
335

EXCEPTIONEXCEPTION9

336

Ex
ce

pt
io

n
9

Object Oriented Programming

►Kinds of errors with programs
– Poor logic - bad algorithm
– Improper syntax - bad implementation
– Exceptions - Unusual, but predictable problems

►The earlier you find an error, the less it costs to fix it
►Modern compilers find errors early

Program ErrorsProgram Errors

337

Ex
ce

pt
io

n
9

Object Oriented Programming

►In C, the default response to an error is to continue,
possibly generating a message

►In C++, the default response to an error is to terminate the
program

►C++ programs are more “brittle”, and you have to strive
to get them to work correctly

►Can catch all errors and continue as C does

Paradigm Shift from CParadigm Shift from C

338

Ex
ce

pt
io

n
9

Object Oriented Programming

►a macro (processed by the precompiler)
– Returns TRUE if its parameter is TRUE

– Takes an action if it is FALSE

–abort the program

–throw an exception

►If DEBUG is not defined, asserts are collapsed so that they
generate no code

assert()assert()

339

Ex
ce

pt
io

n
9

Object Oriented Programming

►When writing your program, if you know something is true,
you can use an assert

►If you have a function which is passed a pointer, you can do
– assert(pTruck);

– if pTruck is 0, the assertion will fail

►Use of assert can provide the code reader with insight to
your train of thought

assert() (cont’d)assert() (cont’d)

340

Ex
ce

pt
io

n
9

Object Oriented Programming

►Assert is only used to find programming errors
►Runtime errors are handled with exceptions

– DEBUG false => no code generated for assert

– Animal *pCat = new Cat;

– assert(pCat); // bad use of assert

– pCat ->memberFunction();

assert() (cont’d)assert() (cont’d)

341

Ex
ce

pt
io

n
9

Object Oriented Programming

►assert() can be helpful
►Don’t overuse it
►Don’t forget that it “instruments” your code

– invalidates unit test when you turn DEBUG off

►Use the debugger to find errors

assert() (cont’d)assert() (cont’d)

342

Ex
ce

pt
io

n
9

Object Oriented Programming

►You can fix poor logic (code reviews, debugger)
►You can fix improper syntax (asserts, debugger)
►You have to live with exceptions

– Run out of resources (memory, disk space)

– User enters bad data

– Floppy disk goes bad

ExceptionsExceptions

343

Ex
ce

pt
io

n
9

Object Oriented Programming

►The types of problems which cause exceptions (running
out of resources, bad disk drive) are found at a low level
(say in a device driver)

►The low level code implementer does not know what
your application wants to do when the problem occurs, so
s/he “throws” the problem “up” to you

Why are Exceptions Needed?Why are Exceptions Needed?

344

Ex
ce

pt
io

n
9

Object Oriented Programming

►Crash the program
►Display a message and exit
►Display a message and allow the user to continue
►Correct the problem and continue without disturbing the

user

Steinbach's Corollary to Murphy's Law:
"Never test for a system error you don't
know how to handle."

How To Deal With ExceptionsHow To Deal With Exceptions

345

Ex
ce

pt
io

n
9

Object Oriented Programming

►An object
– passed from the area where the problem occurs

– passed to the area where the problem is handled

►The type of object determines which exception handler
will be used

What is a C++ Exception?What is a C++ Exception?

346

Ex
ce

pt
io

n
9

Object Oriented Programming

try {try {

// a block of code which might generate an exception// a block of code which might generate an exception

}}

catch(xNoDiskcatch(xNoDisk) {) {

// the exception // the exception handler(tellhandler(tell the user to the user to

// // insert ainsert a disk)disk)

}}

catch(xNoMemorycatch(xNoMemory) {) {

// another exception handler for this // another exception handler for this ““try blocktry block””

}}

SyntaxSyntax

347

Ex
ce

pt
io

n
9

Object Oriented Programming

►Define like any other class:
class Set {

private:

int *pData;

public:

...

class xBadIndex {}; // just like any other class

};

The Exception ClassThe Exception Class

348

Ex
ce

pt
io

n
9

Object Oriented Programming

►In your code where you reach an error node:
if(memberIndex < 0)

throw xBadIndex();

►Exception processing now looks for a catch block which
can handle your thrown object

►If there is no corresponding catch block in the immediate
context, the call stack is examined

