
507

STREAMSSTREAMS12

508Object Oriented Programming

St
re

am
s

12

►A streamstream is a general name given to a flow of data in an
input/output situation. For this reason, streams in C++ are
often called iostreamsiostreams.
►An iostreamiostream can be represented by an object of a
particular class.
►For example, you’ve already seen numerous examples of
the cincin and coutcout stream objects used for input and output.

StreamsStreams

509Object Oriented Programming

St
re

am
s

12

Advantages of StreamsAdvantages of Streams
►Old-fashioned C programmers may wonder what advantages there
are to using the stream classes for I/O instead of traditional C
functions such as printf() and scanf() and—for files—fprintf(),
fscanf(), and so on.
►One reason is that the stream classes are less prone to errors. If
you’ve ever used a %d formatting character when you should have
used a %f in printf(), you’ll appreciate this. There are no such
formatting characters in streams, because each object already knows
how to display itself. This removes a major source of program bugs.
►Second, you can overload existing operators and functions, such as
the insertion (<<) and extraction (>>) operators, to work with classes
you create. This makes your classes work in the same way as the
built-in types, which again makes programming easier and more error
free (not to mention more aesthetically satisfying).

510Object Oriented Programming

St
re

am
s

12

ios

istream ostream fstreambase

iostream ifstream ofstream

fstream

Stream Class HierarchyStream Class Hierarchy

511Object Oriented Programming

St
re

am
s

12

►The iosios class is the base class for the iostreamiostream hierarchy.
–contains many constants and member functions common
to input and output operations of all kinds.
–also contains a pointer to the streambufstreambuf class, which
contains the actual memory buffer into which data is read
or written and the low-level routines for handling this
data.

Stream Class HierarchyStream Class Hierarchy

512Object Oriented Programming

St
re

am
s

12

Stream Class HierarchyStream Class Hierarchy
►The istreamistream and ostreamostream classes are derived from iosios and

are dedicated to input and output, respectively.
►The istreamistream class contains such member functions as

get(), getline(), read(), and the extraction (») operators,
whereas ostreamostream contains put() and write() and the
insertion («) operators.

►The iostreamiostream class is derived from both istreamistream and
ostreamostream by multiple inheritance.
– used with devices, such as disk files, that may be

opened for both input and output at the same time.

513Object Oriented Programming

St
re

am
s

12

Stream Class HierarchyStream Class Hierarchy

►The ifstreamifstream class is used for creating input file objects
►The oofstreamfstream class is used for creating input file objects

is used for creating output file objects.
►To create a read/write file the fstreamfstream class should be

used.

514Object Oriented Programming

St
re

am
s

12

►The ios class is the grand daddy of all the stream classes
and contains the majority of the features you need to operate
C++ streams.
►The three most important features are

– the formatting flags,
– the error-status bits,
– the file operation mode.

We’ll look at formatting flags and error-status bits now.

iosiosios

515Object Oriented Programming

St
re

am
s

12

Formatting FlagsFormatting Flags
Formatting flags are a set of enum definitions in ios. They act as on/off
switches that specify choices for various aspects of input and output
format and operation.
skipws Skip (ignore) whitespace on input.
left Left adjust output.
right Right adjust output.
dec Convert to decimal.
oct Convert to octal.
hex Convert to hexadecimal.
showbase Use base indicator on output (0 for octal, 0x for hex).
showpoint Show decimal point on output.
uppercase Use uppercase X, E, and hex output letters ABCDEF.
showpos Display ‘+’ before positive integers.
scientific Use exponential format on floating-point output [9.1234E2].
fixed Use fixed format on floating-point output [912.34].
unitbuf Flush all streams after insertion.

516Object Oriented Programming

St
re

am
s

12

►There are several ways to set the formatting flags, and
different flags can be set in different ways. Because they are
members of the ios class, flags must usually be preceded by
the name ios and the scope-resolution operator (e.g.,
ios::skipws). All the flags can be set using the setfsetf() and
unsetfunsetf() ios member functions.
►For example,

cout.setf(ios::left); //left justify output text
cout >> "This text is left-justified";
cout.unsetf(ios::left); //return to default

//(right justified)

►Many formatting flags can be set using manipulators, so
let’s look at them now.

