
222

InheritanceInheritance6

223

In
he

rit
an

ce
6

Object Oriented Programming

ContentContent

►Inheritance
►Reusability in Object-Oriented Programming
►Redefining Members (Name Hiding)
►Overloading vs. Overriding
►Access Control
►Public and Private Inheritance
►Constructor, Destructor and Assignment Operator in

Inheritance
►Multiple Inheritance
►Composition vs Inheritance

224

In
he

rit
an

ce
6

Object Oriented Programming

►Inheritance is one of the ways in object-oriented
programming that makes reusability possible.

►Reusability means taking an existing class and using it in
a new programming situation.

►By reusing classes, you can reduce the time and effort
needed to develop a program, and make software more
robust and reliable.

InheritanceInheritance

225

In
he

rit
an

ce
6

Object Oriented Programming

InheritanceInheritance

History
►The earliest approach to reusability was simply rewriting

existing code. You have some code that works in an old
program, but doesn’t do quite what you want in a new
project.

►You paste the old code into your new source file, make a
few modifications to adapt it to the new environment.
Now you must debug the code all over again. Often you’re
sorry you didn’t just write new code.

226

In
he

rit
an

ce
6

Object Oriented Programming

InheritanceInheritance
►To reduce the bugs introduced by modification of code,

programmers attempted to create self-sufficient program
elements in the form of functions.

►Function libraries were a step in the right direction, but,
functions don’t model the real world very well, because
they don’t include important data.

►All too often, functions require modification to work in a
new environment.

►But again, the modifications introduce bugs.

227

In
he

rit
an

ce
6

Object Oriented Programming

►A powerful new approach to reusability appears in object-
oriented programming is the class library. Because a class
more closely models a real-world entity, it needs less
modification than functions do to adapt it to a new
situation.

►Once a class has been created and tested, it should
(ideally) represent a useful unit of code.

►This code can be used in different ways again.

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

228

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

1. The simplest way to reuse a class is to just use an object
of that class directly. The standard library of the C++ has
many useful classes and objects.
– For example, cin and cout are such built in objects.

Another useful class is string , which is used very
often in C++ programs.

229

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

2. The second way to reuse a class is to place an object of
that class inside a new class.
– We call this “creating a member object.”
– Your new class can be made up of any number and

type of other objects, in any combination that you need
to achieve the functionality desired in your new class.

– Because you are composing a new class from existing
classes, this concept is called composition (or more
generally, aggregation). Composition is often referred
to as a “has-a” relationship.

230

In
he

rit
an

ce
6

Object Oriented Programming

Reusability in Object-Oriented ProgrammingReusability in Object-Oriented Programming

3. The third way to reuse a class is inheritance, which is
described next. Inheritance is referred to as a "is a" or "a
kind of" relationship.

231

In
he

rit
an

ce
6

Object Oriented Programming

►While a character array can be fairly useful, it is quite
limited. It’s simply a group of characters in memory, but if
you want to do anything with it you must manage all the
little details.

►The Standard C++ string class is designed to take care of
(and hide) all the low-level manipulations of character
arrays that were previously required of the C programmer.

►To use strings you include the C++ header file <string>.
►Because of operator overloading, the syntax for using

strings is quite intuitive (natural).

stringstringstring

232

In
he

rit
an

ce
6

Object Oriented Programming

stringstringstring

#include <string> // Standard header file of C++ (inc. string class)
#include <iostream>
using namespace std;
int main() {

string s1, s2; // Empty strings
string s3 = "Hello, World."; // Initialized
string s4("I am"); // Also initialized
s2 = "Today"; // Assigning to a string
s1 = s3 + " " + s4; // Combining strings
s1 += " 20 "; // Appending to a string
cout << s1 + s2 + "!" << endl;
return 0;

}

233

In
he

rit
an

ce
6

Object Oriented Programming

►The first two strings, s1 and s2, start out empty, while s3 and s4
show two equivalent ways to initialize string objects from character
arrays (you can just as easily initialize string objects from other
string objects).

►You can assign to any string object using ‘=’. This replaces the
previous contents of the string with whatever is on the right-hand
side, and you don’t have to worry about what happens to the
previous contents – that’s handled automatically for you.