Throwing An ExceptionThrowing An Exception

349

Ex
ce

pt
io

n
9

Object Oriented Programming

►As your program executes, and functions are called, the
return address for each function is stored on a push down
stack

►At runtime, the program uses the stack to return to the
calling function

►Exception handling uses it to find a catch block

The Call StackThe Call Stack

350

Ex
ce

pt
io

n
9

Object Oriented Programming

►The exception is passed up the call stack until an
appropriate catch block is found

►As the exception is passed up, the destructors for objects
on the data stack are called

►There is no going back once the exception is raised

Passing The ExceptionPassing The Exception

351

Ex
ce

pt
io

n
9

Object Oriented Programming

►Once an appropriate catch block is found, the code in the
catch block is executed

►Control is then given to the statement after the group of
catch blocks

►Only the active handler most recently encountered in the
thread of control will be invoked

Handling The ExceptionHandling The Exception

352

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xBadIndex) {
// display an error message
}
catch (Set::xBadData) {
// handle this other exception
}
//control is given back here

►If no appropriate catch block is found, and the stack is at
main(), the program exits

Handling The Exception (cont’d)Handling The Exception (cont’d)

353

Ex
ce

pt
io

n
9

Object Oriented Programming

►Similar to the switch statement
catch (Set::xBadIndex)
{ // display an error message }
catch (Set::xBadData)
{ // handle this other exception }
catch (…)
{ // handle any other exception }

Default catch SpecificationsDefault catch Specifications

354

Ex
ce

pt
io

n
9

Object Oriented Programming

►Exception classes are just like every other class; you can
derive classes from them

►So one try/catch block might catch all bad indices, and
another might catch only negative bad indices

xBadIndexxBadIndex

xNegativexNegative xTooLargexTooLarge

Exception HierarchiesException Hierarchies

355

Ex
ce

pt
io

n
9

Object Oriented Programming

class Set {
private:

int *pData;
public:

class xBadIndex {};
class xNegative : public xBadIndex {};
class xTooLarge: public xBadIndex {};

};
// throwing xNegative will be
// caught by xBadIndex, too

Exception Hierarchies (cont’d)Exception Hierarchies (cont’d)

356

Ex
ce

pt
io

n
9

Object Oriented Programming

►Since Exceptions are just like other classes, they can have
data and member functions

►You can pass data along with the exception object
►An example is to pass an error subtype for xBadIndex,

you could throw the type of bad index

Data in ExceptionsData in Exceptions

357

Ex
ce

pt
io

n
9

Object Oriented Programming

// Add member data,ctor,dtor,accessor method
class xBadIndex {
private:

int badIndex;
public:

xBadIndex(int iType):badIndex(iType) {}
int GetBadIndex () { return badIndex; }
~xBadIndex() {}

};

Data in Exceptions (Continued)Data in Exceptions (Continued)

358

Ex
ce

pt
io

n
9

Object Oriented Programming

// the place in the code where the index is used
if (index < 0)

throw xBadIndex(index);
if (index > MAX)

throw xBadIndex(index);
// index is ok

Passing Data In ExceptionsPassing Data In Exceptions

359

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xBadIndex &theException)
{

int badIndex = theException.GetBadIndex();
if (badIndex < 0)

cout << “Set Index “ << badIndex << “ less than 0”;
else

cout << “Set Index “ << badIndex << “ too large”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

360

Ex
ce

pt
io

n
9

Object Oriented Programming

// the place in the code where the index is used
if (index < 0)

throw xNegative (index);
if (index > MAX)

throw xTooLarge(index);
// index is ok

Passing Data In ExceptionsPassing Data In Exceptions

361

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xNegative &theException)
{

int badIndex = theException.GetBadIndex();
cout << “Set Index “ << badIndex << “ less than 0”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

362

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (Set::xTooLarge &theException)
{

int badIndex = theException.GetBadIndex();
cout << “Set Index “ << badIndex << “ is too large”;
cout << endl;

}

Getting Data From ExceptionsGetting Data From Exceptions

363

Ex
ce

pt
io

n
9

Object Oriented Programming

►When you write an exception handler, stay aware of the
problem that caused it

►Example: if the exception handler is for an out of memory
condition, you shouldn’t have statements in your
exception object constructor which allocate memory

CautionCaution

364

Ex
ce

pt
io

n
9

Object Oriented Programming

►You can create a single exception for all instances of a
template

– declare the exception outside of the template

►You can create an exception for each instance of the
template

– declare the exception inside the template

Exceptions With TemplatesExceptions With Templates

365

Ex
ce

pt
io

n
9

Object Oriented Programming

class xSingleException {};

template <class T>
class Set {
private:

