Initializing and Finalizing

Objects

Content |

» Constructors
— Default Constructor
— Copy Constructor
» Destructor

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 148]

Initializing Objects. Constructors |

» The class designer can guarantee initialization of every
object by providing a specia member function called the
constructor.

» The constructor is invoked automatically each time an
object of that classis created (instantiated).

» These functions are used to (for example) assign initial
values to the data members, open files, establish
connection to a remote computer etc.

» The constructor can take parameters as needed, but it
cannot have areturn value (even not void).

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 149]

Initializing Objects. Constructors |

» The constructor has the same name as the class itself.
» Constructors are generally public members of aclass.
» There are different types of constructors.

» For example, a constructor that defaults all its arguments
Or reguires no arguments, i.e. a constructor that can be
Invoked with no arguments is called default constructor.

» | n this section we will discuss different kinds of
constructors.

q
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

{ Object Oriented Programming 150]

Default Constructors |

» A constructor that defaults all its arguments or reguires no
arguments, 1.e. aconstructor that can be invoked with no

arguments.
class Point{ /1 Declaration Point Class
Int x,y; /1 Properties: x and y coordinates
public:
Point(); /1 Declaration of the default constructor
bool move(int, int); /1 A function to move points
void print(); /1 to print coordinates on the screen
¥

Point::Point() { /1 Default Constructor
cout << "Constructor is called..." << endl;
X = 0; /I Assigns zero to coordinates

q
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

y=0;

¥

int main() {
Point pl, p2; /1 Default construct is called 2 times
Point *pp = new Point; /1 Default construct is called once

{ Object Oriented Programming 151]

Constructors with Parameters |

» Like other member functions, constructors may also have
parameters.

» Users of the class (client programmer) must supply constructors
with necessary arguments.

class Point{ /] Declaration Point Class

Int X,y; /] Properties: x and y coordinates
public:

Point(int, int); /l Declaration of the constructor

bool move(int, int); /1 A function to move points

void print(); /] to print coordinates on the screen
};

» This declaration shows that the users of the Point class haveto give
two integer arguments while defining objects of that class.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 152]

Example: Constructors with Parameters |

Point::Point(int x_first, int y_first) {
cout << "Constructor is called..." << endl;

: If (x_first<0) /1 If the given value is negative
*8' X = 0; /] Assigns zero to x
— else
@) .
O X = x_first;
% if (y _first<O0) /1 If the given value is negative
N y = 0; /] Assigns zero to x
T else
L% y =y first;
S }
S /] - Main Program -------------
o int main() {
N Point p1(20, 100), p2(-10, 45); /]l Construct Is called 2 times
o Point *pp = new Point(10, 50); /]l Construct is called once
:*é‘ Point p3; /! ERROR! There is not a default constructor
¥

{ Object Oriented Programming 153]

Constructor Parameters with Default Vaues |

» Constructors parameters may have default values

< class Point{

n public:

*8' Point(int x_first = 0, inty_first = 0);

= .

O };

®)) Point::Point(int x_first, inty first) {

- if (x_first<0) /1 If the given value is negative
N X = 0; /1 Assigns zero to x

L] else X = x_first;

- if (y first<O0) /1 If the given value is negative
LL y = 0; /1 Assigns zero to x

© else y =y first;

S }

=d > Now, client of the class can create objects
N Point p1(15,75); /1 x=15, y=75
E Point p2(100); // x=100, y=0

-

» Thisfunction can be also used as a default constructor
Point p3; // x=0, y=0

{ Object Oriented Programming 154]

Multiple Constructors |

» Therules of function overloading isalso valid for constructors. So, a
class may have more than one constructor with different type of

Input parameters.
Point::Point() { /1 Default constructor
............... /1l Boaly is not important

Point::Point(int x_first, int 'y _first) { // A constructor with parameters
................. /1l Boaly is not important

¥

» Now, the client programmer can define objects in different ways.
Point p1; /1 Default constructor Is called
Point p2(30, 10); /1 Constructor with parameters is called

» The following statement causes an compiler error, because the class

does not include a constructor with only one parameter.
Point p3(10); Il ERRORY! There isn't a constructor with one parameter

#
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

{ Object Oriented Programming 155]

Initializing Arrays of Objects |

» \When an array of objectsis created, the default
constructor of the classisinvoked for each element (object)
of the array onetime.

Point array[10]; // Default constructor is called 10 times

» To invoke a constructor with arguments, alist of initial
values should be used.

» To invoke a constructor with more than one arguments, its
name must be given in thelist of initial values, to make the
program more readable.

