
59

C++ As a Better CC++ As a Better C2

60

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►C++ was developed from the C programming
language, by adding some features to it. These
features can be collected in three groups:

1. Non-object-oriented features, which can be
used in coding phase. These are not
involved with the programming technique.

2. Features which support object-oriented
programming.

3. Features which support generic
programming.

►With minor exceptions, C++ is a superset of C.

C++ As a Better CC++ As a Better C

C

C++

Non object-oriented
extensions

Object-oriented extensions
Generic programming
extensions

Minor exceptions:
C code that is not C++

61

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

C++'s Enhancements to C (Non Object-Oriented)C++'s Enhancements to C (Non Object-Oriented)

►Caution: The better one knows C, the harder it seems to be

to avoid writing C++ in C style, thereby losing some of the

potential benefits of C++.

►1. Always keep object-oriented and generic programming

techniques in mind.

►2. Always use C++ style coding technique which has

many advantages over C style.

►Non object-oriented features of a C++ compiler can be

also used in writing procedural programs.

62

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

►Comment Lines

►/* This is a comment */

►// This is a comment

►C++ allows you to begin a comment with // and use the

remainder of the line for comment text.

►This increases readability.

63

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►Remember; there is a difference between a declaration

and a definition

►A declaration introduces a name – an identifier – to the

compiler. It tells the compiler “This function or this variable

exists somewhere, and here is what it should look like.”

►A definition, on the other hand, says: “Make this variable

here” or “Make this function here.” It allocates storage for

the name.

Declarations and Definitions in C++Declarations and Definitions in C++

64

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

extern int i; // Declaration
int i; // Definition

struct ComplexT{ // Declaration
float re,im;

};
ComplexT c1,c2; // Definition
void func(int, int); // Declaration (its body is a definition)

► In C, declarations and definitions must occur at the beginning of a
block.
► In C++ declarations and definitions can be placed anywhere an
executable statement can appear, except that they must appear prior to
the point at which they are first used. This improve the readability of
the program.
► A variable lives only in the block, in which it was defined. This
block is the scope of this variable.

ExampleExample

65

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int a=0;

for (int i=0; i < 100; i++){{ // i is declared in for loop

a++;

int p=12; // Declaration of p

... // Scope of p

}} // End of scope for i and p

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

► Variable i is created at the beginning of the for loop once.
►Variable p is created 100 times.

66

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

► Scope Operator ::::

A definition in a block can hide a definition in an enclosing
block or a global name. It is possible to use a hidden global
name by using the scope resolution operator ::

int y=0; // Global y
int x=1; // Global x
void f(){ // Function is a new block

int x=5; // Local x=5, it hides global x
::x++; // Global x=2
x++; // Local x=6
y++; // Global y=1

}

C++'s Enhancements to C (Non-OO)C++'s Enhancements to C (Non-OO)

67

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int xx=1;

void f(){

int x=2; // Local x

::::xx++; // Global x is 2

}

11

22

68

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int i=1;
main(){

int i=2;
{

int n=i ;
int i = 3 ;
cout << i << " " << ::i << endl ;
cout << n << "\n" ;

}
cout << i << " " << ::i << endl;
return 0 ;

}

3 13 1
22
2 12 1

► Like in C, in C++ the same operator may have more than one
meaning. The scope operator has also many different tasks.

69

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

inline functionsinline functions

► In C, macros are defined by using the #define directive of the
preprocessor.

► In C++ macros are defined as normal functions. Here the
keyword inline is inserted before the declaration of the
function.

► Remember the difference between normal functions and
macros:

► A normal function is placed in a separate section of code and a
call to the function generates a jump to this section of code.

► Before the jump the return address and arguments are saved in
memory (usually in stack).

70

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

inline functionsinline functions

► When the function has finished executing, return address and return
value are taken from memory and control jumps back from the end
of the function to the statement following the function call.

► The advantage of this approach is that the same code can be called
(executed) from many different places in the program. This makes it
unnecessary to duplicate the function’s code every time it is
executed.

► There is a disadvantage as well, however.

► The function call itself, and the transfer of the arguments take some
time. In a program with many function calls (especially inside
loops), these times can add up and decrease the performance.