T *pType;
public:

Set();
T& operator[] (int index) const;

};

Single Template ExceptionSingle Template Exception

366

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>
class Set {
private:

T *pType;
public:

class xEachException {};
T& operator[] (int index) const;

};
// throw xEachException();

Each Template ExceptionEach Template Exception

367

Ex
ce

pt
io

n
9

Object Oriented Programming

►Single Exception (declared outside the template class)
catch (xSingleException)

►Each Exception (declared inside the template class)
catch (Set<int>::xEachException)

Catching Template ExceptionsCatching Template Exceptions

368

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►A function that might throw an exception can warn its
users by specifying a list of the exceptions that it can
throw.
class Zerodivide{/*..*/};
int divide (int, int) throw(Zerodividethrow(Zerodivide));

►If your function never throws any exceptions
bool equals (int, int) throw();

►Note that a function that is declared without an exception
specification such as bool equals (int, int); guarantees
nothing about its exceptions: It might throw any
exception, or it might throw no exceptions.

369

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►Exception Specifications Are Enforced At Runtime
►When a function attempts to throw an exception that it is

not allowed to throw according to its exception
specification, the exception handling mechanism detects
the violation and invokes the standard function
unexpected()unexpected().

►The default behavior of unexpected()unexpected() is to call
terminate()terminate(), which terminates the program.

►The default behavior can be altered, nonetheless, by using
the function set_unexpectedset_unexpected()().

370

Ex
ce

pt
io

n
9

Object Oriented Programming

Exception SpecificationException Specification

►Because exception specifications are enforced only at
runtime, the compiler might deliberately ignore code that
seemingly violates exception specifications.

►Consider the following:
int f(); //no exception specification

►What if f throws an exception
void g(int j) throw()
{

int result = f();
}

371

Ex
ce

pt
io

n
9

Object Oriented Programming

Concordance of Exception SpecificationConcordance of Exception Specification

C++ requires exception specification concordance in derived
classes. This means that an overriding virtual function in a
derived class has to have an exception specification that is at
least as restrictive as the exception specification of the
overridden function in the base class.

372

Ex
ce

pt
io

n
9

Object Oriented Programming

class BaseEx{};
class DerivedEx: public BaseEx{};
class OtherEx {};

class D: public A {
public:

void f() throw (DerivedEx); //OKOK
void g() throw (OtherEx); //errorerror
void h() throw (DerivedEx); //OKOK
void i() throw (BaseEx); //errorerror
void j() throw (BaseEx,OtherEx); //errorerror

};

class A {
public:

virtual void f() throw (BaseEx);
virtual void g() throw (BaseEx);
virtual void h() throw (DerivedEx);
virtual void i() throw (DerivedEx);
virtual void j() throw(BaseEx);

};

373

Ex
ce

pt
io

n
9

Object Oriented Programming

An exception could belong to two groups:

class Netfile_err : public Network_errNetwork_err, public File_system_errFile_system_err {
/* ... */

};

Netfile_err can be caught by functions dealing with network exceptions:

void f(){
try {

/ / something
}
catch (Network_err& e) {

// ...
}

}

Concordance of Exception SpecificationConcordance of Exception Specification

374

Ex
ce

pt
io

n
9

Object Oriented Programming

void g() {
try {

/ / something else
}
catch(File_system_err& e) {

/ / ...
}

}

375

Ex
ce

pt
io

n
9

Object Oriented Programming

void f() {
try {

throw EE() ;
}
catch(HH) {

// when do we get here?
}

}

The handler is invoked:
[1] If HH is the same type as EE.
[2] If HH is an unambiguous public base of EE.
[3] If HH and EE are pointer types and [1] or [2] holds for the
types to which they refer.
[4] If HH is a reference and [1] or [2] holds for the type to
which HH refers.