#
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

{ Object Oriented Programming 156]

Initializing Arrays of Objects Con’ tI

» // Constructor

Point(int x_first, inty first=0) { ...}

// Can be called with one or two args

» /[Array of Points

Point array[]={ {10} , {20} , Point(30,40) };

» Three objects of type Point has been created and the
constructor has been invoked three times with different
arguments.

Objects: Arguments:

array[O X_first=10,y first=0
array[1] X_first=20,y first=0
array|[2] X_first =30,y first =40

{ Object Oriented Programming 157]

q
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

Initializing Arrays of Objects Con’ tI

» I the class has also a default constructor the programmer may
define an array of objects as follows:
Point array[5]={ {10} , {20} , Point(30,40) };

» Here, an array with 5 elements has been defined, but the list of
Initial values contains only 3 values, which are sent as
arguments to the constructors of the first three elements. For
the last two elements, the default constructor is called.

» To call the default constructor for an object, which is not at the
end of the array

Point array[5]={ {10} , {20}, Point() , Point(30,40) };

» Here, for objects array[2] and array[4] the default constructor is
Invoked.

Point array[5]={ {10} , {20} , , Point(30,40) }; // ERROR!

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 158]

Constructor Initializers |

» |nstead of assignment statements constructor initializers can be used
to initialize data members of an object.

» Specially, to assign initial value to a constant member using the
constructor initializer isthe only way.

» Consider the class:

class C{
const int ClI;
Nt X;

public: Sl (L]

const int Cl = 10 ;
Int X;

CO)
X =

Cl =0;

0;

&

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

}
&

{ Object Oriented Programming 159]

Solution |

The solution isto use a constructor initializer. FEEEEK
const int ClI;

INt X;
public:
C(: CI(0) {

X =-2;

class C{
const int Cl;
Int X; All data members of aclass
public: can beinitialized by using
QLI DR [(ORECYI constructor initializers.
{1}

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

3

{ Object Oriented Programming 160]

Destructors |

» The destructor is very similar to the constructor except
that it is called automatically

1. when each of the objects goes out of scope or

2. adynamic object is deleted from memory by using the
delete operator.

» A destructor is characterized as having the same name as
the class but with atilde ‘~' preceded to the class name.

» A destructor has no return type and receives no
parameters.

» A class may have only one destructor.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 161]

Example |

class String{
Int size; // Length (number of chars) of the string
char * contents;, // Contents of the string
public:
String(const char *); // Constructor
void print(); // An ordinary member function
~String(); // Destructor
¥
» Actually, the standard library of C++ containsastring

class. Programmers don't need to write their own string
class. We write this class only to show some concepts.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 162]

/] Constructor : copies the input character array that terminates with a null character
/1 to the contents of the string
String::String(const char *in_data) {

cout<< "Constructor has been invoked" << endl;

size = strlen(in_data); /1 strlen is a function of the cstring library
contents = new char[size +1]; // +1 for null ('\O") character
strcpy(contents, in_data); /1 input_aata is copied to the contents

¥

void String::print() {
cout << contents << " " << size << endl;

¥

/1 Destructor: Memory pointed by contents is given back

String::—String() {
cout << "Destructor has been invoked" << endl;
delete[] contents;

}

int main() {
String string1("'string 1");
String string2("'string 2");

stringl.print();
string2.print();

#
12
3
2
O
o
-
N
=
c
=
S
S
o
-
N
@
= return O: // destructor is called twice

{ Object Oriented Programming 163]

Copy Constructor |

» It isaspecial type of constructors and used to copy the contents of
an object to a new object during construction of that new object.

» Thetype of itsinput parameter is areference to objects of the same
type. It takes as argument areference to the object that will be
copied into the new object.

» The copy constructor is generated automatically by the compiler if
the class author fails to define one.

» If the compiler generates it, it will ssimply copy the contents of the
original into the new object as a byte by byte copy.

» For smple classes with no pointers, that is usually sufficient, but if
there is a pointer as a class member so a byte by byte copy would
copy the pointer from one to the other and they would both be
pointing to the same allocated member.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 164]

Copy Constructor Con,tl

» For example the copy constructor, generated by the
compiler for the String class will do the following job:

Shallow Copy
oJeplichiled 0x008d0080 4 0x008d0080 IRGSLELE
Existing object The new object

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 165]

Copy Constructor Con't

» The copy constructor, generated by the compiler can not copy the
memory locations pointed by the member pointers.