Formatting FlagsFormatting Flags

517Object Oriented Programming

St
re

am
s

12

►Manipulators are formatting instructions inserted directly
into a stream.
►You’ve seen examples before, such as the manipulator
endlendl, which sends a new line to the stream and flushes it:

cout << "To each his own." << endl;
►There is also used the setiosflags() manipulator:

cout << setiosflags(ios::fixed) // use fixed decimal point
<< setiosflags(ios::showpoint) //always show decimal point
<< var;

ManipulatorsManipulators

518Object Oriented Programming

St
re

am
s

12

You insert these manipulators directly into the stream. e.g., to output var
in hexadecimal format, you can say

cout << hex << var;

No-argument ios ManipulatorsNo-argument ios Manipulators
ws Turn on whitespace skipping on input

dec Convert to decimal
oct Convert to octal
hex Convert to hexadecimal

endl Insert new line and flush the output stream
ends Insert null character to terminate an output string
flush Flush the output stream
lock Lock file handle

unlock Unlock file handle

519Object Oriented Programming

St
re

am
s

12

ios Manipulators with Argumentsios Manipulators with Arguments
►Manipulators that take arguments affect only the next item
in the stream.
►For example, if you use setwsetw to set the width of the field in
which one number is displayed, you’ll need to use it again for
the next number.

setw() field width (int) Set field width for output

setfill() fill character (int) Set fill character for output
(default is a space)

setprecision() precision (int) Set precision (number of
digits displayed)

setiosflags() formatting flags (long) Set specified flags

resetiosflags() formatting flags (long) Clear specified flags

520Object Oriented Programming

St
re

am
s

12

FunctionsFunctions
►The ios class contains a number of functions that you can
use to set the formatting flags and perform other tasks.
►Most of these functions are shown below:

ch=fill() Return the fill character (fills unused part of
field; default is space).

fill(ch) Set the fill character.

p=precision() Get the precision (number of digits displayed
for floating point).

precision(p) Set the precision.
w=width() Get the current field width (in characters).
width(w) Set the current field width.
setf(flags) Set specified formatting flags (e.g., ios::left).

unsetf(flags) Unset specified formatting flags.

521Object Oriented Programming

St
re

am
s

12

►These functions are called for specific stream objects using the
normal dot operator. For example, to set the field width to 14, you can
say

cout.width(14);
►Similarly, the following statement sets the fill character to an asterisk
(as for check printing):

cout.fill('*');
►You can use several functions to manipulate the ios formatting flags
directly.
For example, to set left justification, use

cout.setf(ios::left);
To restore right justification, use

cout.unsetf(ios::left);

522Object Oriented Programming

St
re

am
s

12
istreamistream

The istream class, which is derived from ios, performs input-
specific activities.

istreamistream functions:
>>>> Formatted extraction for all basic (and overloaded) types.
get(chget(ch)) Extract one character into ch.
get(strget(str)) Extract characters into array str, until ‘\0’.
get(strget(str, MAX), MAX) Extract up to MAX characters into array.
get(strget(str, DELIM), DELIM) Extract characters into array str until specified delimiter

(typically ‘\n’).
Leave delimiting char in stream.

523Object Oriented Programming

St
re

am
s

12

ggeett((ssttrr,, MMAAXX,, DDEELLIIMM)) Extract characters into array str until MAX characters or
the DELIM character. Leave delimiting char in stream

ggeettlliinnee((ssttrr,, MMAAXX,, DDEELLIIMM)) Extract characters into array str until MAX characters or
the DELIM character. Extract delimiting character

ppuuttbbaacckk((cchh)) Insert last character read back into input stream

iiggnnoorree((MMAAXX,, DDEELLIIMM)) Extract and discard up to MAX characters until (and
including) the specified delimiter (typically ‘\n’)

ppeeeekk((cchh)) Read one character, leave it in stream

ccoouunntt == ggccoouunntt(()) Return number of characters read by a (immediately
preceding) call to get(), getline(), or read()

rreeaadd((ssttrr,, MMAAXX)) For files. Extract up to MAX characters into str until
EOF

sseeeekkgg((ppoossiittiioonn)) Sets distance (in bytes) of file pointer from start of file

sseeeekkgg((ppoossiittiioonn,, sseeeekk__ddiirr)) Sets distance (in bytes) of file pointer from specified
place in file: seek_dir can be ios::beg, ios::cur, ios::end

ppoossiittiioonn == tteellllgg((ppooss)) Return position (in bytes) of file pointer from start of file

istream Functionsistreamistream Functions

524Object Oriented Programming

St
re

am
s

12

ostreamostreamostream
The ostream class handles output or insertion activities.
ostream functions:
<< Formatted insertion for all basic (and overloaded) types.