►To combine strings you simply use the ‘+’ operator, which also
allows you to combine character arrays with strings. If you want to
append either a string or a character array to another string, you can
use the operator ‘+=’.

►Finally, note that cout already knows what to do with strings, so you
can just send a string (or an expression that produces a string, which
happens with

► s1 + s2 + "!" directly to cout in order to print it.

stringstringstring

234

In
he

rit
an

ce
6

Object Oriented Programming

►OOP provides a way to modify a class without changing
its code.

►This is achieved by using inheritance to derive a new class
from the old one.

►The old class (called the base classbase class) is not modified, but
the new class (the derived classderived class) can use all the features of
the old one and additional features of its own.

InheritanceInheritance

235

In
he

rit
an

ce
6

Object Oriented Programming

"is a" Relationship"is a" Relationship

►We know that PCs, Macintoshes and Cray are kinds of
computers; a worker, a section manager and general
manager are kinds of employee.

►If there is a "kind of" relation between two objects then
we can derive one from other using the inheritance.

236

In
he

rit
an

ce
6

Object Oriented Programming

Inheritance SyntaxInheritance Syntax

►The simplest example of inheritance requires two classes:
a base class and a derived class.

►The base class does not need any special syntax. The
derived class, on the other hand, must indicate that it’s
derived from the base class.

►This is done by placing a colon after the name of the
derived class, followed by a keyword such as public and
then the base class name.

237

In
he

rit
an

ce
6

Object Oriented Programming

►Example: Modeling teachers and the principal (director) in
a school.

►First, assume that we have a class to define teachers, then
we can use this class to model the principal. Because the
principal is a teacher.
class TeacherTeacher { // Base class
private: // means public for derived class members

string name;
int age, numberOfStudents;

public:
void setName (const string & new_name){ name = new_name; }

};
class PrincipalPrincipal : public Teacher Teacher { // Derived class

string schoolName; // Additional members
int numberOfTeachers;

public:
void setSchool(const string & s_name){ schoolName = s_name; }

};

238

In
he

rit
an

ce
6

Object Oriented Programming

int main() {
Teacher t1;
Principal p1;
p1.setName(" Principal 1");
t1.setName(" Teacher 1");
p1.setSchool(" Elementary School");
return 0;

}

principal (derived class)

schoolName
numberOfTeachers
setSchool(string)

teacher (base class)
Name,
Age,
numberOfStudents
setName(string)

principal is ais a teacher

239

In
he

rit
an

ce
6

Object Oriented Programming

►Some members (data or function) of the base class may not
suitable for the derived class. These members should be
redefined in the derived class.

►For example, assume that the Teacher class has a print
function that prints properties of teachers on the screen.

►But this function is not sufficient for the class Principal,
because principals have more properties to be printed. So
the print function must be redefined.

Redefining Members (Name Hiding)Redefining Members (Name Hiding)

240

In
he

rit
an

ce
6

Object Oriented Programming

Redefining MembersRedefining Members

class Teacher{ // Base class
protected:
string name;
int age, numOfStudents;

public:
void setName (const string & new_name) { name = new_name; }
void print() const;

};

void Teacher::print() const { // Print method of Teacher class
cout << "Name: " << name<< " Age: " << age << endl;
cout << "Number of Students: " << numOfStudents << endl;

}

241

In
he

rit
an

ce
6

Object Oriented Programming

class Principal : public Teacher{ // Derived class
string school_name;
int numOfTeachers;

public:
void setSchool(const string & s_name) { school_name = s_name; }
void print() const; // Print function of Principal class

};

void Principal::print() const { // Print method of principal class
cout << "Name: " << name << " Age: " << age << endl;
cout << "Number of Students: " << numOfStudents << endl;
cout << "Name of the school: " << school_name << endl;

}

►print() function of the Principal class overrides (hides) the
print() function of the Teacher class.

242

In
he

rit
an

ce
6

Object Oriented Programming

Redefining MembersRedefining Members

void Principal::print() const { // Print method of Principal class
Teacher::print(); // invokes the print function of the teacher class
cout << "Name of the school: " << school_name << endl;

}

►Now the Principal class has two print() functions. The
members of the base class can be accessed by using the
scope operator (::).