Con’t

71

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

inline inline intint SQ(intSQ(int x){return (x*x); }x){return (x*x); }
#define#define sqsq((x) (x*x)x) (x*x)

inline functionsinline functions

► An inline function is defined using almost the same syntax as an
ordinary function. However, instead of placing the function’s
machine-language code in a separate location, the compiler simply
inserts it into the location of the function call. :

int j, k, l ; // Three integers are defined

………. // Some operations over k and l

j = max(k, l) ; // inline function max is inserted

inline inline intint maxmax((intint xx,,intint yy){return (){return (y<x ? x : y)y<x ? x : y); }; }
#define#define maxmax((xx,y,y) () (y<x ? x : yy<x ? x : y))

j=j= ((k<l ? k : l)k<l ? k : l)

Con’t

72

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

► The decision to inline a function must be made with some
care.

►If a function is more than a few lines long and is called
many times, then inlining it may require much more
memory than an ordinary function.

►It’s appropriate to inline a function when it is short, but
not otherwise. If a long or complex function is inlined,
too much memory will be used and not much time will
be saved.

inline functionsinline functions Con’t

73

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

► Advantages

►Debugging

►Type checking

►Readable

inline functionsinline functions Con’t

74

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int exp(int n,int k=2k=2){

if(k == 2)

return (n*n) ;

else

return (exp(n,k-1)*n) ;

}

exp(i+5)
// (i+5)* (i+5)

exp(i+5,3)
// (i+5)’in kubu

Default Function ArgumentsDefault Function Arguments

► A programmer can give default values to parameters of
a function. In calling of the function, if the arguments
are not given, default values are used.

75

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void f(int i, int j=7) ; // right

void g(int i=3, int j) ; // wrong

void h(int i, int j=3,int k=7) ; // right

void m(int i=1, int j=2,int k=3) ; // right

void n(int i=2, int j,int k=3) ; // right ?? wrong

ExampleExample

► In calling a function argument must be given from left
to right without skipping any parameter

76

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void n(int i=1, int j=2,int k=3) ;

►n() n(1,2,3)

►n(2) n(2,2,3)

►n(3,4) n(3,4,3)

►n(5,6,7) n(5,6,7)

77

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►C++ uses a stricter type checking.
►In function declarations (prototypes) the data types of the
parameters must be included in the parentheses.

char grade (int, int, int); // declaration

int main()
{

:
}
char grade (int exam_1, int exam_2, int final_exam) // definition
{
: // body of function

}

Function Declarations and DefinitionsFunction Declarations and Definitions

78

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►In C++ a return type must be specified; a missing return
type does not default to int as is the case in C.

►In C++, a function that has no parameters can have an
empty parameter list.

int print (void); /* C style */

int print(); // C++ style

Function Declarations and DefinitionsFunction Declarations and Definitions

79

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►This operator provides an alternative name for storage

►There are two usages of the operator

intint n ;n ;

intint& & nnnn = n ;= n ;

double a[10] ;double a[10] ;

double& last = a[9] ;double& last = a[9] ;

const char& new_line = 'const char& new_line = '\\n' ;n' ;

Reference Operator ⎯ &Reference Operator ⎯ &

80

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void swap(int *a, int *b){

int temp = *a ;

*a = *b ;

*b = temp ; }

int main(){

int i=3,j=5 ;

swap(&i,&j) ;

cout << i << " " << j << endl ;

} 5 35 3

adr_j

GDA

adr_i

5
…

adr_i
adr_j

3i

j

a

b

heapheap

stackstack

► Parameters Passing: Consider swap() function

81

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void swap(int& a,int& b){

int temp = a ;

a = b ;

b = temp ; }

int main(){

int i=3,j=5 ;

swap(i,j) ;

cout << i << " " << j << endl ;

} 5 35 3

82

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void shift(int& a1,int& a2,int& a3,int& a4){

int tmp = a1 ;

a1 = a2 ;

a2 = a3 ;

a3 = a4 ;

a4 = tmp ;

}

int main(){

int x=1,y=2,z=3,w=4;

cout << x << y << z << w << endl;

shift(x,y,z,w) ;

cout << x << y << z << w << endl;

return 0 ;

}

83

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int main(){

int x=2,y=3,z=4 ;

squareByPointer(&x) ;

cout << x << endl ;

squareByReference(y) ;

cout << y << endl ;

z = squareByValue(z) ;

cout << z << endl ;

}

int squareByValue(int a){

return (a*a) ;

}

void squareByPointer(int *aPtr){

*aPtr = *aPtr**aPtr ;

