File Organization

RandomizationRandomization

► When there is no natural separation between keys, try
randomization.

► You can using the following Hash functions:

1.1. Square the key and take the middleSquare the key and take the middle

Example: key=453 4532 = 20525209

Extract the middle = 52.

This address is between 00 and 99.

357

H
as

hi
ng

13

File Organization

Randomization (Con’t)Randomization (Con’t)

2.2. Radix transformation:Radix transformation:

Transform the number into another base and then divide
by the maximum address

Example: Addresses from 0 to 99

key = 453 in base 11 = 382

hash address = 382 mod 99 = 85.

358

H
as

hi
ng

13

File Organization

Collision Resolution: Progressive OverflowCollision Resolution: Progressive Overflow

► Progressive overflow/linear probing works as follows:

1.1. Insertion of key kInsertion of key k:

– Go to the home address of k: h(k)

– If free, place the key there

– If occupied, try the next position until an empty
position is found

(the ‘next’ position for the last position is position 0,
i.e. wrap around)

359

H
as

hi
ng

13

File Organization

ExampleExample

360

H
as

hi
ng

13

File Organization

Progressive Overflow (Con’t)Progressive Overflow (Con’t)

2.2. Searching for key kSearching for key k:

– Go to the home address of k: h(k)

– If k is in home address, we are done.

– Otherwise try the next position until: key is found or
empty space is found or home address is reached (in
the last 2 cases, the key is not found)

361

H
as

hi
ng

13

File Organization

ExampleExample

► A search for ‘EVANS’ probes places:
20,21,22,0,1, finding the record at position
1.

► Search for ‘MOURA’, if h(MOURA)=22,
probes places 22,0,1,2 where it concludes
‘MOURA’ in not in the table.

► Search for ‘SMITH’, if h(SMITH)=19,
probes 19, and concludes ‘SMITH’ in not
in the table.

362

H
as

hi
ng

13

File Organization

Advantages DisadvantagesAdvantages Disadvantages

►Advantage: Simplicity

►Disadvantage: If there are lots of collisions of records can
form, as in the previous example

363

H
as

hi
ng

13

File Organization

Search LengthSearch Length

►Number of accesses required to retrieve a record.

average search length ==
sum of search lengths

number of records

364

H
as

hi
ng

13

File Organization

ExampleExample

►Average search length

(1+1+2+2+5)/5=2.2

1
1
2
2
5

365

H
as

hi
ng

13

File Organization

Predicting Record DistributionPredicting Record Distribution

►We assume a random distribution for the hash function.

– N = number of available addresses

– r = number of records to be stored

►Let p(x) be the probability that a given address will have x
records assigned to it

►It is easy to see that

() ()
! 1 1

1
! !

r x x
r

p x
r x x N N

−
⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦

366

H
as

hi
ng

13

File Organization

Predicting Record Distribution (Con’t)Predicting Record Distribution (Con’t)

►For N and r large enough this can be approximated by

() () ()

!

x r Nr N e
p x

x

−

=

367

H
as

hi
ng

13

File Organization

ExampleExample

►N=1000, r=1000

() ()0 11
0 0.368

0!

e
p

−

= =

() ()1 11
1 0.368

1!

e
p

−

= =

() ()2 11
2 0.184

2!

e
p

−

= =

() ()3 11
3 0.061

3!

e
p

−

= =

368

H
as

hi
ng

13

File Organization

Predicting Record Distribution (Con’t)Predicting Record Distribution (Con’t)

►For N addresses, the expected number of addresses with x
records is

N . p(x)

►N=1000, r=1000

()1000 0 368p× =

()1000 1 368p× =

()1000 2 184p× =

()1000 3 61p× =

369

H
as

hi
ng

13

File Organization

Reducing Collision by using more AddressesReducing Collision by using more Addresses

►Now, we see how to reduce collisions by increasing the
number of available addresses.

►Definition: packing densitypacking density = r/N

►Example:

500 records to be spread over 1000 addresses result in
packing densitypacking density = 500/1000 = 0.5 = 50%

370

H
as

hi
ng

13

File Organization

QuestionsQuestions

1. How many addresses go unused? More precisely: What
is the expected number of addresses with no key mapped
to it?

► N×p(0)=1000 ×0.607 = 607

371

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

2. How many addresses have no synonyms? More
precisely: What is the expected number of address with
only one key mapped to it?