243

In
he

rit
an

ce
6

Object Oriented Programming

►If you modify the signature and/or the return type of a
member function from the base class then the derived class
has two member functions with the same name. But this is
not overloading, it is overriding.
►If the author of the derived class redefines a member
function, it means he or she changes the interface of the base
class. In this case the member function of the base class is
hidden.

Overloading vs. OverridingOverloading vs. Overriding

244

In
he

rit
an

ce
6

Object Oriented Programming

class A{
public:
int ia1,ia2;
void fa1();
int fa2(int);

};

class B: public A{
public:
float ia1; // overrides ia1
float fa1(float); // overrides fa1

};

ExampleExample

int main(){
B b;

b.ia1=4; // B::ia1

float y=b.fa1(3.14); // B::fa1
b.fa1(); // ERROR fa1 function in B hides the function of A
b.A::fa1(); // OK
b.A::ia1=1; // OK

}

int j=b.fa2(1);

b.ia2=3; // A::ia2 if ia2 is public in A

example14.cpp

245

In
he

rit
an

ce
6

Object Oriented Programming

ExampleExample

3

4

b
A::ia1

A::ia2

B::ia1

b.ia1=4;
b.ia2=3;

246

In
he

rit
an

ce
6

Object Oriented Programming

►Remember, when inheritance is not involved, class member
functions have access to anything in the class, whether public or
private, but objects of that class have access only to public members.
►Once inheritance enters the picture, other access possibilities arise
for derived classes. Member functions of a derived class can access
public and protected members of the base class, but not private
members. Objects of a derived class can access only public members of
the base class.

Access Base Class Derived Class Object

public yes yes yes

protected yes yes no

private yes no no

Access ControlAccess Control

247

In
he

rit
an

ce
6

Object Oriented Programming

class A{
private:
int ia1;

protected:
int ia2;

public:
void fa1();
int fa2(int);

};

class B: public A{
private:
float ia1; // overrides ia1
public:
float fa1(float); // overrides fa1
};

ExampleExample

float B::fa1(float f){
ia1= 2.22 ;
ia2=static_cast<int>(f*f);

}

248

In
he

rit
an

ce
6

Object Oriented Programming

class Teacher { // Base class
private: // only members of Teacher can access

string name;
protected: // Also members of derived classes can
int age, numOfStudents;

public: // Everyone can access
void setName (const string & new_name){ name = new_name; }
void print() const;

};
class Principal : public Teacher { // Derived class

private: // Default
string school_name;
int numOfTeachers;

public:
void setSchool(const string & s_name) { school_name = s_name; }
void print() const;
int getAge() const { return age; } // It works because age is protected
const string & get_name(){ return name;}// ERROR! name is private

};
249

In
he

rit
an

ce
6

Object Oriented Programming

t1.numberOfStudents=54;

t1.setName(“Sema Catir");
p1.setSchool(“Halide Edip Adivar Lisesi");

int main()
{

teacher t1;
principal p1;

}

250

In
he

rit
an

ce
6

Object Oriented Programming

►In general, class data should be private. Public data is open to
modification by any function anywhere in the program and should
almost always be avoided.
►Protected data is open to modification by functions in any derived
class. Anyone can derive one class from another and thus gain access
to the base class’s protected data. It’s safer and more reliable if derived
classes can’t access base class data directly.
►But in real-time systems, where speed is important, function calls to
access private members is a time-consuming process. In such systems
data may be defined as protected to make derived classes access data
directly and faster.

Protected vs. Private MembersProtected vs. Private Members

251

Private data: Slow and reliablePrivate data: Slow and reliable

class A{ // Base class
private:
int i; // safe

public:
void access(int new_i){ // public interface to access i

if (new_i > 0 && new_i <= 100)
i=new_i;

}
};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i, new_k){

A::access(new_i); // reliable but slow
:

}
};

Protected data: Fast, author of the derived
class is responsible
class A{ // Base class
protected:
int i; // derived class can access directly

public:
:

};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i,new_k){

i=new_i; // fast
:

}
};

Protected data: Fast, author of the derived
class is responsible
class A{ // Base class
protected:
int i; // derived class can access directly

public:
:

};

class B:public A{ // Derived class
private:
int k;

public:
void set(new_i,new_k){

i=new_i; // fast
:

}
};

252

In
he

rit
an

ce
6

Object Oriented Programming

►In inheritance, you usually want to make the access
specifier public.

class Base
{ };

class Derived : publicpublic Base {
►This is called public inheritance (or sometimes public
derivation). The access rights of the members of the base
class are not changed.
►Objects of the derived class can access public members of
the base class.
►Public members of the base class are also public members
of the derived class.

