6 Inheritance

209

Content

» | nheritance

» Reusahility in Object-Oriented Programming
» Redefining Members (Name Hiding)

» Overloading vs. Overriding

» Access Control

» Public and Private | nheritance

» Constructor, Destructor and Assignment Operator in
Inheritance

» Multiple Inheritance
» Composition vs Inheritance

(object oriented Programming 210 )

Inheritance |

» |nheritance is one of the waysin object-oriented
programming that makes reusability possible.

» Reusability meanstaking an existing classand using it in
anew programming Situation.

» By reusing classes, you can reduce the time and effort
needed to develop a program, and make software more
robust and reliable.

(object oriented Programming 21 )

‘ Inheritance

History

» The earliest approach to reusability was smply rewriting
exigting code. Y ou have some code that worksin an old
program, but doesn’t do quite what you want in a new
project.

» Y ou paste the old code into your new source file, make a
few modifications to adapt it to the new environment.
Now you must debug the code all over again. Often you're
sorry you didn’t just write new code.

(object oriented Programming 212 )

Inheritance |

» To reduce the bugsintroduced by modification of code,
programmers attempted to create self-sufficient program
elementsin the form of functions.

» Function libraries were a step in the right direction, but,
functions don’'t model the real world very well, because
they don’t include important data.

» All too often, functions require modification to work in a
new environment.

P But again, the modificationsintroduce bugs.

(object oriented Programming 213 )

‘ Reusability in Object-Oriented Programming

» A powerful new approach to reusability appearsin object-
oriented programming isthe classlibrary. Because a class
more closely modelsareal-world entity, it needsless
modification than functions do to adapt it to a new
Stuation.

» Once a class has been created and tested, it should
(ideally) represent a useful unit of code.

» This code can be used in different ways again.

(object oriented Programming 214 )




Reusability in Object-Oriented Programming |

1. Thesmplest way toreuseaclassisto just use an object
of that classdirectly. The standard library of the C++ has
many useful classes and objects.

— For example, cin and cout are such built in objects.
Another useful classis string , whichisused very
oftenin C++ programs.

Object Oriented Programming 215 )

‘ Reusability in Object-Oriented Programming

2. Thesecond way to reuse a classisto place an object of
that classinsde a new class.

— Wecall this* creating a member object.”

— Your new class can be made up of any number and
type of other objects, in any combination that you need
to achieve the functionality desired in your new class.

— Because you are composing a new class from existing
classes, this concept is called composition (or more
generally, aggregation). Composition is often referred
toasa“has-a’ relationship.

Object Oriented Programming 216 )

Reusability in Object-Oriented Programming |

3. Thethird way to reuse aclassisinheritance, whichis
described next. Inheritance isreferred to asaisa" or "a
kind of" relationship.

Object Oriented Programming 217 )

‘ string

»While a character array can be fairly useful, it isquite
limited. It's smply a group of charactersin memory, but if
you want to do anything with it you must manage al the
little details.

» The Standard C++ string classis designed to take care of
(and hide) al the low-level manipulations of character
arraysthat were previoudy required of the C programmer.

» To use strings you include the C++ header file <string>.

» Because of operator overloading, the syntax for using
gringsisquite intuitive (natural).

Object Oriented Programming 218 )

string |

#include<string> // Sandard header file of C++ (inc. string class)
#include <iostream>

using namespace std;

int main() {
string s1, s2; /I Empty strings
string s3 = "Hello, World."; // Initialized
string s4("l am"); /I Also initialized
s2 ="Today"; /I Assigning to a string
S1=s3+""+s4; /I Combining strings
s1+="20", /I Appending to a string
cout << s1+s2+"I" << endl;
return 0;

}

(object oriented Programming 219 )

‘ string

» The first two strings, sl and s2, start out emgty, while s3 and s4
show two equivaent ways to initiaize string objects from character
arays (you can just as easily initialize string objects from other
string objects).

» You can assign to any string object using '=". This replaces the
previous contents of the string with whatever is on the right-hand
side, and you don't have to worry about what happens to the
previous contents - that's handled automatically for you.

» To combine strings you simply use the '+ operator, which aso
alows you to combine character arrays with strings. If you want to
append either astring or a character array to another string, you can
use the operator '+='.

