
285

Object PointersObject Pointers7

286

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►Objects are stored in memory, so pointers can point to
objects just as they can to variables of basic types.
The new Operator:
►The new operator allocates memory of a specific size from
the operating system and returns a pointer to its starting
point. If it is unable to find space, in returns a 0 pointer.
►When you use new with objects, it does not only allocates
memory for the object, it also creates the object in the sense
of invoking the object’s constructor. This guarantees that the
object is correctly initialized, which is vital for avoiding
programming errors.

Pointers to ObjectsPointers to Objects

287

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers to ObjectsPointers to Objects
The delete Operator
► To ensure safe and efficient use of memory, the new

operator is matched by a corresponding delete operator
that releases the memory back to the operating system.

►If you create an array with new Type[];, you need the
brackets when you delete it:
int * ptr = new int[10];
:
delete [] ptr;

Don’t forget the brackets when deleting arrays of objects. Using them ensures
that all the members of the array are deleted and that the destructor is called
for each one. If you forget the brackets, only the first element of the array will
be deleted.

288

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

class String {
int size;
char *contents;

public:
String();
String(const char *);
String(const String &);
const String& operator=(const String &);
void print() const ;
~String();

};

ExampleExample

int main()int main() {{
String *sptr = new String[3];String *sptr = new String[3];
String s1("String_1");String s1("String_1");
String s2("String_2");String s2("String_2");
*sptr = s1;*sptr = s1;
(sptr + 1) = s2;(sptr + 1) = s2;
sptrsptr-->print();>print();
(sptr+1)(sptr+1)-->print();>print();
sptr[1].print();sptr[1].print();
delete[] sptr;delete[] sptr;
return 0;return 0;

}}

289

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

A class may contain a pointer to objects of its type.
This pointer can be used to build a chain of objects, a linked list.

class Teacher {
friend class Teacher_list;
string name;
int age, numOfStudents;
Teacher * next;

public:
Teacher(const string &, int, int);
void print() const;
const string& getName() const {

return name; }
~Teacher()

};

// linked list for teachers
class Teacher_list{

Teacher *head;
public:
Teacher_list(){head=0;}
bool append(const string &,int,int);
bool del(const string &);
void print() const ;
~Teacher_list();

};

Linked List of ObjectsLinked List of Objects

290

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►In the previous example the Teacher class must have a
pointer to the next object and the list class must be declared
as a friend, to enable users of this class building linked lists.
►If this class is written by the same group then it is possible
to put such a pointer in the class.
►But usually programmers use ready classes, written by
other groups, for example classes from libraries.
►These classes may not have a next pointer.
►To build linked lists of such ready classes the programmer
have to define a node class.
►Each object of the node class will hold the addresses of
an element of the list.

Linked List of ObjectsLinked List of Objects

291

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Linked List of ObjectsLinked List of Objects
class Teacher_node{

friend class Teacher_list;
Teacher * element; // The element of the list
Teacher_node * next; // next node
Teacher_node(const string &, int, int); // constructor
~Teacher_node(); // destructor

};
Teacher_node::Teacher_node(const string & n, int a, int nos){

element = new Teacher(n, a, nos);
next = 0;

}
Teacher_node::~Teacher_node(){

delete element;
}

292

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►If a class Derived has a public base class Base, then a
pointer to Derived can be assigned to a variable of type
pointer to Base without use of explicit type conversion. A
pointer to Base can carry the address of an object of
Derived.

►The opposite conversion, for pointer to Base to pointer to
Derived, must be explicit.

►For example, a pointer to Teacher can point to objects of
Teacher and to objects of Principal. A principal is a
teacher, but a teacher is not always a principal.

Pointers and InheritancePointers and Inheritance

293

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers and InheritancePointers and Inheritance
class Base{

};

class Derived : public Base {

};

Derived d;
Base *bp = &d; // implicit conversion
Derived *dp = bp; // ERROR! Base is not Derived
dp = static_cast<Derived *>(bp); // explicit conversion

294

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►If the class Base is a private base of Derived , then the
implicit conversion of a Derived* to Base* would not be
done.
►Because, in this case a public member of Base can be
accessed through a pointer to Base but not through a pointer
to Derived.

Pointers and InheritancePointers and Inheritance

295

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

Pointers and InheritancePointers and Inheritance
class Base{

int m1;
public:
int m2; // m2 is a public member of Base

};
class Derived : private Base { // m2 is not a public member of Derived

:
};
Derived d;
d.m2 = 5; // ERROR! m2 is private member of Derived
Base *bp = &d; // ERROR! private base
bp = static_cast<Base*>(&d); // ok: explicit conversion
bp->m2 = 5; // ok

296

O
bj

ec
t P

oi
nt

er
s

7

Object Oriented Programming

►Using the inheritance and pointers, heterogeneous linked
lists can be created.
►A list specified in terms of pointers to a base class can
hold objects of any class derived from this base class.
►We will discuss heterogeneous lists again, after we have
learnt polymorphism.
Example: A list of teachers and principals

Heterogeneous Linked ListsHeterogeneous Linked Lists

next

Teacher t3

next

Teacher t2

next

Principal p2

next

Principal p1

next

Teacher t1

head

insert()
delete()

List my_list

