
121

OO Programming ConceptsOO Programming Concepts3

122

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ContentContent

►OOP Concepts
– Class

• Encapsulation
• Information Hiding

– Inheritance
– Polymorphism

123

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

OOP ConceptsOOP Concepts

►When you approach a programming problem in an object-
oriented language, you no longer ask how the problem
will be divided into functions, but how it will be divided
into objects.

►Thinking in terms of objects rather than functions has a
helpful effect on how easily you can design programs.
Because the real world consists of objects and there is a
close match between objects in the programming sense
and objects in the real world.

124

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

What is an Object?What is an Object?

►Many real-world objects have both a state (characteristics
that can change) and abilities (things they can do).

►Real-world object=State (properties)+ Abilities (behavior)

►Programming objects = Data + Functions

►The match between programming objects and real-world
objects is the result of combining data and member
functions.

►How can we define an object in a C++ program?

125

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Classes and ObjectsClasses and Objects

►Class is a new data type which is used to define objects. A
class serves as a plan, or a template. It specifies what data
and what functions will be included in objects of that
class. Writing a class doesn’t create any objects.

► A class is a description of similar objects.

► Objects are instances of classes.

126

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ExampleExample

A model (class) to define points in a graphics program.

►Points on a plane must have two properties (states):

– x and y coordinates. We can use two integer variables
to represent these properties.

►In our program, points should have the following abilities
(behavior):

– Points can move on the plane: move function

– Points can show their coordinates on the screen: print
function

– Points can answer the question whether they are on the
zero point (0,0) or not: is_zero function

127

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Class Definition: PointClass Definition: Point
class Point { // Declaration of Point Class

int x,y; // Properties: x and y coordinates

public: // We will discuss it later

void move(int, int); // A function to move the points

void print();// to print the coordinates on the screen

bool is_zero(); // is the point on the zero point(0,0)

}; // End of class declaration (Don't forget ;)

In our example first data and then the function prototypes are written. It is also possible to write
them in reverse order.

Data and functions in a class are called members of the class.

In our example only the prototypes of the functions are written in the class declaration. The bodies
may take place in other parts (in other files) of the program.

If the body of a function is written in the class declaration, then this function is defined as an inline
function (macro).

128

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Bodies of Member FunctionsBodies of Member Functions

// A function to move the points
void Point::move(int new_x, int new_y) {

x = new_x; // assigns new value to x coordinate
y = new_y; // assigns new value to y coordinate

}
// To print the coordinates on the screen
void Point::print() {

cout << "X= " << x << ", Y= " << y << endl;
}
// is the point on the zero point(0,0)
bool Point::is_zero() {

return (x == 0) && (y == 0); // if x=0 AND y=0 returns true
}

129

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Now we have a model (template) to define point objects.
We can create necessary points (objects) using the model.

int main() {
Point point1, point2; // 2 object are defined: point1 and point2
point1.move(100,50); // point1 moves to (100,50)
point1.print(); // point1's coordinates to the screen
point1.move(20,65); // point1 moves to (20,65)
point1.print(); // point1's coordinates to the screen
if(point1.is_zero()) // is point1 on (0,0)?

cout << "point1 is now on zero point(0,0)" << endl;
else cout << "point1 is NOT on zero point(0,0)" << endl;
point2.move(0,0); // point2 moves to (0,0)
if(point2.is_zero()) // is point2 on (0,0)?

cout << "point2 is now on zero point(0,0)" << endl;
else cout << "point2 is NOT on zero point(0,0)" << endl;
return 0;

}

130

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

C++ TerminologyC++ Terminology

►A class is a grouping of data and functions. A class is very much
like a structure type as used in ANSI-C, it is only a pattern to be
used to create a variable which can be manipulated in a program.

►An object is an instance of a class, which is similar to a variable
defined as an instance of a type. An object is what you actually use
in a program.

►A method (member function) is a function contained within the
class. You will find the functions used within a class often referred
to as methods in programming literature.

►A message is the same thing as a function call. In object oriented
programming, we send messages instead of calling functions. For
the time being, you can think of them as identical. Later we will see
that they are in fact slightly different.

131

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

ConclusionConclusion

►Until this slide we have discovered some features of the object-
oriented programming and the C++.

►Our programs consist of object as the real world do.

