
297

PolymorphismPolymorphism8

298

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

ContentContent

►Polymorphism
►Virtual Members
►Abstract Class

299

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►There are three major concepts in object-oriented programming:
1. Classes,
2. Inheritance,
3. Polymorphism, which is implemented in C++ by virtual functions.

► In real life, there is often a collection of different objects that, given
identical instructions (messages), should take different actions. Take
teacher and principal, for example.

►Suppose the minister of education wants to send a directive to all
personnel: “Print your personal information!” Different kinds of staff
(teacher or principal) have to print different information. But the
minister doesn’t need to send a different message to each group. One
message works for everyone because everyone knows how to print his
or her personal information.

PolymorphismPolymorphism

300

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Polymorphism means “taking many shapes”. The minister’s single
instruction is polymorphic because it looks different to different
kinds of personnel.

►Typically, polymorphism occurs in classes that are related by
inheritance. In C++, polymorphism means that a call to a member
function will cause a different function to be executed depending on
the type of object that invokes the function.

►This sounds a little like function overloading, but polymorphism is a
different, and much more powerful, mechanism. One difference
between overloading and polymorphism has to do with which
function to execute when the choice is made.

►With function overloading, the choice is made by the compiler
(compile-time). With polymorphism, it’s made while the program is
running (run-time).

PolymorphismPolymorphism

301

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Normal Member Functions Accessed with PointersNormal Member Functions Accessed with Pointers

class Square Square { // Base Class
protected:

double edge;
public:

Square(double e):edge(e){ } //Base class constructor
double aarearea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Derived Class
public:

Cube(double e):Square(e){} // Derived class cons.
double aarearea(){ return(6.0 * edge * edge) ; }

};
302

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Square S(2.0) ;
Cube C(2.0) ;
Square *ptr ;
char c ;
cout << “Square or Cube"; cin >> c ;
if (c==‘s') ptr=&S ;

else ptr=&C ;
ptr→areaarea(); // which Area ???

}

►ptr = &C;
►Remember that it’s perfectly all right to assign an address of one

type (Derived) to a pointer of another (Base), because pointers to
objects of a derived class are type compatible with pointers to
objects of the base class.

►Now the question is, when you execute the statement
ptr->area();

what function is called? Is it Square::area() or Cube::area()?

303

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Let’s make a single change in the program: Place the keyword virtual
in front of the declaration of the area() function in the base class.

class SquareSquare { // Temel sinif
protected:

double edge;
public:

Square(double e):edge(e){ } // temel sinif kurucusu
virtualvirtual double areaarea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Turetilmis sinif
public:

Cube(double e):Square(e){} // Turetilmis sinif kurucusu
double areaarea(){ return(6.0 * edge * edge) ; }

};

Virtual Member Functions Accessed with PointersVirtual Member Functions Accessed with Pointers

304

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Square S(2.0) ;
Cube C(8.0) ;
Square *ptr ;
char c ;

cout << “Square or Cube"; cin >> c ;
if (c==‘s') ptr=&S ;

else ptr=&C ;
ptr→Area();

}

square.cpp

305

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Teacher{ // Base class
string *name;
int numOfStudents;

public:
Teacher(const string &, int); // Constructor of base
virtual void print() const; // A virtual (polymorphic) function

};

class Principal : public Teacher{ // Derived class
string *SchoolName;

public:
Principal(const string &, int , const string &);
void print() const; // It is also virtual (polymorphic)

};

The function in the base class (Teacher) is executed in both cases. The compiler ignores
the contents of the pointer ptr and chooses the member function that matches the type
of the pointer.

Let’s make a single change in the program: Place the keyword virtual in front of the
declaration of the print() function in the base class.

Virtual Member Functions Accessed with PointersVirtual Member Functions Accessed with Pointers

306

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Now, different functions are executed, depending on the contents of
ptr. Functions are called based on the contents of the pointer ptr, not
on the type of the pointer. This is polymorphism at work. I’ve made
print() polymorphic by designating it virtual.

►How does the compiler know what function to compile? In e81.cpp,
the compiler has no problem with the expression

►ptr->print();
► It always compiles a call to the print() function in the base class. But

in e82.cpp, the compiler doesn’t know what class the contents of ptr
may be a pointer to. It could be the address of an object of the
Teacher class or the Principal class. Which version of print() does
the compiler call? In fact, at the time it’s compiling the program, the
compiler doesn’t know what to do, so it arranges for the decision to
be deferred until the program is running.