► N×p(1)=1000 ×0.303 = 303

372

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

3. How many addresses contain 2 or more synonyms? More
precisely: What is the expected number of addresses with
two or more keys mapped to it?

► N×(p(2)+p(3)+...)= N×(1-p(0)-p(1))= 1000 ×0.09 = 90

373

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

4. Assuming that only one record can be assigned to an
address. How many overflow records are expected?

1×N×p(2) + 2×N×p(3) + 3×N×p(4)+... =

N×(2×p(2)+3×p(4)+...) ≈ 107
► The justification for the above formula is that there is

going to be (i-1) overflow records for all the table
positions that have i records mapped to it, which are
expected to be as many as N⋅p(i)

374

H
as

hi
ng

13

File Organization

A Simpler FormulaA Simpler Formula

►Expected # of overflow records =

#records – Expected # of non-overflow records

= r – (N ⋅ p(1)+N ⋅ p(2)+N ⋅ p(3)+ ⋅ ⋅ ⋅)
= r – (1 – p(0))

= N ⋅ p(0) – (N–r)

375

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

5. What is the expected percentage of overflow records?
107/500 = 0.214 = 21.4%

► Note that using either formula, the percentage of
overflow records depend only on the packing density
(PD = r/N) and not on the individual values of N or r.

► The percentage of overflow records is

► Poisson function that approximates p(0) is a function of
r/N which is equal to PD (for hashing without buckets).

()() ()()1 0 1
1 1 0

r N p
p

r PD

− −
= − −

376

H
as

hi
ng

13

File Organization

Packing Density-Overflow RecordsPacking Density-Overflow Records

36.8%100%

34.1%90%

31.2%80%

28.1%70%

24.8%60%

21.4%50%

17.6%40%

13.6%30%

9.4%20%

4.8%10%

Overflow Overflow
Records %Records %

Packing Packing
Density %Density %

377

H
as

hi
ng

13

File Organization

Hashing with BucketsHashing with Buckets

►This is a variation of hashed files in which more than one
record/key is stored per hash address.

►Bucket = block of records corresponding to one address in
the hash table

►The hash function gives the Bucket AddressBucket Address

►Example:

378

H
as

hi
ng

13

File Organization

ExampleExample

►For a bucket holding 3 records, insert the following keys

LOYD

KING
LAND
MARX

379

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

►We should slightly change some formulas

r

packing density
b N

=
⋅

We will compare the following two alternatives

1. Storing 750 data records into a hashed file with 1000
addresses, each holding 1 record.

2. Storing 750 data records into a hashed file with 500
bucket addresses, each bucket holding 2 records

► In both cases the packing density is 0.75 or 75%.

► In the first case r/N=0.75.

► In the second case r/N=1.50

380

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

►Estimating the probabilities as defined before:

381

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

Calculating the number of overflow records in each case
1.1. b=1b=1 (r/N=0.75):

This is about 29.6% overflow

() () ()
()()

()

1 2 2 3 3 4

1 0

750 1000 1 0.472 750 528 222

Number of overflow records

N p p p

r N p

=

= ⋅ ⋅ + ⋅ + ⋅ +⎡ ⎤⎣ ⎦
= − ⋅ −

= − ⋅ − = − =

L

382

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

2.2. b=b=22 (r/N=1.5):

This is about 18.7% overflow

() () ()
() () ()
() () ()()

() ()
()()

1 3 2 4 3 5

1 2 2 3

1 2 1 0 1

2 2 0 1

750 500 2 2 0.223 0.335 140.5 140

Number of overflow records

N p p p

r N p N p p

r N p p p

r N p p

=

= ⋅ ⋅ + ⋅ + ⋅ +⎡ ⎤⎣ ⎦
= − ⋅ − ⋅ ⋅ + +⎡ ⎤⎣ ⎦

⎡ ⎤= − ⋅ + ⋅ − −⎣ ⎦
= − ⋅ − ⋅ −⎡ ⎤⎣ ⎦
= − ⋅ − ⋅ − = ≅

L

L

383

H
as

hi
ng

13

File Organization

Percentage of Collisions for Different Bucket SizesPercentage of Collisions for Different Bucket Sizes

384

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

1. Bucket Structure

► A Bucket should contain a counter that keeps track of the
number of records stored in it.