put(ch) Insert character ch into stream.
flush() Flush buffer contents and insert new line.
write(str, SIZE) Insert SIZE characters from array str into file.
seekp(position) Sets distance in bytes of file pointer from start of file.
seekp(position, seek_dir) Set distance in bytes of file pointer from specified place in

file. seek_dir can be ios::beg, ios::cur, or ios::end.
position = tellp() Return position of file pointer, in bytes.

525Object Oriented Programming

St
re

am
s

12

►The iostream class, which is derived from both istream and
ostream, acts only as a base class from which other classes,
specifically iostream_withassign, can be derived.
►It has no functions of its own (except constructors and destructors).
Classes derived from iostream can perform both input and output.
►There are three _withassign classes:

istream_withassign, derived from istream
ostream_withassign, derived from ostream
iostream_withassign, derived from iostream

►These _withassign classes are much like those they’re derived from
except they include overloaded assignment operators so their objects
can be copied.

Ostream and _withassign ClassesOstream and _withassign Classes

526Object Oriented Programming

St
re

am
s

12

Objects Name Class Used for
cin istream_withassign Keyboard input
cout ostream_withassign Normal screen output
cerr ostream_withassign Error output
clog ostream_withassign Log output

The cerr object is often used for error messages and program diagnostics. Output
sent to cerr is displayed immediately, rather than being buffered, as output sent
to cout is. Also, output to cerr cannot be redirected. For these reasons, you have
a better chance of seeing a final output message from cerr if your program dies
prematurely. Another object, clog, is similar to cerr in that it is not redirected,
but its output is buffered, whereas cerr’s is not.

Predefined Stream Objects

Stream Errors

What happens if a user enters the string “nine” instead of the integer 9, or pushes
ENTER without entering anything? What happens if there’s a hardware failure?
We’ll explore such problems in this session. Many of the techniques you’ll see here
are applicable to file I/O as well.

527Object Oriented Programming

St
re

am
s

12

The stream error-status bits (error byte) are an ios member that report errors
that occurred in an input or output operation.
goodbit No errors (no bits set, value = 0).
eofbit Reached end of file.
failbit Operation failed (user error, premature EOF).
badbit Invalid operation (no associated streambuf).
hardfail Unrecoverable error.

Various ios functions can be used to read (and even set) these error bits.
int = eof(); Returns true if EOF bit set.
int = fail(); Returns true if fail bit or bad bit or hard-fail bit set.
int = bad(); Returns true if bad bit or hard-fail bit set.
int = good(); Returns true if everything OK; no bits set.
clear(int=0); With no argument, clears all error bits;

otherwise sets specified bits, as in clear(ios::failbit).

Error-Status BitsError-Status Bits

528Object Oriented Programming

St
re

am
s

12
#include <iostream>
int main() {

int i;
char ok=0;
while(!ok) { // cycle until input OK

cout << "\nEnter an integer: ";
cin >> i;
if(cin.good()) ok=1; // if no errors
else {

cin.clear(); // clear the error bits
cout << "Incorrect input";
cin.ignore(20, '\n'); // remove newline

}
}
cout << "integer is " << i; // error-free integer

}

inp.cpp

529Object Oriented Programming

St
re

am
s

12

►Whitespace characters, such as TAB, ENTER , and ‘\n’, are normally
ignored (skipped) when inputting numbers. This can have some
undesirable side effects. For example, users, prompted to enter a number,
may simply press the key without typing any digits. Pressing ENTER
causes the cursor to drop down to the next line while the stream continues
to wait for the number.
►What’s wrong with the cursor dropping to the next line?

–First, inexperienced users, seeing no acknowledgment when they
press , may assume the computer is broken.
–Second, pressing repeatedly normally causes the cursor to drop
lower and lower until the entire screen begins to scroll upward.