Late BindingLate Binding

307

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Late BindingLate Binding
►At runtime, when the function call is executed, code that the

compiler placed in the program finds out the type of the object
whose address is in ptr and calls the appropriate print() function:
Teacher::print() or Principal::print(), depending on the class of the
object.

►Selecting a function at runtime is called late binding or dynamic
binding. (Binding means connecting the function call to the
function.)

►Connecting to functions in the normal way, during compilation, is
called early binding or static binding. Late binding requires a small
amount of overhead (the call to the function might take something
like 10 percent longer) but provides an enormous increase in power
and flexibility.

308

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Remember that, stored in memory, a normal object—that is, one
with no virtual functions—contains only its own data, nothing else.

►When a member function is called for such an object, the compiler
passes to the function the address of the object that invoked it. This
address is available to the function in the this pointer, which the
function uses (usually invisibly) to access the object’s data.

►The address in this is generated by the compiler every time a
member function is called; it’s not stored in the object and does not
take up space in memory.

►The thisthis pointer is the only connection that’s necessary between an
object and its normal member functions.

How It WorksHow It Works

309

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

How It WorksHow It Works
►With virtual functions, things are more complicated. When a derived

class with virtual functions is specified, the compiler creates a table—
an array—of function addresses called the virtual table.

►The Teacher and Principal classes each have their own virtual table.
There is an entry in each virtual table for every virtual function in the
class. Objects of classes with virtual functions contain a pointer to the
virtual table of the class. These object are slightly larger than normal
objects.

► In the example, when a virtual function is called for an object of
Teacher or Principal, the compiler, instead of specifying what
function will be called, creates code that will first look at the object’s
virtual table and then uses this to access the appropriate member
function address. Thus, for virtual functions, the object itself
determines what function is called, rather than the compiler.

310

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Principal : public Teacher{ // Derived class
string *SchoolName;

public:
void read(); // Virtual function
void print() const; // Virtual function

};

Example: Assume that the classes Teacher and Principal contain two virtual functions.

class Teacher{ // Base class
string *name;
int numOfStudents;

public:
virtual void read(); // Virtual function
virtual void print() const; // Virtual function

};

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

311

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Objects of Teacher and Principal will contain a pointer to their virtual tables.
int main(){

Teacher t1("Teacher 1", 50);
Teacher t2("Teacher 2", 35);
Principal p1("Principal 1", 45 , "School 1");
:

}
vptr

Teacher 1

50

t1

vptr

Teacher 2

35

t2

vptr

Principal 1

45

School 1

p1

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

MC68000-like assembly counterpart
of the statement
ptr->print(); Here ptr contains the
address of an object.

move.l ptr, this ; this to object
movea.l ptr, a0 ; a0 to object
movea.l (a0), a1 ; a1<-vptr
jsr 4(a1) ; jsr print

If the print() function would not a
virtual function:

move.l ptr, this ; this to object
jsr teacher_print

or
jsr principal_print

312

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Be aware that the virtual function mechanism works only
with pointers to objects and, with references, not with objects
themselves.

int main(){
Square S(4);
Cube C(8);
S.Area();
C.Area();

}

Don’t Try This with ObjectsDon’t Try This with Objects

Calling virtual functions is a time-consuming process, because
of indirect call via tables. Don’t declare functions as virtual if
it is not necessary.

313

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Square Square { // Base
protected:

double edge;
public:

Square(double e):edge(e){ } // Base Class Constructor
virtualvirtual double AreaArea(){ return(edge * edge) ; }

};
class CubeCube : public SquareSquare { // Derived Class
public:

Cube(double e):Square(e){} // Derived Class Constructor
double AreaArea(){ return(6.0 * Square::AreaSquare::Area()()) ; }

};

Warning

Here, Square::AreaSquare::Area()() is not virtual

314

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Most frequent use of polymorphism is on collections such as
linked list: class SquareSquare {

protected:
double edge;

public:
Square(double e):edge(e){ }
virtualvirtual double areaarea(){ return(edge * edge) ; }
Sqaure *next ;

};
class CubeCube : public SquareSquare {
public:

Cube(double e):Square(e){}
double areaarea(){ return(6.0 * edge * edge) ; }

};

