
BLG332E
Object Oriented Programming

Practice Session 3
Exercise 4
In this exercise, you create a simple version of the Account class. A test program,
TestBanking.cpp, has been written that creates a single account.
Task 1: Change your working directory to chap03/exercise4

Task 2: Create a class Account that implements the UML diagram given above.

a) Declare one private attribute: balance; tis attribute holds the current (or “running”) balance of
the bank account.

b) Declare a public constructor that takes one parameter (init_balance) that populates the
balance attribute.

c) Declare a public method getBalance that retrieves the current balance.
d) Declare a public method deposit that adds the amount parameter to the current balance.
e) Declare a public method withdraw that removes the amount parameter from the current

balance.
Task 3: Read the TestBanking.cpp code.
Task 4: Compile Account.cpp and TestBanking.cpp.
Task 5: Run the program. You should see the following output:
 Create an account with 500.0 balance
 Withdraw 150.0
 Deposit 22.50
 Withdraw 47.62
 The account has a balance of 324.88
Exercise 5
In this exercise you will expand the Banking project by adding a Customer class. A customer will
contain one Account object.

Task 1: Change your working directory to chap03/exercise5
Task 2: Copy Account class from the previous exercise lab
 cp ../exercise4/Account.* .

Task 2: Create a class Customer class that implements the above UML diagram
a) Declare three private attributes: firstName, lastName, and account.
b) Declare a public constructor that takes two parameters (f and l) that populate the object

attributes.
c) Declare two public accessors for the object attributes; the methods getFirstName and

getlastName return the appropriate attribute.
d) Declare a public method setAccount to assign the account attribute.
e) Declare a public method getAccount to retrieve the account attribute.
f)

Task 3: Read the TestBanking.cpp code.
Task 4: Compile Account.cpp, Customer.cpp, and TestBanking.cpp.
Task 5: Run the program. The output generated should be:
 Creating the Customer Jane Smith
 Creating her account with a 500.0 balance.
 Withdraw 150.0
 Deposit 22.50
 Withdraw 47.62

Customer [Smith, Jane] has a balance of 324.88
Exercise 6
In this exercise, you will modify the withdraw method to return a boolean value to specify whether the
transaction was successful.
Task 1: Change your working directory to chap03/exercise6

Task 2: You can copy the Account.* and Customer.* files you created in Exercise 5.
Task 3: Modify the Account class to place conditions on the withdraw and deposit methods.

a) Modify the deposit method to return true.
b) Modify the withdraw method to check that the amount being withdrawn is not greater

than the current balance. If amt is less than balance, then subtract the amount from the
balance and return true; else leave the balance alone and return false.

Task 4: Read the TestBanking.cpp code.
Task 5: Compile Account.cpp, Customer.cpp, and TestBanking.cpp.
Task 6: Run the program. The output generated should be:
 Creating the Customer Jane Smith
 Creating her account with a 500.0 balance.
 Withdraw 150.0:true
 Deposit 22.50: true
 Withdraw 47.62: false
 Withdraw 400.0: false

Customer [Smith, Jane] has a balance of 324.88