» Finaly, note that cout dready knows what to do with strings, so you
can just send a string (or an expression that produces a string, which
happens with

» sl +s2+"I" directly to cout in order to print it.

(object oriented Programming 220 )




Inheritance |

» OOP provides a way to modify a class without changing
its code.

» Thisisachieved by using inheritance to derive a new class
fromthe old one.

» Theold class (called the base class) is not modified, but
the new class (the derived class) can use all the features of
the old one and additional features of itsown.

Object Oriented Programming 221 )

‘ "isa" Relationship

»We know that PCs, Macintoshes and Cray are kinds of
computers, aworker, a section manager and general
manager are kinds of employee.

»|f thereisa"kind of" relation between two objectsthen
we can derive one from other using the inheritance.

Object Oriented Programming 222 )

Inheritance Syntax

» The smplest example of inheritance requirestwo classes.
abase class and a derived class.

» The base class does not need any special syntax. The
derived class, on the other hand, must indicate that it's
derived from the base class.

» Thisisdone by placing a colon after the name of the
derived class, followed by a keyword such as public and
then the base class name.

Object Oriented Programming 223 )

» Example: Modeling teachers and the principal (director) in
aschoal.

P First, assume that we have a classto define teachers, then
we can use this classto model the principal. Because the
principal isateacher.

class Teacher { /1 Base class

protected: 11 means public for derived class members
string name;
int age, numberOfStudents;

public:

void setName (const string & new_name){ name = new_name; }
}
class Principal : public Teacher { // Derived class
string schoolName; 11 Additional members
int numberOfTeachers;
public:
void setSchool(const string & s_name){ schoolName = s_name; }

b

(object oriented Programming 224 )

principal isateacher

intmain() { principal  (derived class)
Teacher t1;
Principa p1;

teacher (baseclass)
" Principal 1); Name,
" Teacher3y). Age,
lementary SchodT™); numberOf Students
return 0; setName(string)
} schoolName
numberOf Teachers

setSchool (string)

Object Oriented Programming 225 )

Redefining Members (Name Hiding) |

» Some members (data or function) of the base class may not
suitable for the derived class. These members should be
redefined in the derived class.

» For example, assume that the Teacher classhasaprint
function that prints properties of teachers on the screen.

»But thisfunction is not sufficient for the class Principal,
because principals have more propertiesto be printed. So
the print function must be redefined.

Object Oriented Programming 226 )




Redefining Members

class Teacher{ // Baseclass
protected:
string name;
int age, numOfStudents;
public:
void setName (const string & new_name) { name = new_name; }
void print() const;

void Teacher::print() const { // Print method of Teacher class
cout << "Name: " << name<<" Age: " << age<<endl,
cout << "Number of Students: " << numOf Students << endl;

}

(object oriented Programming 227 )

class Principd : public Teacher{ /I Derived class
string school_name;
int numOfTeachers;
public:
void setSchool(const string & s_name) { school_name=s_name; }
void print() const;  // Print function of Principal class

void Principal::print() const { // Print method of principal class
cout << "Name: " << name<<" Age " << age<<end;
cout << "Number of Students: " << numOfStudents << endl;
cout << "Name of the school: " << school_name << endl;

}

»print() function of the Principal class overrides (hides) the
print() function of the Teacher class.

(object oriented Programming 228 )

Redefining Members |

»Now the Principal class has two print() functions. The
members of the base class can be accessed by using the
scope operator (::).

void Principa::print() const { // Print method of Principal class
Teacher::print(); // invokes the print function of the teacher class
cout << "Name of the school: " << school_name << endl;

}

(object oriented Programming 229 )

‘ Overloading vs. Overriding

»|f you modify the signature and/or the return type of a
member function from the base class then the derived class
has two member functions with the same name. But thisis
not overloading, it is overriding.

»|f the author of the derived class redefines a member
function, it means he or she changes the interface of the base
class. In this case the member function of the base class is
hidden.