}

void squareByReference(int& a){

a *= a ;

}

4 4
99

1616

84

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►To prevent the function from changing the parameter
accidentally, we pass the argument as constant reference to
the function.

const Referenceconst Reference

struct Person{ // A structure to define persons
char name [40]; // Name filed 40 bytes
int reg_num; // Register number 4 bytes

}; // Total: 44 bytes
void print (const Person &k) // k is constant reference parameter
{

cout << "Name: " << k.name << endl; // name to the screen
cout << "Num: " << k.reg_num << endl; // reg_num to the screen

}

int main(){
Person ahmet; // ahmet is a variable of type Person
strcpy(ahmet.name,"Ahmet Bilir"); // name = "Ahmet Bilir"
ahmet.reg_num=324; // reg_num= 324
print(ahmet); // Function call
return 0;

} Instead of 44 bytes only 4 bytes (address) are sent to the function.

85

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Return by referenceReturn by reference

►By default in C++, when a function returns a value: return expression;
expression is evaluated and its value is copied into stack. The calling function
reads this value from stack and copies it into its variables.

►An alternative to “return by value” is “return by reference”, in which the
value returned is not copied into stack.

►One result of using “return by reference” is that the function which returns a
parameter by reference can be used on the left side of an assignment
statement.

int& max(const int a[], int length) { // Returns an integer reference
int i=0; // indices of the largest element
for (int j=0 ; j<length ; j++)

if (a[j] > a[i]) i = j;
return a[i]; // returns reference to a[i]

}
int main() {

int array[] = {12, -54 , 0 , 123, 63}; // An array with 5 elements
max(array,5) = 0; // write 0 over the largest element
:

86

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

const int& max(int a[], int length) // Can not be used on the left side of an
{ // assignment statement

int i=0; // indices of the largest element
for (int j=0 ; j<length ; j++)

if (a[j] > a[i]) i = j;
return a[i];

}

This function can only be on right side of an assignment

int main()
{

int array[] = {12, -54 , 0 , 123, 63}; // An array with 5 elements
int largest; // A variable to hold the largest elem.
largest = max(array,5); // find the largest element
cout << "Largest element is " << largest << endl;
return 0;

}

To prevent the calling function from changing the return parameter
accidentally, const qualifier can be used.

const return parameterconst return parameter

87

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Since a function that uses “return by reference” returns an actual
memory address, it is important that the variable in this memory
location remain in existence after the function returns.
When a function returns, local variables go out of existence and their

values are lost.

int& f() { // Return by reference
int i; // Local variable. Created in stack
:
return i; // ERROR! i does not exist anymore.

}

Local variables can be returned by their values
int f() { // Return by value

int i; // Local variable. Created in stack
:
return i; // OK.

}

Never return a local variable by reference!Never return a local variable by reference!

88

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►In ANSI C, dynamic memory allocation is normally performed with
standard library functions mallocmalloc and freefree.
►The C++ newnew and deletedelete operators enable programs to perform
dynamic memory allocation more easily.
►The most basic example of the use of these operators is given below.
An int pointer variable is used to point to memory which is allocated by
the operator new. This memory is later released by the operator delete.

in C: int *p ;
p = (int *) malloc(N*sizeof(int)) ;
free(p) ;

in C++: int *p ;
p = new int[N] ;
delete [][]p ;

intint *p,*q ;*p,*q ;
p = p = newnew intint[9] ;[9] ;
q = q = newnew intint(9) ;(9) ;

new/deletenew/delete

89

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►Two Dimensional Array

double ** q ;

q = new double*[row] ; // matrix size is rowxcolumn

for(int i=0;i<row;i++)

q[i] = new double[column] ;

…..

for(int i=0;i<row;i++)

delete []q[i] ;

delete []q ;

iithth row jjthth column: q[ii][jj]

90

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

.

.

.

.

.

.

.

.

.

.

.

.

q[i]

q[0]

q[row-1]

q[i][j]

q[0][j]

q[row-1][j]

q[i] = new double[column] ;

.

.

.

.

91

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►Two Dimensional Array

double **q;

p = new double*[row] ; // matrix size is rowxcolumn

q[0] = new double[row*column] ;

for(int i=1;i<row;i++)

q[i] = q[i-1] + column ;

…..

delete []q[0] ;

delete []q ;

iithth row jjthth column: q[ii][jj]

92

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

.