►Classes are living (active) data types which are used to define
objects. We can send messages (orders) to objects to enable them to
do something.

►Classes include both data and the functions involved with these data
(encapsulation). As the result:

► Software objects are similar to the real world objects,

► Programs are easy to read and understand,

► It is easy to find errors,

► It supports modularity and teamwork.

132

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Defining Methods as inline FunctionsDefining Methods as inline Functions
► In the previous example (Example 3.1), only the prototypes of the

member functions are written in the class declaration. The bodies of
the methods are defined outside the class.

► It is also possible to write bodies of methods in the class. Such
methods are defined as inline functions.

►For example the is_zero method of the Point class can be defined as
an inline function as follows:

class Point{ // Declaration of Point Class
int x,y; // Properties: x and y coordinates

public:
void move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero() bool is_zero() {{ // // is the point on the zero point(0,0) inline functionis the point on the zero point(0,0) inline function

return (x == 0) && (y == 0);return (x == 0) && (y == 0); //// the body of is_zerothe body of is_zero
}}

};

133

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Classes can be used to define variables like built-in data types (int,
float, char etc.) of the compiler.

►For example it is possible to define pointers to objects. In the
example below two pointers to objects of type Point are defined.

int main() {
Point *ptr1 = new Point; // allocating memory for the object pointed by ptr1
Point *ptr2 = new Point; // allocating memory for the object pointed by ptr2
ptr1->move(50, 50); // 'move' message to the object pointed by ptr1
ptr1->print(); //'print' message to the object pointed by ptr1
ptr2->move(100, 150); // 'move' message to the object pointed by ptr2
if(ptr2->is_zero()) // is the object pointed by ptr2 on zero

cout << " Object pointed by ptr2 is on zero." << endl;
else cout << " Object pointed by ptr2 is NOT on zero." << endl;
delete ptr1; // Releasing the memory
delete ptr2;
return 0;

}

Defining Dynamic ObjectsDefining Dynamic Objects

134

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►We may define static and dynamic arrays of objects. In the example
below we see a static array with ten elements of type Point.

►We will see later how to define dynamic arrays of objects.

int main()
{

Point array[10]; // defining an array with ten objects
array[0].move(15, 40); // 'move' message to the first element (indices 0)
array[1].move(75, 35); // 'move' message to the second element (indices 1)

: // message to other elements
for (int i = 0; i < 10; i++) // 'print' message to all objects in the array

array[i].print();
return 0;

}

Defining Array of ObjectsDefining Array of Objects

135

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►We can divide programmers into two groups: class creators (those
who create new data types) and client programmers (the class
consumers who use the data types in their applications).

►The goal of the class creator is to build a class that includes all
necessary properties and abilities. The class should expose only what’s
necessary to the client programmer and keeps everything else hidden.

►The goal of the client programmer is to collect a toolbox full of
classes to use for rapid application development.

►The first reason for access control is to keep client programmers’
hands off portions they shouldn’t touch. The hidden parts are only
necessary for the internal machinations of the data type but not part of
the interface that users need in order to solve their particular
problems.

Controlling Access to MembersControlling Access to Members

136

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Controlling Access to MembersControlling Access to Members

►The second reason for access control is that, if it’s hidden,
the client programmer can’t use it, which means that the
class creator can change the hidden portion at will without
worrying about the impact to anyone else.

►This protection also prevents accidentally changes of
states of objects.

Con’t

137

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►The labels public: , private: (and protected: as we will see
later) are used to control access to a class' data members
and functions.

►Private class members can be accessed only by members
of that class.

►Public members may be accessed by any function in the
program.

►The default access mode for classes is private: After each
label, the mode that was invoked by that label applies until
the next label or until the end of class declaration.

Controlling Access to MembersControlling Access to Members Con’t

138

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Controlling Access to MembersControlling Access to Members

bool is_zero()

void
print()

void
move(int,int)

Interface
public members

xx

yy

private
members

point1.move(100,45) point1.print()

if(point1.is_zero())

Messages

►The primary purpose of public members is to present to the
class's clients a view of the services the class provides.
This set of services forms the public interface of the class.

►The private members are not accessible to the clients of a
class. They form the implementation of the class.