Homogeneous Linked Lists and PolymorphismHomogeneous Linked Lists and Polymorphism

315

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

int main(){
Circle c1(50);
Square s1(40);
Circle c2(23);
Square s2(78);
Square *listPtr; // Pointer of the linked list
/*** Construction of the list ***/
listPtr=&c1;
c1.next=&s1;
s1.next=&c2;
c2.next=&s2;
s2.next=0L;
while (listPtr){ // Printing all elements of the list

cout << listPtr->Area() << endl ;
listPtr=listPtr->next;

}
}

example27.cpp 316

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

► To write polymorphic functions wee need to have derived classes.
But sometimes we don’t need to create any base class objects, but
only derived class objects. The base class exists only as a starting
point for deriving other classes.
► This kind of base classes we can call are called an abstract class,
which means that no actual objects will be created from it.
► Abstract classes arise in many situations. A factory can make a
sports car or a truck or an ambulance, but it can’t make a generic
vehicle. The factory must know the details about what kind of vehicle
to make before it can actually make one. Similarly, you’ll see
sparrows, wrens, and robins flying around, but you won’t see any
generic birds.
► Actually, a class is an abstract class only in the eyes of humans.

Abstract ClassesAbstract Classes

317

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

► It would be nice if, having decided to create an abstract base class, I
could instruct the compiler to actively prevent any class user from ever
making an object of that class. This would give me more freedom in
designing the base class because I wouldn’t need to plan for actual
objects of the class, but only for data and functions that would be used
by derived classes. There is a way to tell the compiler that a class is
abstract: You define at least one pure virtual function in the class.
► A pure virtual function is a virtual function with no body. The body
of the virtual function in the base class is removed, and the notation =0=0
is added to the function declaration.

Pure Virtual ClassesPure Virtual Classes

318

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Are they the same or different?

319

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Not in the real world, but in our thoughts as an abstractionabstraction
classification.
►A “Cleaning Utensil” does not exist, but specific kinds do!

320

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CGenericShape{ // Abstract base class
protected:

int x,y;
CGenericShape *next ;

public:
CGenericShape(int x_in,int y_in,

CGenericShape *nextShape){
x=x_in;
y=y_in;
next = nextShape ;

} // Constructor
CGenericShape* operator++(){return next;}
virtual void draw(HDC)=0; // pure virtual function

};

Example in Visual C++ 6Example in Visual C++ 6

321

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CLine:public CGenericShape{ // Line class
protected:

int x2,y2; // End coordinates of line
public:

CLine(int x_in,int y_in,int x2_in,int y2_in,
CGenericShape *nextShape)
:CGenericShape(x_in,y_in,nextShape){
x2=x2_in;
y2=y2_in;

}
void draw(HDC hdc){ // virtual draw function

MoveToEx(hdc,x,y,(LPPOINT) NULL);
LineTo(hdc,x2,y2); }

};
322

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CRectangle:public CLine{ // Rectangle class
public:

CRectangle (int x_in,int y_in,int x2_in,int y2_in,
CGenericShape *nextShape)

:CLine(x_in,y_in,x2_in,y2_in,nextShape)
{ }

void draw(HDC hdc){// virtual draw
Rectangle(hdc,x,y,x2,y2);

}
};

323

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class CCircle:public CGenericShape{ // Circle class
protected:

int radius;
public:

CCircle (int x_cen,int y_cen,int r,
CGenericShape *nextShape)
:CGenericShape(x_cen,y_cen,nextShape)

{
radius=r;

}
void draw(HDC hdc) { // virtual draw

Ellipse(hdc,x-radius,y-radius,x+radius,y+radius);
}

};
324

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

void ShowShapes(CGenericShape &shape,HDC hdc)
{

CGenericShape *p = &shape ;
// Which draw function will be called?

while (p!=NULL){
p->draw(hdc); // It 's unknown at compile-time
p = ++*p ;
Sleep(100);

}
}

325

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

PAINTSTRUCT ps;
HDC hdc;

CLine Line1(50,50,150,150,NULL);
CLine Line2(150,50,50,150,&Line1) ;
CCircle Circle1(100,100,20,&Line2);
CCircle Circle2(100,100,50,&Circle1);
CRectangle Rectangle1(50,50,150,150,&Circle2);

switch (message) {
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps);
ShowShapesShowShapes (Rectangle1,hdc);

EndPaint (hwnd, &ps);
return 0;

PolyDraw.dsw

326

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

1

a/y

2
b/x

b/y

3

a/x

b/x

State : { 1 , 2 , 3 }
Input : { a, b }, x to exit
Output : { x , y }

a/y

States of the FSM are defined using
a class structure.
Each state is derived from the same
base class.