.

.

.

.

.

.

.

q[i]

q[0]

q[row-1]

............

q[0] = new double[row*column] ;

for (int i=1;i<row;i++)
q[i] = q[i-1] + column ;

93

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

double ** q ;

memoryAlign = column % 4;

memoryWidth = (memoryAlign == 0) ?

column : (column+4 -memoryAlign) ;

q[0] = new double[row*memoryWidth] ;

for(int i=0;i<row;i++)

q[i] = q[i-1] + memoryWidth ;

…..

delete []q[0] ;

delete []q ;

94

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

► Function Overloading

double averageaverage(const double a[],int size) ;

double averageaverage(const int a[],int size) ;

double averageaverage(const int a[], const double b[],int size) ;

double average(const int a[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] ;

return ((double)sum/size) ;

}

Function OverloadingFunction Overloading

95

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

double average(const double a[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] ;

return (sum/size) ;

}

double average(const int a[],const double b[],int size) {

double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] + b[i] ;

return (sum/size) ;

}

96

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int main() {

int w[5]={1,2,3,4,5} ;

double x[5]={1.1,2.2,3.3,4.4,5.5} ;

cout << average(w,5) ;

cout << average(x,5) ;

cout << average(w,x,5) ;

return 0 ;

}

97

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

► Function Templates

template <typename T>

void printArray(const T *array,const int size){

for(int i=0;i < size;i++)

cout << array[i] << " " ;

cout << endl ;

}

Function TemplatesFunction Templates

98

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

int main() {

int a[3]={1,2,3} ;

double b[5]={1.1,2.2,3.3,4.4,5.5} ;

char c[7]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’ , ‘f’, ‘g’} ;

printArray(a,3) ;

printArray(b,5) ;

printArray(c,7) ;

return 0 ;

}

99

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

void printArray(int *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] << “," ;

cout << endl ;

}

void printArray(char *array,cont int size){

for(int i=0;i < size;i++)

cout << array[i] ;

cout << endl ;

}

100

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Operator OverloadingOperator Overloading

►In C++ it is also possible to overload the built-in C++
operators such as +, -, = and ++ so that they too invoke
different functions, depending on their operands.

►That is, the + in aa+bb will add the variables if aa and bb
are integers, but will call a different function if aa and bb
are variables of a user defined type.

101

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Operator Overloading: RulesOperator Overloading: Rules

►You can’t overload operators that don’t already exist in C++.

► You can not change numbers of operands. A binary operator
(for example +) must always take two operands.

► You can not change the precedence of the operators.

** comes always before ++

►Everything you can do with an overloaded operator you can
also do with a function. However, by making your listing
more intuitive, overloaded operators make your programs
easier to write, read, and maintain.

►Operator overloading is mostly used with objects. We will
discuss this topic later more in detail.

102

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►Functions of operators have the name operator and the
symbol of the operator. For example the function for the
operator + will have the name operator+:

struct SComplex{
float real,img;

};
SComplex operator+(SComplex v1, SComplex v2){
SComplex result;
result.real=v1.real+v2.real;
result.img=v1.img+v2.img;
return result;

}

Operator OverloadingOperator Overloading

int main(){
SComplex c1={1,2},c2 ={5,1};
SComplex c3;
c3=c1+c2; // c1+(c2)

}

103

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

namespacenamespace

►When a program reaches a certain size it’s typically broken up into pieces,

each of which is built and maintained by a different person or group.

►Since C effectively has a single arena where all the identifier and function

names live, this means that all the developers must be careful not to

accidentally use the same names in situations where they can conflict.

►The same problem come out if a programmer try to use the same names as

the names of library functions.

►Standard C++ has a mechanism to prevent this collision: the namespace

keyword. Each set of C++ definitions in a library or program is “wrapped” in a

namespace, and if some other definition has an identical name, but is in a

different namespace, then there is no collision.

104

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

namespacenamespace

namespace programmer1{ // programmer1's namespace
int iflag; // programmer1's iflag
void g(int); // programmer1's g function
: // other variables

} // end of namespace

namespace programmer2{ // programmer2's namespace
int iflag; // programmer2's iflag
:

} // end of namespace

105

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

programmer1::iflag = 3; // programmer1's iflag
programmer2::iflag = -345; // programmer2's iflag
programmer1::g(6); // programmer1's g function
If a variable or function does not belong to any namespace, then it is
defined in the global namespace. It can be accessed without a namespace
name and scope operator.