» The programmer must write its own copy constructor to perform these
operations.

sze: [s ¢ K&
oelpliclale 0x008d0080 Deep Copy 0x00ef0080

Existing object The new object

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 166]

Example: The copy constructor of the String classl

class String {

Int size;
char *contents;
public:
String(const char *); /] Constructor
String(const String &); /1 Copy Constructor
void print(); /1 Prints the string on the screen
~String(); /1 Destructor

&

String::String(const String &object_in) { /l Copy Constructor
cout<< "Copy Constructor has been invoked" << endl;
size = object_in.size;
contents = new char[size + 1]; /1 +1 for null character
strcpy(contents, object in.contents);

}

int main() {
String my_string("string 1");
my_string.print();
String other = my_string; /1l Copy constructor Is invoked
String more(my_string); /1l Copy constructor Is invoked

#
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

{ Object Oriented Programming 167]

Constant Objects and Const Member Functionsl

» The programmer may use the keyword const to specify that an
object is not modifiable.

» Any attempt to modify (to change the attributes) directly or
indirectly (by calling a function) causes a compiler error.

const TComplex cz(0,1); // constant object

» C++ compilerstotally disallow any member function calls for
const objects. The programmer may declare some functions as
const, which do not modify any data of the object. Only const
functions can operate on const objects.

void print() const // constant method

{

cout << “complex number="* <<real << “, " <<img;

}

{ Object Oriented Programming 168]

q
V)
3
8
O
(@)
-
S
=
=
LL
5
o)
-
S
=
_
=

/]l Constant function. It prints the coordinates on the screen
void Point::print() const

{
cout << "X="<<x<<" Y="<<y<<endl

N
(2
D /] -------- Main Program -------------
fe Nt Main()
OF {
8) const Point ¢cp(10,20); /1 constant point
N Point ncp(0,50); /1 non-constant point
T cp.print(); /1 OK. Const function operates on const object
< cp.move(30,15); /1 ERROR! Non-const function on const object
Ll ncp.move(100,45); /1 OK. ncp is non-const
% return O;
> ¥
N » A const method can invoke only other const methods, because a
I8 const method is not allowed to alter an object's state either
I= directly or indirectly, that is, by invoking some nonconst

method.

{ Object Oriented Programming 169]

class TComplex{
float real,img;

cz.print(); // OK
cz.reset(); // Error 1!
ncz.reset(); // OK

}

{ Object Oriented Programming 170]

public:

TComplex(float, float); // constructor
< void print() const; Il const method
0 void reset() {real=img=0;} // non-const method
B I3
foil | Complex:TComplex(float r=0,float i=0){
@) real=r;
CCJ) img=i;
= I
ol Void TComplex::print() const{ // const method
L% std::cout << “complex number=* << real << *, * << img;
= I
S int main() {
D const TComplex cz(0,1); // constant object
N TComplex ncz(1.2,0.5) // non-constant object
o
=

static Class Members |

» Normally, each object of aclass has its own copy of all

S data members of the class.
% P | n certain cases only one copy of a particular data member
= should be shared by all objects of aclass. A static data
= member 1s used for this reason.
% class A{
= char c; Obi bi
% static int I; — p/ — Dpject @
% }; {(;har C [S::I’?:IIC char c]
& | |
' int main()
= { char c
E A pq,r, \—/
< : Object r
}

{ Object Oriented Programming 171]

static Class Members |

p Static data members exist even no objects of that class
exist.

» Static data members can be public or private.

» To access public static data when no objects exist use the
class name and binary scope resolution operator.

for example A::i=5;

» T0 access private static data when no objects exist, a
public static member function must be provided.

» They must be initialized once (and only once) at file
Scope.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 172]

...

static int count; // Number of created objects (static data)

public:

static void GetCount(){ return count;}

A(){ count ++; std::cout<< std::endl << "Constructor * << count:}
~A(){ count--; std::cout<< std::endl << "Destructor “ << count;}

Int A::count=0; // Allocating memory for number

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 173]

Int main(){
std::cout<<"\n Entering 1. BLOCK............ "
A ab,c;
std::cout<<"\n Entering 2. BLOCK............ "
A de
std::cout<<"\n Exiting 2. BLOCK............. "

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 174]

‘Entering 1. BLOCK............
Constructor 1
Congtructor 2

Constructor 3
Entering 2. BLOCK.............
Constructor 4
Constructor 5
'Exiting 2. BLOCK............
Destructor 5
Destructor 4
'Exiting 1. BLOCK............
Destructor 3
Destructor 2

Destructor 1

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 175]

Passing Objects to Functions as Arguments |

» Objects should be passed or returned by reference unless there are
compelling reasons to pass or return them by value.

» Passing or returning by value can be especially inefficient in the case
of objects. Recall that the object passed or returned by value must be
copied into stack and the data may be large, which thus wastes storage.
The copying itself takes time.