►Thus it’s important to be able to tell the input stream not to ignore
whitespace. This is done by clearing the skipws flag:

No-Input InputNo-Input Input

530Object Oriented Programming

St
re

am
s

12

cout << "\nEnter an integer: ";
cin.unsetf(ios::skipws); // don't ignore whitespace
cin >> i;
if(cin.good())

{
// no error
}
// error

Now if the user types without any digits, failbit will be set and an
error will be generated. The program can then tell the user what to
do or reposition the cursor so the screen does not scroll.

531Object Oriented Programming

St
re

am
s

12

► Disk files require a different set of classes than files used with the
keyboard and screen. These are ifstream for input, fstream for input and
output, and ofstream for output. Objects of these classes can be
associated with disk files and you can use their member functions to
read and write to the files.
► The ifstream, ofstream, and fstream classes are declared in the
FSTREAM.H file.
► This file also includes the IOSTREAM.H header file, so there is no
need to include it explicitly;
► FSTREAM.H takes care of all stream I/O.

Disk File I/O with StreamsDisk File I/O with Streams

532Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file I/O
int main(){

char ch = 'x'; // character
int j = 77; // integer
double d = 6.02; // floating point
char str1[] = "Kafka"; // strings
char str2[] = "Proust"; // (no embedded spaces)
ofstream outfile("fdata.txt"); // create ofstream object
outfile << ch // insert (write) data

<< j << ' ' // needs space between numbers
<< d
<< str1 << ' ' // needs space between strings
<< str2;

}

533Object Oriented Programming

St
re

am
s

12

Here the program defines an object called outfile to be a member of the ofstream class.
At the same time, it initializes the object to the file name FDATA.TXT. This
initialization sets aside various resources for the file, and accesses or opens the file of
that name on the disk. If the file doesn’t exist, it is created. If it does exist, it is truncated
and the new data replaces the old. The outfile object acts much as cout did in previous
programs, so the insertion operator (<<) is used to output variables of any basic type to
the file. This works because the insertion operator is appropriately overloaded in
ostream, from which ofstream is derived.

When the program terminates, the outfile object goes out of scope. This calls its
destructor, which closes the file, so you don’t need to close the file explicitly.

You must separate numbers (such as 77 and 6.02) with nonnumeric characters. Because
numbers are stored as a sequence of characters rather than as a fixed-length field, this is
the only way the extraction operator will know, when the data is read back from the file,
where one number stops and the next one begins. Second, strings must be separated with
whitespace for the same reason. This implies that strings cannot contain embedded
blanks. In this example, I use the space character (“ “) for both kinds of delimiters.
Characters need no delimiters, because they have a fixed length.

534Object Oriented Programming

St
re

am
s

12

Any program can read the file generated by previous program by using
an ifstream object that is initialized to the name of the file. The file is
automatically opened when the object is created. The program can then
read from it using the extraction (>>) operator.

Reading DataReading Data

535Object Oriented Programming

St
re

am
s

12

// reads formatted output from a file, using >>
#include <fstream.h>
const int MAX = 80;
int main(){

char ch; // empty variables
int j;
double d;
char str1[MAX];
char str2[MAX];
ifstream infile("fdata.txt"); // create ifstream object
infile >> ch >> j >> d >> str1 >> str2; // extract data from it
cout << ch << endl // display the data

<< j << endl
<< d << endl
<< str1 << endl
<< str2 << endl;

}
536Object Oriented Programming

St
re

am
s

12

► Objects derived from ios contain error-status bits that can be
checked to determine the results of operations. When you read a file
little by little, you will eventually encounter an end-of-file condition.
The EOF is a signal sent to the program from the hardware when there
is no more data to read. The following construction can be used to
check for this:

while(!infile.eof()) // until eof encountered
► However, checking specifically for an eofbit means that I won’t
detect the other error bits, such as the failbit and badbit, which may
also occur, although more rarely. To do this, I could change the loop
condition:
while(infile.good()) // until any error encountered

Detecting End-OF-FileDetecting End-OF-File

537Object Oriented Programming

St
re

am
s

12

► But even more simply, I can test the stream directly
while(infile) // until any error encountered

Any stream object, such as infile, has a value that can be tested for the
usual error conditions, including EOF. If any such condition is true,
the object returns a zero value.
► If everything is going well, the object returns a nonzero value. This
value is actually a pointer, but the “address” returned has no
significance except to be tested for a zero or nonzero value.