This declaration makes it easier to access variables and functions, which
are defined in a namespace.

using programmer1::iflag; // applies to a single item in the namespace
iflag = 3; // programmer1::iflag=3;
programmer2::iflag = -345;
programmer1::g(6);

Accessing VariablesAccessing Variables

using namespace programmer1; // applies to all elements in the namespace
iflag = 3; // programmer1::iflag=3;
g(6); // programmer1's function g
programmer2::iflag = -345;

106

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

#include <iostream>
namespace F {

float x = 9;
}

namespace G {
using namespace F;
float x = 2.0;

namespace INNER_G {
float z = 10.01;

}
}

int main(void) {
float x = 19.1;

using namespace G;
using namespace G::INNER_G;
std::cout << "x = " << x << std::endl;
std::cout << "y = " << y << std::endl;
std::cout << "z = " << z << std::endl;
return 0;

}

namespacenamespace

107

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►In the first versions of C++, mostly ‘.h’ is used as extension for the header

files.

►As C++ evolved, different compiler vendors chose different extensions for

file names (.hpp, .H , etc.). In addition, various operating systems have

different restrictions on file names, in particular on name length. These issues

caused source code portability problems.

►To solve these problems, the standard uses a format that allows file names

longer than eight characters and eliminates the extension.

►For example, instead of the old style of including iostream.h, which looks

like this: #include <iostream.h>, you can now write: #include

<iostream>

Standard C++ Header FilesStandard C++ Header Files

108

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Standard C++ Header FilesStandard C++ Header Files

►The libraries that have been inherited from C are still available with
the traditional ‘.h’ extension. However, you can also use them with the
more modern C++ include style by puting a “c” before the name. Thus:

#include <stdio.h> become: #include <cstdio>

#include <stdlib.h> #include <cstdlib>

►In standard C++ headers all declarations and definitions take place in a
namespace : std

►Today most of C++ compilers support old libraries and header files
too. So you can also use the old header files with the extension '.h'. For a
high-quality program prefer always the new libraries.

109

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

I/OI/O

►Instead of library functions (printf, scanf), in C++ library
objects are used for IO operations.

►When a C++ program includes the iostream header, four
objects are created and initialized:

►cin handles input from the standard input, the
keyboard.

►cout handles output to the standard output, the screen.

►cerr handles unbuffered output to the standard error
device, the screen.

►clog handles buffered error messages to the standard
error device

110

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Using cout ObjectUsing cout Object

To print a value to the screen, write the word cout, followed
by the insertion operator (<<).

#include<iostream> // Header file for the cout object
int main() {

int i=5; // integer i is defined, initial value is 5
float f=4.6; // floating point number f is defined, 4.6
std::cout << "Integer Number = " << i << " Real Number= " << f;
return 0;

}

111

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Using cin ObjectUsing cin Object

The predefined cin stream object is used to read data from
the standard input device, usually the keyboard. The cin
stream uses the >> operator, usually called the "get from"
operator.

#include<iostream>
using namespace std; // we don't need std:: anymore
int main() {

int i,j; // Two integers are defined
cout << "Give two numbers \n"; // cursor to the new line
cin >> i >> j; // Read i and j from the keyboard
cout << "Sum= " << i + j << "\n";
return 0;

}

112

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

#include <string>

#include <iostream>

using namespace std;

int main() {

string test;

while(test.empty() || test.size() <= 5)

{

cout << "Type a string longer string. " << endl;

cin >> test;

}

printfprintf((““%s%s””,test.c_,test.c_strstr())())

std namespacestd namespace

113

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

The type bool represents boolean (logical) values: true and false

Before bool became part of Standard C++, everyone tended to use different
techniques in order to produce Boolean-like behavior.

These produced portability problems and could introduce subtle errors.

Because there’s a lot of existing code that uses an int to represent a flag, the
compiler will implicitly convert from an int to a bool (nonzero values will
produce true while zero values produce false).

Do not prefer to use integers to produce logical values.

bool is_greater; // Boolean variable: is_greater
is_greater = false; // Assigning a logical value
int a,b;
………………
is_greater = a > b; // Logical operation
if (is_greater) …… // Conditional operation

bool Typebool Type

114

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►In standard C, preprocessor directive #define is used to create
constants: #define PI 3.14
►C++ introduces the concept of a named constant that is just like a
variable, except that its value cannot be changed.
►The modifier const tells the compiler that a name represents a
constant:

const int MAX = 100;
…
MAX = 5; // Compiler Error!