Con’t

139

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

class Point{ // Point Class
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero(); // is the point on the zero point(0,0)

};
// A function to move the points (0,500 x 0,300)
bool Point::move(int new_x, int new_y) {

if(new_x > 0 && new_x < 500 && // if new_x is in 0-500
new_y > 0 && new_y < 300) { // if new_y is in 0-300
x = new_x; // assigns new value to x coordinate
y = new_y; // assigns new value to y coordinate
return true; // input values are accepted

}
return false; // input values are not accepted

}

►Example: We modify the move function of the class Point.
Clients of this class can not move a point outside a window
with a size of 500x300.

140

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

int main() {
Point p1; // p1 object is defined
int x,y; // Two variables to read some values from the keyboard
cout << " Give x and y coordinates “;
cin >> x >> y; // Read two values from the keyboard
if(p1.move(x,y)) // send move message and check the result

p1.print(); // If result is OK print coordinates on the screen
else cout << "\nInput values are not accepted";

}

►The new move function returns a boolean value to inform
the client programmer whether the input values are
accepted or not.

►Here is the main function:

It is not possible to assign a value to x or y directly outside
the class.

p1.x = -10; //ERROR! x is private

141

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

struct Keyword in C++structstruct Keyword in C++

►►classclass and structstruct keywords have very similar meaning in
the C++.

►They both are used to build object models.

►The only difference is their default access mode.

►The default access mode for class is privateprivate

►The default access mode for struct is publicpublic

142

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►A function or an entire class may be declared to be a friend of another
class.

►A friend of a class has the right to access all members (private,
protected or public) of the class.

class A{
friend class B; // Class B is a friend of class A
private: // private members of A

int i;
float f;

public: // public members of A
void fonk1(char *c);

};
class B{ // Class B

int j;
public:

void fonk2(A &s) { cout << s.i; } // B can access private members of A
};

In this example, A is not a
friend of B. A can not access
private members of B.

Friend Functions and Friend ClassesFriend Functions and Friend Classes

143

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►A friend function has the right to access all members
(private, protected or public) of the class.

class Point{ // Point Class
friend void zero(Point &); // A friend function of Point
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool is_zero(); // is the point on the zero point(0,0)

};

// Assigns zero to all coordinates
void zero(Point &p) // Not a member of any class
{

p.x = 0; // assign zero to x of p
p.y = 0; // assign zero to y of p

}

Friend Functions and Friend ClassesFriend Functions and Friend Classes Con’t

144

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

►Each object has its own data space
in the memory of the computer.
When an object is defined,
memory is allocated only for its
data members.

►The code of member functions are
created only once. Each object of
the same class uses the same
function code.

►How does C++ ensure that the proper object is referenced?

►C++ compiler maintains a pointer, called the this pointer.

this Pointerthisthis Pointer

x=100
y=50

point1

x=200
y=300

point2

move

print

is_zero

145

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

Point *Point::far_away(Point &p) {
unsigned long x1 = x*x; // x1 = x2

unsigned long y1 = y*y; // y1 = y2

unsigned long x2 = p.x * p.x;
unsigned long y2 = p.y * p.y;
if ((x1+y1) > (x2+y2)) return this; // Object returns its address

else return &p; // The address of the incoming object
}

►A C++ compiler defines an object pointer this. When a member
function is called, this pointer contains the address of the object, for
which the function is invoked. So member functions can access the
data members using the pointer this.

►Programmers also can use this pointer in their programs.

►Example: We add a new function to Point class: far_away.
This function will return the address of the object that has the largest
distance from (0,0).

146

O
O

 P
ro

gr
am

m
in

g
C

on
ce

pt
s

3

Object Oriented Programming

class Point{ // Point Class
int x,y; // private members: x and y coordinates

public: // public members
bool move(int, int); // A function to move the points

: // other methods are omitted
};
// A function to move the points (0,500 x 0,300)
bool Point::move(int x, int y) // paramters has the same name as
{ // data members x and y

if(x > 0 && x < 500 && // if given x is in 0-500
y > 0 && y < 300) { // if given y is in 0-300
this->x = x; // assigns given x value to member x
this->y = y; // assigns given y value to memeber y
return true; // input values are accepted

}
return false; // input values are not accepted

}

► this pointer can also be used in the methods if a parameter of the method
has the same name as one of the members of the class.