Public InheritancePublic Inheritance

253

In
he

rit
an

ce
6

Object Oriented Programming

Private InheritancePrivate Inheritance
class Base

{ };
class Derived : privateprivate Base {

►This is called private inheritance.
►Now public members of the base class are private
members of the derived class.
►Objects of the derived class can not access members of the
base class.
►Member functions of the derived class can still access
public and protected members of the base class.

254

In
he

rit
an

ce
6

Object Oriented Programming

private

public

protected

Class A

private

public

protected

Class B: public A

private

public

protected

Class C: private A

ObjB ObjC

ObjA

error

255

In
he

rit
an

ce
6

Object Oriented Programming

►Access specifications of public members of the base class
can be redefined in the derived class.
►When you inherit privately, all the public members of the
base class become private.
►If you want any of them to be visible, just say their names
(no arguments or return values) along with the using
keyword in the public section of the derived class:

Redefining AccessRedefining Access

256

In
he

rit
an

ce
6

Object Oriented Programming

class Base{
private:

int k;
public:

int i;
void f();

};

class Derived : privateprivate Base{ // All members of Base are private now
int m;

public:
Base::f(); // f() is public again
void fb1();

};

int main(){
Base b;
Derived d;
b.i=5; // OK public in Base
d.i=0; // ERROR private inheritance
b.f(); // OK
d.f(); // OK
return 0;

};

257

In
he

rit
an

ce
6

Object Oriented Programming

class Base{
private:

int k;
public:

int i;
void f(int);
bool f(int,float);

};

class Derived : privateprivate Base{ // All members of Base are private now
int m;

public:
Base::f(int); // f(int) is public again
void fb1();

};

int main(){
Base b;
Derived d;
b.i=5; // OK public in Base
d.i=0; // ERROR private inheritance
b.f(); // OK
d.f(); // OK
return 0;

};

258

In
he

rit
an

ce
6

Object Oriented Programming

►Some functions will need to do different things in the base class and
the derived class. They are the overloaded = operator, the destructor,
and all constructors.
►Consider a constructor. The base class constructor must create the
base class data, and the derived class constructor must create the
derived class data.
►Because the derived class and base class constructors create
different data, one constructor cannot be used in place of another.
Constructor of the base class can not be the constructor of the derived
class.
►Similarly, the = operator in the derived class must assign values to
derived class data, and the = operator in the base class must assign
values to base class data. These are different jobs, so assignment
operator of the base class can not be the assignment operator of the
derived class.

Special Member Functions and InheritanceSpecial Member Functions and Inheritance

259

In
he

rit
an

ce
6

Object Oriented Programming

►When you define an object of a derived class, the base class
constructor will be called before the derived class constructor. This is
because the base class object is a subobject—a part—of the derived
class object, and you need to construct the parts before you can
construct the whole.
►If the base class has a constructor that needs arguments, this
constructor must be called before the constructor of the derived class.

classclass TTeachereacher { // turetilmis sinif
char *Name;
int Age,numberOfStudents;

public:
Teacher(char *newName){Name=newName;} // temel sinif kurucusu

};

classclass PPrincipalrincipal : public TTeachereacher{ // turetilmis sinif
int numberOfTeachers;

public:
Principal(char *, int); // // turetilmis sinif kurucusu

};

example15.cpp

Constructors and InheritanceConstructors and Inheritance

260

// Constructor of the derived class
// constructor of the base is called before the body of the constructor of the derived class
Principal::Principal(const string & new_name, int numOT):Teacher(new_name)
{

numOfTeachers = numOT;
}

int main() {
Principal p1("Ali Bilir", 20); // An object of derived class is defined
return 0;

}

►If the base class has a constructor, which must take some arguments, then
the derived class must also have a constructor that calls the constructor of
the base with proper arguments.