(object oriented Programming 230 )

Example
class A{ class B: public A{

public: public:
|n§|a1,|a2; float ial; /I overridesial
void fal(); float fal(float); // overridesfal
int fa2(int); Be
JiE
int man(){ examplel4.cpp
B b;
int j=b.fa2(1);
b.ial=4; /I B::ial
b.ia2=3; /I Azia2 if ia2ispublicin A

float y=h.fa1(3.14); // B::fal

b.fal(); // ERROR fal functionin B hides the function of A
b.A:fal(); // OK
b.A:ial=1; // OK

}

(object oriented Programming 231 )

Access Control

» Remember, when inheritance is not involved, class member
functions have access to anything in the class, whether public or
private, but objects of that class have access only to public members.

» Once inheritance enters the picture, other access possibilities arise
for derived classes. Member functions of a derived class can access
public and protected members of the base class, but not private
members. Objects of aderived class can access only public members of
the base class.

Base Class Derived Class

(object oriented Programming 23 )




class Teacher { /I Base class

private: /I only members of Teacher can access
string name;

protected: /I Also members of derived classes can int main()
int age, numOfStudents;

public: /I Everyone can access teacher ti:
void setName (const string & new_name){ name = new_name; } eacher tl, )
void print() const; principal p1;

; t1.numberOfStudents=54;
class Principd : public Teacher {  // Derived class w .
private /] Default tl.setName( Semé Caur. ); . o
string school_name; pl.setSchool(“Halide Edip Adivar Lisesi");
int numOfTeachers; }
public:
void setSchool (const string & s_name) { school_name='s_name; }
void print() const;
int getAge() const { return age; } // It works because ageiis protected
const string & get_name(){ return name;}// ERROR! nameis private

b
Object Oriented Programming 233 Object Oriented Programming 234
( ) ( )
. Private data: Slow and reliable
Protected vs. Private Members —— Py
rivate:
. X X pr‘:/(a‘ ,e 1/ safe
»In genera, class data should be private. Public data is open to public: ~
modification by any function anywhere in the program and should B e AT O e
: =i B Protected data: Fast, author of the derived
almost always be avoided. y e class i resporsible.
» Protected data is open to modification by functions in any derived % c'gf;égtea— /1 Base class
class. Anyone can derive one class from another and thus gain access class B:public A{ /I Derived class inti; /I derived class can access directly
to the base class's protected data. It's safer and more reliable if derived o (LS
classes can’t access base class data directly. public: %
. . S . void set(new_i, new_k){ class B:public A{  // Derived class
» But in real-time systems, where speed is important, function calls to Azaccess(new_i);  // reliable but slow e
access private members is a time-consuming process. In such systems ) : "E\ ki
data may be defined as protected to make derived classes access data X ptmg “set(new_inew_k){
di rectly and faster. !:newg; 11 fast
}
}
(object oriented Programming 235 )
Public Inheritance | ‘ Private Inheritance
»In inheritance, you usualy want to make the access class Base
specifier public. (%
class Base class Derived : private Base {
{k - R
class Derived : public Base { »Thisis call_ed private inheritance. _
»This is called public inheritance (or sometimes public >N0t\)Ner pl;btlﬁ]c qun:je'; of the bese dass are private
derivation). The access rights of the members of the base mem_ sortne e”\_/ ass.
class are not changed. » Objects of the derived class can not access members of the
P Objects of the derived class can access public members of base class. ) ) )
the base class. »Member functions of the derived class can ill access
» Public members of the base class are also public members public and protected members of the base class.
of the derived class.
Object Oriented Programming 237 Object Oriented Programming 238
( ) ( )




Class A

Class B: public A Class C:

(object oriented Programming 23 )

Redefining Access

P Access specifications of public members of the base class
can be redefined in the derived class.

»When you inherit privately, al the public members of the
base class become private.

»|f you want any of them to be visble, just say their names
(no arguments or return values) along with the usng
keyword in the public section of the derived class:

(object oriented Programming 20 )

int main(){
Base b;
class Base{ Derived d;

private: b.i=5; // OK public in Base

intk; ;  // ERROR private inheritance
public: : /1 0K

inti: d.f(); //OK

void f(); _return 0;

b

class Derived : private Base{ // All members of Base are private now
intm;

public:

Base::f(); // f() is public again

void fb1();

b

(object oriented Programming 241 )

‘ Special Member Functions and Inheritance

» Some functions will need to do different thingsin the base class and
the derived class. They are the overloaded = operator, the destructor,
and al constructors.