►const can take place before (left) and after (right) the type. They are
always (both) allowed and equivalent.

int const MAX = 100; // The same as const int MAX = 100;
►Decreases error possibilities.
►To make your programs more readable, use uppercase font for
constant identifiers.

constantconstant

115

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

Another usage of the keyword const is seen in the declaration of pointers.
There are three different cases:
a) The data pointed by the pointer is constant, but the pointer itself
however may be changed.

const char *p = "ABC";

p is a pointer variable, which points to chars. The const word may also
be written after the type:

char const *p = "ABC";

Whatever is pointed to by p may not be changed: the chars are declared
as const. The pointer p itself however may be changed.

*p = 'Z'; // Compiler Error! Because data is constant
p++; //OK, because the address in the pointer may change.

Use of constant–1Use of constant–1

116

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

b) The pointer itself is a const pointer which may not be changed.
Whatever data is pointed to by the pointer may be changed.

char * const sp = "ABC"; // Pointer is constant, data may change
*sp = 'Z'; // OK, data is not constant
sp++; // Compiler Error! Because pointer is constant

Use of constant–2Use of constant–2

117

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

c) Neither the pointer nor what it points to may be changed

The same pointer definition may also be written as follows:
char const * const ssp = "ABC";
const char * const ssp = "ABC";
*ssp = 'Z'; // Compiler Error! Because data is constant
ssp++; // Compiler Error! Because pointer is const

►The definition or declaration in which const is used should be read
from the variable or function identifier back to the type identifier:

"ssp is a const pointer to const characters"

Use of constant–3Use of constant–3

118

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►Traditionally, C offers the following cast construction:

(typename) expression

Example: f = (float)i / 2;

Following that, C++ initially also supported the function call style cast
notation:

typename(expression)

Example: Converting an integer value to a floating point value

int i=5;
float f;
f = float(i)/2;

►But, these casts are now called old-style casts, and they are
deprecated. Instead, four new-style casts were introduced.

CastsCasts

119

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►The static_cast<type>(expression) operator is used to convert one
type to an acceptable other type.

int i=5;
float f;
f = static_cast<float>(i)/2;

Casts: static_castCasts: static_cast

120

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

►The const_cast<type>(expression) operator is used to do away with
the const-ness of a (pointer) type.

►In the following example p is a pointer to constant data, and q is a
pointer to non-constant data. So the assignment q = p is not allowed.

const char *p = "ABC"; // p points to constant data
char *q; // data pointed by q may change
q = p; // Compiler Error! Constant data may change

If the programmer wants to do this assignment on purpose then he/she
must use the const_cast operator:

q = const_cast<char *>(p);

*q = 'X'; // Dangerous?

Casts: const_castCasts: const_cast

121

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

The reinterpret_cast<type>(expression) operator is used to reinterpret byte
patterns. For example, the individual bytes making up a structure can easily be
reached using a reinterpret_cast

struct S{ // A structure
int i1,i2; // made of two integers

};
int main(){

S x; // x is of type S
x.i1=1; // fields of x are filled
x.i2=2;
unsigned char *xp; // A pointer to unsigned chars
xp = reinterpret_cast<unsigned char *> (&x);
for (int j=0; j<8; j++) // bytes of x on the screen

std::cout << static_cast<int>(*xp++);
return 0;

}

The structure S is made of two integers (2x4=8 bytes). x is a variable of type S.
Each byte of x can be reached by using the pointer xp.

Casts: reinterpret_castCasts: reinterpret_cast

122

C
+

+
 A

s
a

B
et

te
r

C
2

Object Oriented Programming

The dynamic_cast<>() operator is used in the context of inheritance
and polymorphism. We will see these concepts later. The discussion of
this cast is postponed until the section about polymorphism.

► Using the cast-operators is a dangerous habit, as it suppresses the
normal type-checking mechanism of the compiler.

► It is suggested to prevent casts if at all possible.

► If circumstances arise in which casts have to be used, document the
reasons for their use well in your code, to make double sure that the
cast is not the underlying cause for a program to misbehave.

Casts: dynamic_castCasts: dynamic_cast