538Object Oriented Programming

St
re

am
s

12

You can write a few numbers to disk using formatted I/O, but if you’re storing
a large amount of numerical data, it’s more efficient to use binary I/O in which
numbers are stored as they are in the computer’s RAM memory rather than as
strings of characters. In binary I/O an integer is always stored in 2 bytes,
whereas its text version might be 12345, requiring 5 bytes. Similarly, a float is
always stored in 4 bytes, whereas its formatted version might be 6.02314e13,
requiring 10 bytes.

The next example shows how an array of integers is written to disk and then
read back into memory using binary format. I use two new functions: write(),
a member of ofstream, and read(), a member of ifstream. These functions
think about data in terms of bytes (type char). They don’t care how the data is
formatted, they simply transfer a buffer full of bytes from and to a disk file.
The parameters to write() and read() are the address of the data buffer and its
length. The address must be cast to type char, and the length is the length in
bytes (characters), not the number of data items in the buffer.

Binary I/OBinary I/O

539Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file streams
const int MAX = 100; // number of ints
int buff[MAX]; // buffer for integers
int main() {

int j;
for(j=0; j<MAX; j++) // fill buffer with data
buff[j] = j; // (0, 1, 2, ...)
ofstream os("edata.dat", ios::binary); // create output stream
os.write((char*)buff, MAX*sizeof(int)); // write to it
os.close(); // must close it
for(j=0; j<MAX; j++) // erase buffer

buff[j] = 0;
ifstream is("edata.dat", ios::binary); // create input stream
is.read((char*)buff, MAX*sizeof(int)); // read from it
for(j=0; j<MAX; j++) // check data

if(buff[j] != j) std::cerr << "\nData is incorrect";
else std::cout << "\nData is correct";

}

ExampleExample

540Object Oriented Programming

St
re

am
s

12

When writing an object, you generally want to use binary mode. This
writes the same bit configuration to disk that was stored in memory and
ensures that numerical data contained in objects is handled properly.
#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void getData(void) { // get person's data

std::cout << "Enter name: "; cin >> name;
std::cout << "Enter age: "; cin >> age;

}
};

Writing an Object to DiskWriting an Object to Disk

541Object Oriented Programming

St
re

am
s

12

int main() {
person pers; // create a person
pers.getData(); // get data for person
ofstream outfile("PERSON.DAT", ios::binary);
outfile.write((char*)&pers, sizeof(pers)); // write to it

}

#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void showData(void) { // display person's data

std::cout << "\n Name: " << name;
std::cout << "\n Age: " << age;

}
};

Reading an Object from Disk

542Object Oriented Programming

St
re

am
s

12

int main() {
person pers; // create person variable
ifstream infile("PERSON.DAT", ios::binary); // create stream
infile.read((char*)&pers, sizeof(pers)); // read stream
pers.showData(); // display person

}
To work correctly, programs that read and write objects to files, must be working
on the same class of objects. Objects of class person in these programs are exactly
42 bytes long, with the first 40 occupied by a string representing the person’s name
and the last 2 containing an int representing the person’s age.

Notice, however, that although the person classes in both programs have the same
data, they may have different member functions. The first includes the single
function getData(), whereas the second has only showData(). It doesn’t matter
what member functions you use, because members functions are not written to disk
along with the object’s data. The data must have the same format, but
inconsistencies in the member functions have no effect. This is true only in simple
classes that don’t use virtual functions.

543Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file streams
class person { // class of persons

protected:
char name[40]; // person's name
int age; // person's age

public:
void getData() { // get person's data

cout << "\n Enter name: "; cin >> name;
cout << " Enter age: "; cin >> age;

}
void showData() { // display person's data

cout << "\n Name: " << name;
cout << "\n Age: " << age;

}
};

I/O with Multiple ObjectsI/O with Multiple Objects

544Object Oriented Programming

St
re

am
s

12

int main(){
char ch;
person pers; // create person object
fstream file; // create input/output file
file.open("PERSON.DAT", ios::out | ios::binary); // open for append
do{ // data from user to file

cout << "\nEnter person's data:";
pers.getData(); // get one person's data
file.write((char*)&pers, sizeof(pers)); // write to file
cout << "Enter another person (y/n)? ";
cin >> ch;