» Consider a constructor. The base class constructor must create the
base class data, and the derived class constructor must create the
derived class data.

» Because the derived class and base class constructors create
different data, one constructor cannot be used in place of another.
Constructor of the base class can not be the constructor of the derived
class.

» Similarly, the = operator in the derived class must assign values to
derived class data, and the = operator in the base class must assign
values to base class data. These are different jobs, so assignment
operator of the base class can not be the assignment operator of the
derived class.

(object oriented Programming 22 )

Constructors and Inheritance

»When you define an object of a derived class, the base class
constructor will be called before the derived class constructor. This is
because the base class object is a subobject—a part—of the derived
class object, and you need to construct the parts before you can
construct the whole.

»If the base class has a constructor that needs arguments, this
constructor must be called before the constructor of the derived class.

class Teacher {  // turetilmis sinif
char *Name;
int Age,numberOfStudents;
public:
Teacher(char *newName){Name=newName;} // temel sinif kurucusu

-
\Q“ example15.cpp

class Principal : public Teacher{ // turetilmis sinif
int numberOfTeachers;
public:
Principal(char *, int);  // // turetilmis sinif kurucusu

(object oriented Programming 23 )

11 Constructor of the derived class
11 constructor of the base is called before the body of the constructor of the derived class
Principal::Principal(const string & new_name, int numOT): Teacher(new_name)

numOfTeachers = numOT;

» Remember, the constructor initializer can also be used to initidize
members.

11 Constructor of the derived class
Principal::Principal(const string & new_name, int numOT)
:Teacher(new_name), numOfTeachers( numOT)

{} /1 bodly of the constructor is empty
int main() {
Principal p1("Ali Bilir", 20);  // An object of derived class is defined
return 0;
}

» |f the base class has a constructor, which must take some arguments, then
the derived class must also have a constructor that calls the constructor of
the base with proper arguments.

244




Destructors and Inheritance

» Destructors are called automatically.

»\When an object of the derived class goes out of scope, the
destructors are called in reverse order: The derived object is
destroyed firgt, then the base class object.

(object oriented Programming 25 )

#include <iostream.h>
class B {
public:
B() { cout << "B constructor" << endl; }
~B() { cout << "B destructor" << endl; }

h
class C : public B {
public:
C() { cout << "C constructor" << endl; }
~C() { cout << "C destructor" << endl; }

int main(){
std::cout << "Start" << std::endl;
Cch; /I create a C object
std::cout << "End" << std::endl;

}

(object oriented Programming 26 )

#include <iostream.h> .
class A{ Example: Constructor Chain
private:
int x;
floaty;
public:
A(int i, float f) :
(i), y(f) N initialize A public:
{ cout << "Constructor A" << endl; } C(int i1, float f1, int i2,float f2,int i3, float f3) :
void displayQ { . B(iL, f1, i2, f2), Il initialize B
cout << intA << ", " << floA << "; "} r(i3), s(f3) I initialize C
{ cout << "Constructor C" << endl; }
void display() {
B::display();
cout <<r<<* "<<s;

class C : public B {
private:
intr;
float s;

class B : public A {
private:
intv; }
float w; ¥
public: :
B(int i1, float f1, int i2, float 2) :
A1, f1), Il initialize A
v(i2), w(f2) Ilinitialize B C C(l 11,222 3.3 3)-
{ cout << "Constructor B" << endl; } L o el
void display(){ cout << "\nDatainc=";

Acdisplay(); c.display();
}

int main() {

cout<<v<<" "<<w<<" "

}

= examplel9.cpp
247

Explanation

»A C class is inherited from a B class, which is in turn
inherited from a A class.

P Each class has oneint and one float data item.

» The constructor in each class takes enough arguments to
initialize the data for the class and all ancestor classes. This
means two arguments for the A class congructor, four for B
(which mugt initialize A as well as itself), and sx for C
(which must initialize A and B aswell asitself).

» Each constructor callsthe constructor of its base class.