A Finite State Machine (FSM) ExampleA Finite State Machine (FSM) Example

327

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class State{ // Base State (Abstract Class)
protected:

State * const next_a, * const next_b; // Pointers to next state
char output;

public:
State(State & a, State & b):next_a(&a), next_b(&b) { }
virtual State* transition(char)=0; // pure virtual function

};

class State1:public State{ // *** State1 ***
public:

State1(State & a, State & b):State(a, b) { }
State* transition(char);

};
class State2:public State{ // *** State2 ***

public:
State2(State & a, State & b):State(a, b) { }
State* transition(char);

};
class State3:public State{ // *** State3 ***

public:
State3(State & a, State & b):State(a, b) { }
State* transition(char);

};

328

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

State* State1::transition(char input)
{

switch(input){
case 'a': output = 'y';

return next_a;
case 'b': output = 'x';

return next_b;
default : cout << endl << "Undefined input";

cout << endl << "Next State: Unchanged";
return this;

}
}

The transition function of each state defines the behavior of
the FSM. It takes the input value as argument, examines the
input, produces an output value according to the input value
and returns the address of the next state.

329

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

The FSM in our example has three states.
class FSM{ // Finite State Machine

State1 s1;
State2 s2;
State3 s3;
State *current; // points to the current state

public:
FSM() : s1(s1,s2), s2(s3,s2), s3(s1,s2), current(&s1) { } //Starting state is State1
void run();

};
void FSM::run() {

char in;
do {

cout << endl << "Give the input value (a or b; x: EXIT) ";
cin >> in;
if (in != 'x')

current = current->transition(in); // Polymorphic function call
else

curent = 0; // EXIT
} while(current);

}
The transition function of the current state is called.
Return value of this function determines the next state of the FSM.

330

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Can constructors be virtual?
No, they can’t be.

►When you’re creating an object, you usually already know
what kind of object you’re creating and can specify this to the
compiler. Thus, there’s not a need for virtual constructors.
►Also, an object’s constructor sets up its virtual mechanism
(the virtual table) in the first place. You don’t see the code
for this, of course, just as you don’t see the code that
allocates memory for an object.
►Virtual functions can’t even exist until the constructor has
finished its job, so constructors can’t be virtual.

Virtual Constructors?Virtual Constructors?

331

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

►Recall that a derived class object typically contains data
from both the base class and the derived class.

►To ensure that such data is properly disposed of, it may be
essential that destructors for both base and derived classes
are called.

Virtual DestructorsVirtual Destructors

332

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class BaseBase {
public:

~Base() { cout << "\nBase destructor"; }
};
class DerDeriivveded : public BaseBase {

public:
~Derv() { cout << "\nDerived destructor"; }

};
int main(){

BaseBase* pb = new DerDeriivveded;
delete pb;
cout << endl << "Program terminates.“ << endl ;

}

Virtual DestructorsVirtual Destructors

333

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

Virtual DestructorsVirtual Destructors
►But the output is

Base Destructor
Program terminates

►In this program bp is a pointer of Base type. So it can
point to objects of Base type and Derived type. In the
example, bp points to an object of Derived class, but while
deleting the pointer only the Base class destructor is
called.

►This is the same problem you saw before with ordinary
(nondestructor) functions. If a function isn’t virtual, only
the base class version of the function will be called when
it’s invoked using a base class pointer, even if the contents
of the pointer is the address of a derived class object. Thus
in e85.cpp, the Derived class destructor is never called.
This could be a problem if this destructor did something
important.

334

Po
ly

m
or

ph
is

m
8

Object Oriented Programming

class Base {
public:

virtualvirtual ~Base() { cout << "\nBase destructor"; }
};
class DerDeriivveded : public BaseBase {

public:
~Derv() { cout << "\nDerived destructor"; }

};
int main(){

BaseBase* pb = new DerDeriivveded;
delete pb;
cout << endl << "Program terminates.“ << endl ;

}

To fix this problem, we have to make the base class destructor virtual.