} while(ch=='y'); // quit on 'n'
file.close(); // reset to start of file
file.open("PERSON.DAT", ios::in | ios::binary);
file.read((char*)&pers, sizeof(pers)); // read first person
while(!file.eof()) // quit on EOF
{

cout << "\nPerson:"; // display person
pers.showData();
file.read((char*)&pers, sizeof(pers)); // read another

} // person
}

objfile.cpp

545Object Oriented Programming

St
re

am
s

12

The next program shows how errors are most conveniently handled. All disk operations are
checked after they are performed. If an error has occurred, a message is printed and the program
terminates. We will use the technique, discussed earlier, of checking the return value from the
object itself to determine its error status. The program opens an output stream object, writes an
entire array of integers to it with a single call to write(), and closes the object. Then it opens an
input stream object and reads the array of integers with a call to read().

#include <fstream> // for file streams
#include <process> // for exit()
const int MAX = 1000;
int buff[MAX];
int main(){
for(int j=0; j<MAX; j++) buff[j] = j; // fill buffer with data
ofstream os; // create output stream
os.open("edata.dat", ios::trunc | ios::binary); // open it
if(!os) { cerr << "\nCould not open output file"; exit(1); }
std::cout << "\nWriting..."; // write buffer to it
os.write((char*)buff, MAX*sizeof(int));
if(!os) { cerr << "\nCould not write to file"; exit(1); }
os.close(); // must close it

}

Reacting to ErrorsReacting to Errors

546Object Oriented Programming

St
re

am
s

12
for(j=0; j<MAX; j++) buff[j] = 0; // clear buffer
ifstream is; // create input stream
is.open("edata.dat", ios::binary);
if(!is) { std::cerr << "\nCould not open input file"; exit(1); }
std::cout << "\nReading...";
is.read((char*)buff, MAX*sizeof(int)); // read file
if(!is) { std::cerr << "\nCould not read from file"; exit(1); }
for(j=0; j<MAX; j++) // check data
if(buff[j] != j) { std::cerr << "\nData is incorrect"; exit(1); }

std::cout << "\nData is correct";
}

Analyzing Errors
In the previous example, we determined whether an error occurred in an I/O
operation by examining the return value of the entire stream object.
if(!is)

// error occurred
However, it’s also possible, using the ios error-status bits, to find out more specific
information about a file I/O error.

547Object Oriented Programming

St
re

am
s

12

#include <fstream.h> // for file functions
int main(){

ifstream file;
file.open("GROUP.DAT", ios::nocreate);
if(!file)

cout << endl <<"Can't open GROUP.DAT";
else

cout << endl << "File opened successfully.";
cout << endl << "file = " << file;
cout << endl << "Error state = " << file.rdstate();
cout << endl << "good() = " << file.good();
cout << endl << "eof() = " << file.eof();
cout << endl << "fail() = " << file.fail();
cout << endl << "bad() = " << file.bad();
file.close();

}

548Object Oriented Programming

St
re

am
s

12

This program first checks the value of the object file. If its value is zero, the
file probably could not be opened because it didn’t exist. Here’s the output of
the program when that’s the case:
Can't open GROUP.DAT
file = 0x1c730000
Error state = 4
good() = 0
eof() = 0
fail() = 4
bad() = 4
The error state returned by rdstate() is 4. This is the bit that indicates the file
doesn’t exist; it’s set to 1. The other bits are all set to 0. The good() function
returns 1 (true) only when no bits are set, so it returns 0 (false). I’m not at
EOF, so eof() returns 0. The fail() and bad() functions return nonzero because
an error occurred.

In a serious program, some or all of these functions should be used after every
I/O operation to ensure that things have gone as expected.

549Object Oriented Programming

St
re

am
s

12

// seeks particular person in file
#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age

public:
void showData() { // display person's data
cout << "\n Name: " << name; cout << "\n Age: " << age;

}
};

Each file object has associated with it two integer values called the get pointer and the put
pointer. These are also called the current get position and the current put position, or—if it’s
clear which one is meant—simply the current position. These values specify the byte number
in the file where writing or reading will take place

There are times when you must take control of the file pointers yourself so that you can read
from or write to an arbitrary location in the file. The seekg() and tellg() functions allow you to
set and examine the get pointer, and the seekp() and tellp() functions perform the same actions
on the put pointer.