(object oriented Programming 28 )

Explanation

»In main(), we create an object of type C, initializeit to six
values, and display it.
»\When a congtructor starts to execute, it is guaranteed that
all the subobjects are created and initialized.
» Incidentally, you can't skip a generation when you call an
ancestor congtructor in an initialization list. In the following
modification of the C constructor:
C(intil, float f1, inti2, float f2, int i3, float f3) :
A(i1, f1), // ERROR! cant initialize A
intC(i3), floC(f3)  // initidize C
{1}
the call to A() is illegal because the A class is not the
immediate base class of C.

(object oriented Programming 29 )

‘ Explanation: Constructor Chain

»You never need to make explicit destructor calls because
theré's only one destructor for any class, and it doesn't take
any arguments.

» The compiler ensures that al destructors are called, and
that means all of the destructors in the entire hierarchy,
garting with the most-derived destructor and working back
to the root.

(object oriented Programming 250 )




Assignment Operator and Inheritance

> Assgnment operator of the base class can not be the
assgnment operator of the derived class.
» Recall the String example.

class String {
protected:
int size;
char *contents;
public:
const String & operator=(const String &); // assignment operator
: /1 Other methods

6

Inheritance

b i const String & String::operator=(const String &in_object) {
! size = in_object.size;

delete[ ] contents; // delete old contents

contents = new char[size+1];
¢ strcpy(contents, in_object.contents);
¢ return *this;
i3

Object Oriented Programming 21 )

»Example: Class String2 is derived from class String. If an
assgnment operator isnecessary it must be written

class String2 : public String { // String2 is derived from String
int size2;
char *contents2;

public:
const String2 & operator=(const String2 &);

6

Iy
11 **** Assignment operator for String2 ****
const String2 & String2::operator=(const String2 &in_object) {
size = in_object.size; 11 inherited size
delete [Jcontents;
contents= strdup(in_object.contents);
size2 = in_object.size2;
delete[ ] contents2;
contents2 = strdup(in_object.contents2);
return *this;

Inheritance

}

(object oriented Programming 22 )

In previous example, data members of String (Base) class must be protected. Otherwise
methods of the String2 (Derived) can not access them.

The better way to write the assignment operator of String2 is to call the assignment
operator of the String (Base) class.

Now, data members of String (Base) class may be private.

/1** Assignment operator **
const String2 & String2::operator=(const String2 & in_object)

6

String::operator=(in_object); // call the operator= of String (Base)
cout<< "Assignment operator of String2 has been invoked" << endl;

size2 = in_object.size2;

delete[] contents2;

contents2 = new char[size2 + 1];

strepy(contents2, in_object.contents?2);

return *this;

}

In this method the assignment operator of the String is called with an argument of type
(String2 &). Actually, the operator of String class expects a parameter of type (String &).
This does not cause a compiler error, because as we will se in Section 7, a reference to
base class can carry the address of an object of derived class.

Inheritance

(object oriented Programming 253 )

Composition vs. Inheritance

»Every time you place instance data in a class, you are
creating a “has a" relationship. If there is a class Teacher and
one of the data itemsin this class is the teacher's name, | can
say that a Teacher object hasa name.

»This sort of relationship is called compostion because the
Teacher object iscomposed of these other variables.
»Remember the class ComplexFrac. This class is composed
of two Fraction objects.

» Composition in OOP models the real-world Stuation in
which objects are composed of other objects.

6

Inheritance

Object Oriented Programming 254 )

Composition vs. Inheritance

»Inheritance in OOP mirrors the concept that we call
generalization in the real world. If | model workers, managers
and researchers in a factory, | can say that these are al
specific types of amore general concept called an employee.
» Every kind of employee has certain features. name, age, 1D
num, and so on.

P But a manager, in addition to these general features, has a
department that he/she manages.

» A researcher has an area on which he/she studies.

P n this example the manager has not an empl oyee.