► Empty slots in a bucket may be marked ‘//.../’

► Example: Bucket of size 3 holding 2 records

385

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

2. Initializing a file for hashing

► Decide on the Logical Size (number of available
addresses) and on the number of buckets per address.

► Create a file of empty buckets before storing records. An
empty bucket will look like

386

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

3. Loading a hash file

► When inserting a key, remember to:

► Be careful with infinite loops when hash file is full

387

H
as

hi
ng

13

File Organization

Making DeletionsMaking Deletions

►Deletions in a hashed file have to be made with care

Hashed File using Progressive Overflow

388

H
as

hi
ng

13

File Organization

Making Deletions: Delete ‘MORRIS’Making Deletions: Delete ‘MORRIS’

►If ‘MORRIS’ is simply erased, a search for ‘SMITH’
would be unsuccessful

►Search for ‘SMITH’ would go to home address (position
5) and when reached 7 it would conclude ‘SMITH’ is not
in the file!

Empty Slot

Empty Slot
ProblemProblem: you cannot find ‘SMITH’

389

H
as

hi
ng

13

File Organization

SolutionSolution

►Replace deleted records with a marker indicating that a
record once lived there

►A search must continue when it finds a tombstone, but can
stop whenever an empty slot is found

Deleted Slot

you can find ‘SMITH’

390

H
as

hi
ng

13

File Organization

Be careful in Deleting and Adding a RecordBe careful in Deleting and Adding a Record

►Only insert a tombstone when the next record is occupied
or is a tombstone

►Insertions should be modified to work with tombstones: if
either an empty slot or a tombstone is reached, place the
new record there.

391

H
as

hi
ng

13

File Organization

Effects of Deletions and Additions on PerformanceEffects of Deletions and Additions on Performance

► The presence of too many tombstones increases search
length.

► Solutions to the problem of deteriorating average search
lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address

2. Complete reorganization: re-hashing

3. Use a different type of collision resolution technique

392

H
as

hi
ng

13

File Organization

Other Collision Resolution TechniquesOther Collision Resolution Techniques

1.1. Double HashingDouble Hashing

► The first hash function determines the home address

► If the home address is occupied, apply a second hash
function to get a number c (c relatively prime to N)

► c is added to the home address to produce an overflow
addresses: if occupied, proceed by adding c to the
overflow address, until an empty spot is found.

393

H
as

hi
ng

13

File Organization

ExampleExample

Hashed file using double hashing

394

H
as

hi
ng

13

File Organization

A QuestionA Question

►Suppose the above table is full, and that a key
kk has hh11((kk))=6 and hh22((kk))=3.

►What would be the order in which the
addresses would be probed when trying to
insert kk?

AnswerAnswer: 6, 9, 1, 4, 7, 10, 2, 5, 8, 0, 3

395

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

2.2. Chained Progressive OverflowChained Progressive Overflow

► Similar to progressive overflow, except that synonyms
are linked together with pointers.

► The objective is to reduce the search length for records
within clusters.

396

H
as

hi
ng

13

File Organization

ExampleExample

397

H
as

hi
ng

13

File Organization

Example (Con’t)Example (Con’t)

Progressive OverflowProgressive Overflow Chained Progressive OverflowChained Progressive Overflow

398

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

3.3. Chained with a Separate Overflow AreaChained with a Separate Overflow Area

► Move overflow records to a Separate Overflow Area

► A linked list of synonyms start at their home address in
the Primary data area, continuing in the separate
overflow area

► When the packing density is higher than 1 an overflow
area is required

399

H
as

hi
ng

13

File Organization

ExampleExample

Primary Data AreaPrimary Data Area Overflow AreaOverflow Area

400

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

4.4. Scatter Tables: Indexing RevisitedScatter Tables: Indexing Revisited

► Similar to chaining with separate overflow, but the
hashed file contains no records, but only pointers to data
records.

index index ((hashedhashed)) datafiledatafile