Exception MatchingException Matching

376

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management
When a function acquires a resource – that is, it opens a file,
allocates some memory from the free store, sets an access
control lock, etc., – it is often essential for the future running
of the system that the resource be properly released.

void use_file(const char* fn)
{

FILE* f = fopenfopen(fn,"w") ;
// use f
fclosefclose(f) ;

}

377

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management

Fault-tolerant implementation using try-catch:

void use_ file(const char* fn)
{

FILE* f = fopen(fn,"r") ;
try {

// use f
}
catch (Ex e) {

fclose(f) ;
throw e;

}
fclose(f) ;

}

void f(){
try {
…
use_file(“c:\\dat.txt”);
…
}
catch(SomeEx e){
}

}

378

Ex
ce

pt
io

n
9

Object Oriented Programming

Resource ManagementResource Management
The problem with this solution is that it is verbose, tedious,
and potentially expensive.
class File_ptr {

FILE* p;
public:

File_ptr(const char* n, const char* a) { p = fopen(n,a) ; }
File_ptr(FILE* pp) { p = pp; }
~File_ ptr() { fclose(p) ; }
operator FILE*() { return p; }

};
void use_file(const char* fn) {

File_ptr f(fn,"r") ;
// use f

}

379

Ex
ce

pt
io

n
9

Object Oriented Programming

►The C++ standard includes some predefined exceptions,
in <stdexcept>

►The base class is exceptionexception
– Subclass logic_errorlogic_error is for errors which could have

been avoided by writing the program differently
– Subclass runtime_errorruntime_error is for other errors

Standard ExceptionsStandard Exceptions

380

Ex
ce

pt
io

n
9

Object Oriented Programming

class exception {
public:

exception() throw() ;
exception(const exception&) throw() ;
exception& operator=(const exception&) throw() ;
virtual ~exception() throw() ;
virtual const char*what() const throw() ;

private:
/ / ...

};

Standard ExceptionsStandard Exceptions

381

Ex
ce

pt
io

n
9

Object Oriented Programming

logic_errorlogic_error

iinvalid_argumentnvalid_argumentdomain_errordomain_error length_errorlength_error out_of_rangeout_of_range

Logic Error HierarchyLogic Error Hierarchy

382

Ex
ce

pt
io

n
9

Object Oriented Programming

runtime_errorruntime_error

overflow_erroroverflow_error range_errorrange_error

The idea is to use one of the specific classes (e.g. range_error)
to generate an exception

Runtime Error HierarchyRuntime Error Hierarchy

underunderflow_errorflow_error

383

Ex
ce

pt
io

n
9

Object Oriented Programming

// standard exceptions allow you to specify
// string information
throw overflow_error(“Doing float division in function div”);

// the exceptions all have the form:
class overflow_error : public runtime_error

{
public:

overflow_error(const string& what_arg)

: runtime_error(what_arg) {};

Data For Standard ExceptionsData For Standard Exceptions

384

Ex
ce

pt
io

n
9

Object Oriented Programming

catch (overflow_error)
{

cout << “Overflow error” << endl;
}

catch (exception& e)
{

cout << typeid(e).name() << “: “ << e.what() << endl;
}

Catching Standard ExceptionsCatching Standard Exceptions

385

Ex
ce

pt
io

n
9

Object Oriented Programming

►catch (exception& e)
– Catches all classes derived from exception
– If the argument was of type exception, it would be

converted from the derived class to the exception
class

– The handler gets a reference to exception as an
argument, so it can look at the object

More Standard Exception DataMore Standard Exception Data

386

Ex
ce

pt
io

n
9

Object Oriented Programming

RTTI (RunTime Type Information)RTTI (RunTime Type Information)

► It's one of the more recent additions to C++ and isn't supported by
many older implementations. Other implementations may have
compiler settings for turning RTTI on and off.

► The intent of RTTI is to provide a standard way for a program to
determine the type of object during runtime.

►Many class libraries have already provided ways to do so for their
own class objects, but in the absence of built-in support in C++, each
vendor's mechanism typically is incompatible with those of other
vendors.

►Creating a language standard for RTTI should allow future libraries
to be compatible with each other.

387

Ex
ce

pt
io

n
9

Object Oriented Programming

What is RTTI for?What is RTTI for?

► Suppose you have a hierarchy of classes descended from a common
base. You can set a base class pointer to point to an object of any of
the classes in this hierarchy. Next, you call a function that, after
processing some information, selects one of these classes, creates an
object of that type, and returns its address, which gets assigned to a
base class pointer.

►How can you tell what kind of object it points to?

388

Ex
ce

pt
io

n
9

Object Oriented Programming

How does it work?How does it work?

C++ has three components supporting RTTI:
► dynamic_castdynamic_cast pointer

generates a pointer to a derived type from a pointer to a base
type, if possible. Otherwise, the operator returns 0, the null
pointer.