» The manager isan employee

6

Inheritance

(object oriented Programming 25 )

» You can use composition & inheritance together. The following example
shows the creation of a more complex class using both of them.

class A {
inti;
public: public:
A(int i) : (i) {F B(int ii) : i(ii) {3
~AQ {} ~B0 {
void f() const {} void f() const {}

class C : public B{ // Inheritance, C is B

A a; // Composition, C has A
public:
C(int ii) : B(ii), aii) {}
~C() {3} // Calls ~A() and ~B()
void f() const { // Redefinition
a.f();
B:

256




» C inherits from B and has a member object ("is composed
of") of type A. You can see the constructor initializer list
contains calls to both the base-class constructor and the
member-object constructor.

»The function C::f( ) redefines B::f( ), which it inherits,
and also calls the base-class version. In addition, it calls
af().

»Notice that the only time you can talk about redefinition
of functionsis during inheritance; with a member object you
can only manipulate the public interface of the object, not
redefineit.

»In addition, calling () for an object of class C would not
cal af() if C::f() had not been defined, whereas it would
cal B:f().

(object oriented Programming 257 )

Multiple Inheritance

class Basel{  // Base 1 int main(){
public: LE¥d  Derivd,
int a;
void fa1(); da=4;
: char *fa2(int); float y=d.fal(3.14);
inti=d.fc();
class Base2{ // Base 2 }
public:
int a; example20.¢
char *fa2(int, char); ; ”
, LD char * c=d.fa2(1);
- is not valid.
[EESEERI = EEE public Base2{ In inheritance functions are not
public: overloaded. They are overridden.
int & You have to write
float fal(float); char * c=d.Base1::fa2(1);

int fod(int);
13

or
char * c=d.Base2::fa2(1,"Hello");

(object oriented Programming 258 )

Repeated Base Classes

class Gparent

h
class Mother : public Gparent
class Father : public Gparent

{%
class Child : public Mother, public Father
{%
»Both Mother and Father inherit from Gparent, and Child inherits
from both Mother and Father. Recal that each object created through
inheritance contains a subobject of the base class. A Mother object and
a Father object will contain subobjects of Gparent, and a Child object
will contain subobjects of Mother and Father, so a Child object will
aso contain two Gparent subobjects, one inherited via Mother and one
inherited via Father.
» This is a strange situation. There are two subobjects when realy
there should be one.

Repeated Base Classes

» Suppose there's adataitem in Gparent:

class Gparent {
protected:
int gdata;

class Child : public Mother, public Father {
public:
void Cfunc() {
int temp = gdata; // error: ambiguous

h
» The compiler will complain that the reference to gdata is ambiguous.
It doesn’t know which version of gdatato access: the onein the Gparent
subobject in the Mother subobject or the one in the Gparent subobject in
the Father subobject.

Object Oriented Programming 259 Object Oriented Programming 260
( ) ( )
Solution: Virtual Base Classes
» Y ou can fix this using anew keyword, virtual, when deriving Mother class Base
and Father from Gparent : public:
class Gparent i intab,c; Base
c\ass’Mother :virtual public Gparent class Derived : public Base T
{k .
class Father : virtual public Gparent (pubﬁc: Drived
(% @, example2l.cpp intb;
class Child : public Mother, public Father ) % |
{% . . . Derived2
class Derived? : public Derived
» The virtua keyword tells the compiler to inherit only one subobject
from a class into subsequent derived classes. That fixes the ambiguity public:
problem, but other more complicated problems arise that are too intc;
complex to delve into here. b
»In genera, you should avoid multiple inheritance, athough if you
have considerable experience in C++, you might find reasonsto useit in
unusual situations.
Object Oriented Programming 261 Object Oriented Programming 262
( ) ( )




6

Inheritance

class A {

v

class B {

v

class C{

v
class D : public A, public B, private C {

¥

6

Inheritance

class L {
public:
int next;

class A : public L {

y
class B : public L {

y
class C : public A, public B {
void f() ;

b

»>—>

N

w—>

Object Oriented Programming 263 ) Object Oriented Programming 264 )
class B {
class L {
public: 3
int next; class X : virtual public B {
© . © B B
° class A :virtual public L { - h / \ T
(5] / (5] class Y : virtual public B { X Yy 7
g . S W
s I
o] class B :virtual public L { o] h
= \ / = class Z : public B { AA
- ¥ =
class C : public A, public B { h
class AA : public X, public Y, public Z {
h
b
Object Oriented Programming 25 ) Object Oriented Programming 26 )