File PointersFile Pointers

550Object Oriented Programming

St
re

am
s

12

int main(){
person pers; // create person object
ifstream infile; // create input file
infile.open("PERSON.DAT", ios::binary); // open file
infile.seekg(0, ios::end); // go to 0 bytes from end
int endposition = infile.tellg(); // find where we are
int n = endposition / sizeof(person); // number of persons
cout << endl << "There are " << n << " persons in file";
cout << endl << "Enter person number: "; cin >> n;
int position = (n-1) * sizeof(person); // number times size
infile.seekg(position); // bytes from begin
infile.read((char*)&pers, sizeof(pers)); // read one person
pers.showData(); // display the person

}

Here’s the output from the program, assuming that the PERSON.DAT file
contains 3 persons:
There are 3 persons in file
Enter person number: 2

Name: Rainier
Age: 21

551Object Oriented Programming

St
re

am
s

12

So far, we’ve let the main() function handle the details of file I/O. This
is nice for demonstrations, but in real object-oriented programs, it’s
natural to include file I/O operations as member functions of the class.

In the next example, we will add member functions, diskOut() and
diskIn() to the person class. These functions allow a person object to
write itself to disk and read itself back in.
Simplifying assumptions: First, all objects of the class will be stored in
the same file, called PERSON.DAT. Second, new objects are always
appended to the end of the file. An argument to the diskIn() function
allows me to read the data for any person in the file. To prevent
attempts to read data beyond the end of the file, I include a static
member function, diskCount(), that returns the number of persons
stored in the file.

File I/O Using Member FunctionsFile I/O Using Member Functions

552Object Oriented Programming

St
re

am
s

12
#include <fstream.h> // for file streams
class person {// class of persons
protected:
char name[40]; // person's name
int age; // person's age

public:
void getData(){ // get person's data
cout << "\n Enter name: "; cin >> name; cout << " Enter age: "; cin >> age;}

void showData(){ // display person's data
cout << "\n Name: " << name; cout << "\n Age: " << age; }

void diskIn(int); // read from file
void diskOut(); // write to file
static int diskCount(); // return number of persons in file

};

void person::diskIn(int pn){ // read person number pn from file
ifstream infile; // make stream
infile.open("PERSON.DAT", ios::binary); // open it
infile.seekg(pn*sizeof(person)); // move file ptr
infile.read((char*)this, sizeof(*this)); // read one person

}

553Object Oriented Programming

St
re

am
s

12

void person::diskOut() // write person to end of file
{

ofstream outfile; // make stream
outfile.open("PERSON.DAT", ios::app | ios::binary); // open it
outfile.write((char*)this, sizeof(*this)); // write to it

}

int person::diskCount() // return number of persons in file
{

ifstream infile;
infile.open("PERSON.DAT", ios::binary);
infile.seekg(0, ios::end); // go to 0 bytes from end
return infile.tellg() / sizeof(person); // calculate number of persons

}

554Object Oriented Programming

St
re

am
s

12

int main(void){
person p; // make an empty person
char ch;
do{ // save persons to disk

cout << "\nEnter data for person:";
p.getData(); // get data
p.diskOut(); // write to disk
cout << "Do another (y/n)? ";
cin >> ch;

}while(ch=='y'); // until user enters 'n'
int n = person::diskCount(); // how many persons in file?
cout << "\nThere are " << n << " persons in file";
for(int j=0; j<n; j++) { // for each one,

cout << "\nPerson #" << (j+1);
p.diskIn(j); // read person from disk
p.showData(); // display person

}
}

555Object Oriented Programming

St
re

am
s

12

In this session I’ll show how to overload the extraction and insertion operators. This is a
powerful feature of C++. It lets you treat I/O for user-defined data types in the same
way as for basic types such as int and double. For example, if you have an object of
class TComplex called c1, you can display it with the statement
cout << c1; just as if it were a basic data type.
You can overload the extraction and insertion operators so they work with the display
and keyboard (cout and cin). With a little more care, you can also overload them so they
work with disk files as well.