» If the class contains a copy constructor the compiler uses this function
to copy the object into stack.

» \We should pass the argument by reference because we don’t want an
unnecessary copy of it to be created. Then, to prevent the function
from accidentally modifying the original object, we make the
parameter a const reference.

ComplexT & ComplexT::add(const ComplexT& z) {

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

ComplexT result; /1 local object
result.re = re + z.re; Remember, local
result.im = im + z.im; -
return result; !/l ERROR! variaples can not be
1 returned by reference.

{ Object Oriented Programming 176]

Avoiding Temporary Objects |

» In the previous example, within the add function atemporary object
IS defined to add two complex numbers.

» Because of this object, constructor and destructor are called.

» Avoiding the creation of atemporary object within add() savestime
and memory space.

ComplexT ComplexT::add(const ComplexT& ¢) {

double re new,im_new;

re_ new = re + C.re;

Im_new = im + c.im;

return ComplexT(re_new,im_new); // Constructor is called
}

» The only object that’ s created is the return value in stack, whichis

always necessary when returning by value.

» This could be a better approach, if creating and destroying individual
member data items is faster than creating and destroying a complete
obj ect.

{ Object Oriented Programming 177]

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

Nesting Objects. Classes as Members of Other Classes I

» A class may include objects of other classes asits data

< members.

% » |n the example, aclass is designed (ComplexFrac) to

I define complex numbers. The data members of this class
O are fractions which are objects of another class (Fraction).
(@)

£ -

Koo numerator

L% ,/V[denominator]

% ‘/

@)) CO_nS'[I‘UCtOI‘ > numerator

E Fraction \Print(Y, [denominator}

o

E

ComplexFrac

A /

{ Object Oriented Programming 178]

Composition & Aggregation |

» The relation between Fraction and ComplexFrac is called
"hasareation". Here, ComplexFrac has a Fraction
(actually two Fractions).

» Here, the author of the class ComplexFrac has to supply
the constructors of its object members (re, im) with
necessary arguments.

» Member objects are constructed in the order in which they
are declared and before their enclosing class objects are
constructed.

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 179]

Example: A class to define fractions

class Fraction{ /1 A class to define fractions
Int numerator, denominator;

public:
Fraction(int, int); /I CONSTRUCTOR
void print() const;

};

Fraction::Fraction(int num, int denom) /I CONSTRUCTOR

{

numerator = num;
If (denom==0) denominator = 1;
else denominator = denom;
cout << "Constructor of Fraction" << end];

}

void Fraction::print() const

{

cout << numerator << "/" << denominator << endl;

}

{ Object Oriented Programming 180]

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

Example: A class to define complex numbers. It contains two objects as

members
class ComplexFrac { // Complex numbers, real and imag. parts are fractions
Fraction re, im; // objects as data members of another class
public:
ComplexFrac(int,int); // Constructor
void print() const;
};
ComplexFrac::ComplexFrac(int re_in, int im_in) : re(re_in, 1) , im(im_in, 1)

{

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

} B—

void ComplexFrac::print() const { Data members are initialized
re.print();
im.print();

ks :

int main() { When an object goes out of scope, the
Sl G EN(ERIHI destructors are called in reverse order:
cf.print(); The enclosing object is destroyed first,
return O;) :

1 then the member (inner) object.

{ Object Oriented Programming 181]

Working with Multiple Files
(Separate Compilation)

» It isagood way to write each class or a collection of
related classes in separate files.

» |t provides managing the complexity of the software and
reusability of classesin new projects.

q
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 182]

Working with Multiple Files

Only declarations

A 4

C++ Ct++ Definitions
source source

l l
l l

#
p)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

Object Oriented Programming

» \When using separate compilation you need some way to
automatically compile each file and to tell the linker to build all the
pieces along with the appropriate libraries and startup code into an
executablefile.

» The solution, developed on Unix but available everywhere in some
form, isaprogram called make.

» Compiler vendors have also created their own project building tools.
These tools ask you which files are in your project and determine all
the relationships themselves. These tools use something similar to a
makefile, generally called a project file, but the programming
environment maintains this file so you don’t have to worry about it.

» The configuration and use of project files varies from one
development environment to another, so you must find the
appropriate documentation on how to use them (although project file
tools provided by compiler vendors are usually so ssmple to use that
you can learn them by playing around).

» We will write the example e410.cpp about fractions and complex
numbers again. Now we will put the class for fractions and complex
numbers in separate files.

#
V)
3
8
O
(@)
-
S
=
=
LL
&
o)
-
S
=
_
=

{ Object Oriented Programming 184]