► typeidtypeid operator
returns a value identifying the exact type of an object.

► type_infotype_info structure
holds information about a particular type.

RTTI works only for classes with virtual functionsRTTI works only for classes with virtual functions

389

Ex
ce

pt
io

n
9

Object Oriented Programming

► The dynamic_cast operator is intended to be the most heavily used
RTTI component.
► It doesn't answer the question of what type of object a pointer
points to.
► Instead, it answers the question of whether you can safely assign
the address of the object to a pointer of a particular type.

dynamic_cast<>dynamic_cast<>

390

Ex
ce

pt
io

n
9

Object Oriented Programming

class Grand { // has virtual methods} ;
class Superb : public Grand { ... } ;
class Magnificent : public Superb { ... } ;

Grand * pg = new Grand;
Grand * ps = new Superb;
Grand * pm = new Magnificent;

Magnificent * p1 = (Magnificent *) pm; // #1
Magnificent * p2 = (Magnificent *) pg; // #2
Superb * p3 = (Magnificent *) pm; // #3

Which of the previous type casts are safe?

Superb pm = dynamic_cast<Superb *>(pg);

391

Ex
ce

pt
io

n
9

Object Oriented Programming

class Grand {
virtual void speak() ;

} ;
class Superb : public Grand {

void speak() ;
virtual void say() ;

} ;
class Magnificent : public Superb {

char ch ;
void speak() ;
void say() ;

} ;

for (int i = 0; i < 5; i++)
{

pg = getOne();
pg->speak();
...

392

Ex
ce

pt
io

n
9

Object Oriented Programming

►However, you can't use this exact approach to invoke the ssayay()
function; it's not defined for the Grand class.
►However, you can use the dynamic_castdynamic_cast operator to see if pg can
be type cast to a pointer to Superb.
►This will be true if the object is either type Superb or Magnificent.
In either case, you can invoke the ssayay() function safely:

if (ps = dynamic_cast<Superb *>(pg))
ps->say();

393

Ex
ce

pt
io

n
9

Object Oriented Programming

►typeid is an operator which allows you to access the type of
an object at runtime

►This is useful for pointers to derived classes
►typeid overloads ==, !=, and defines a member function

name
if(typeid(*carType) == typeid(Ford))

cout << “This is a Ford” << endl;

typeidtypeid

394

Ex
ce

pt
io

n
9

Object Oriented Programming

cout << typeid(*carType).name() << endl;
// If we had said:
// carType = new Ford();
// The output would be:
// Ford

► So:
cout << typeid(e).name()

returns the name of the exception

typeid().nametypeid().name

395

Ex
ce

pt
io

n
9

Object Oriented Programming

► The class exception has a member function what
virtual char* what();virtual char* what();

► This is inherited by the derived classes
►what() returns the character string specified in the throw statement for

the exception

e.what()e.what()

throw overflow_error(“Doing float division in function div”);

cout << typeid(e).name() << “: “ << e.what() << endl;

396

Ex
ce

pt
io

n
9

Object Oriented Programming

class xBadIndex : public runtime_error {
public:

xBadIndex(const char *what_arg = “Bad Index”)
: runtime_error(what_arg) {}

};
// we inherit the virtual function what
// default supplementary information character string

Deriving New exception ClassesDeriving New exception Classes

397

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

class Array{

private:

T *data ;

int Size ;

public:

Array(void);

Array(int);

class eNegativeIndex{};

class eOutOfBounds{};

class eEmptyArray{};

T& operator[](int) ;

};

398

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

Array<T>::Array(void){

data = NULL ;

Size = 0 ;

}

template <class T>

Array<T>::Array(int size){

Size = size ;

data = new T[Size] ;

}

399

Ex
ce

pt
io

n
9

Object Oriented Programming

template <class T>

T& Array<T>::operator[](int index){

if(data == NULL) throw eEmptyArray() ;

if(index < 0) throw eNegativeIndex() ;

if(index >= Size) throw eOutOfBounds() ;

return data[index] ;

}

400

Ex
ce

pt
io

n
9

Object Oriented Programming

Array<int> a(10) ;

try{

int b = a[200] ;

}

catch(Array<int>::eEmptyArray){

cout << "Empty Array" ;

}

catch(Array<int>::eNegativeIndex){

cout << "Negative Array" ;

}

catch(Array<int>::eOutOfBounds){

cout << "Out of bounds" ;

}