#include<iostream>
class TComplex {

float real,img;
friend std::istream& operator >>(std::istream&, TComplex&);
friend std::ostream& operator <<(std::ostream&, const TComplex&);

public:
TComplex(float rl=0,float ig=0){real=rl;img=ig;}
TComplex operator+(const TComplex&);

};

Overloading the « and » OperatorsOverloading the « and » Operators

556Object Oriented Programming

St
re

am
s

12

istream& operator >>(istream& stream, TComplex& z){ // Overloading >>
cout << "Enter real part:";
stream >> z.real;
cout << "Enter imaginer part:";
stream >> z.img;
return stream;

}
ostream& operator <<(ostream& stream, const TComplex & z){

stream << "(" << z.real << " , " << z.img << ") \n";
return stream;

}
TComplex TComplex::operator+(const TComplex & z){ // Operator +

return TComplex (real+z.real , img+z.img);
}
int main(){

TComplex z1,z2,z3;
std::cin >> z1;
std::cin >> z2;
z3=z1+z2;
std::cout << " Result=" << z3;

}
inout.cpp

557Object Oriented Programming

St
re

am
s

12

The next example shows how the << and >> operators can be overloaded so they
work with both file I/O and cout and cin.

#include<fstream>
class TComplex {

float real,img;
friend istream& operator >>(istream&, TComplex&);
friend ostream& operator <<(ostream&, const TComplex&);

public:
TComplex(float rl=0,float ig=0){real=rl;img=ig;}

};
istream& operator >>(istream& stream, TComplex &z){

char dummy;
stream >> dummy >> z.real;
stream >> dummy >> z.img >> dummy;
return stream;

}
ostream& operator <<(ostream& stream, const TComplex & z){

stream << "(" << z.real << " , " << z.img << ") \n";
return stream;

};

Overloading for FilesOverloading for Files

558Object Oriented Programming

St
re

am
s

12
int main(){
char ch;
TComplex z1;
ofstream ofile; // create and open
ofile.open("complex.dat"); // output stream
do { std::cout << "\nEnter Complex Number:(real,img)";

cin >> z1; // get complex number from user
ofile << z1; // write it to output str
std::cout << "Do another (y/n)? "; std::cin >> ch;

} while(ch != 'n');
ofile.close(); // close output stream
std::ifstream ifile; // create and open
ifile.open("complex.dat"); // input stream
std:.cout << "\nContents of disk file is:";
while(!ifile.eof()){

ifile >> z1; // read complex number from stream
if (ifile)

std::cout << "\nComplex Number = " << z1; // display complex number
}

}

fileio.cpp

559Object Oriented Programming

St
re

am
s

12

So far, you’ve seen examples of overloading operator<<() and operator>>() for formatted
I/O. They also can be overloaded to perform binary I/O. This may be a more efficient way
to store information, especially if your object contains much numerical data.

#include <fstream.h> // for file streams
class person {// class of persons
protected:

char name[40]; // person's name
int age; // person's age

public:
void getData(){ // get data from keyboard

cout << "\n Enter name: "; cin.getline(name, 40);
cout << " Enter age: "; cin >> age;

}
void putData(){ // display data on screen

cout << "\n Name = " << name; cout << "\n Age = " << age;
}
friend istream& operator >> (istream& s, person& d);
friend ostream& operator << (ostream& s, person& d);

Overloading for Binary I/OOverloading for Binary I/O

560Object Oriented Programming

St
re

am
s

12

void persin(istream& s){
s.read((char*)this, sizeof(*this));

}
void persout(ostream& s) // write our data to file
{
s.write((char*)this, sizeof(*this));

}
}; // end of class definiton
istream& operator >> (istream& s, person& d) {

d.persin(s);
return s;

}
ostream& operator << (ostream& s, person& d){

d.persout(s);
return s;

}

561Object Oriented Programming

St
re

am
s

12

int main(){
person pers1, pers2, pers3, pers4;
cout << "\nPerson 1";
pers1.getData(); // get data for pers1
cout << "\nPerson 2";
pers2.getData(); // get data for pers2
outfile("PERSON.DAT", ios::binary);
outfile << pers1 << pers2; // write to file
outfile.close();
ifstream infile("PERSON.DAT", ios::binary);
infile >> pers3 >> pers4; // read from file into
cout << "\nPerson 3"; // pers3 and pers4
pers3.putData(); // display new objects
cout << "\nPerson 4";
pers4.putData();

}