►Remember, the constructor initializer can also be used to initialize
members.
// Constructor of the derived class
Principal::Principal(const string & new_name, int numOT)

:Teacher(new_name), numOfTeachers(numOT)
{ } // body of the constructor is empty

261

In
he

rit
an

ce
6

Object Oriented Programming

►Destructors are called automatically.
►When an object of the derived class goes out of scope, the
destructors are called in reverse order: The derived object is
destroyed first, then the base class object.

Destructors and InheritanceDestructors and Inheritance

262

In
he

rit
an

ce
6

Object Oriented Programming

#include <iostream.h>
class B {

public:
B() { cout << "B constructor" << endl; }
~B() { cout << "B destructor" << endl; }

};
class C : public B {

public:
C() { cout << "C constructor" << endl; }
~C() { cout << "C destructor" << endl; }

};
int main(){

std::cout << "Start" << std::endl;
C ch; // create a C object
std::cout << "End" << std::endl;

}

263

#include <iostream.h>
class A {

private:
int xx;
float y;

public:
A(int i, float f) :

x(i), y(f) // initialize A
{ cout << "Constructor A" << endl; }

void display() {
cout << intA << ", " << floA << "; ";}

};
class B : public A {

private:
int v;
float w;

public:
B(int i1, float f1, int i2, float f2) :

A(i1, f1), // initialize A
v(i2), w(f2) // initialize B
{ cout << "Constructor B" << endl; }

void display(){
A::display();
cout << v << ", " << w << "; ";
}

};

class C : public Bclass C : public B {{
private:private:

intint rr;;
float float ss;;

public:public:
C(intC(int i1,float f1, i1,float f1, intint i2,float f2,int i3,float f3) :i2,float f2,int i3,float f3) :

B(i1, f1, i2, f2), // initialize BB(i1, f1, i2, f2), // initialize B
rr(i3), (i3), ss(f3) // initialize(f3) // initialize CC
{ cout << "Constructor C" << { cout << "Constructor C" << endlendl; }; }

void display() {void display() {
B::displayB::display();();
coutcout << << rr << ", " << << ", " << ss;;

}}
};};

int main() {
C c(1, 1.1, 2, 2.2, 3, 3.3);
cout << "\nData in c = ";
c.display();

}

Example: Constructor ChainExample: Constructor Chain

example19.cpp

264

In
he

rit
an

ce
6

Object Oriented Programming

►A C class is inherited from a B class, which is in turn
inherited from a A class.
►Each class has one int and one float data item.
►The constructor in each class takes enough arguments to
initialize the data for the class and all ancestor classes. This
means two arguments for the A class constructor, four for B
(which must initialize A as well as itself), and six for C
(which must initialize A and B as well as itself).
►Each constructor calls the constructor of its base class.

ExplanationExplanation

265

In
he

rit
an

ce
6

Object Oriented Programming

ExplanationExplanation
►In main(), we create an object of type C, initialize it to six
values, and display it.
►When a constructor starts to execute, it is guaranteed that
all the subobjects are created and initialized.
►Incidentally, you can’t skip a generation when you call an
ancestor constructor in an initialization list. In the following
modification of the C constructor:
C(int i1, float f1, int i2, float f2, int i3, float f3) :

A(i1, f1), // ERROR! can't initialize A
intC(i3), floC(f3) // initialize C

{ }
the call to A() is illegal because the A class is not the
immediate base class of C.

266

In
he

rit
an

ce
6

Object Oriented Programming

Explanation: Constructor ChainExplanation: Constructor Chain

►You never need to make explicit destructor calls because
there’s only one destructor for any class, and it doesn’t take
any arguments.
►The compiler ensures that all destructors are called, and
that means all of the destructors in the entire hierarchy,
starting with the most-derived destructor and working back
to the root.

267

In
he

rit
an

ce
6

Object Oriented Programming

►Assignment operator of the base class can not be the
assignment operator of the derived class.
►Recall the String example.
class SStringtring {
protected:

int size;
char *contents;

public:
const String & operator=(const String &); // assignment operator
: // Other methods

};
const String & SStringtring::operatoroperator==(const String &in_object) {

size = in_object.size;
delete[] contents; // delete old contents
contents = new char[size+1];
strcpy(contents, in_object.contents);
return *this;

}

Assignment Operator and InheritanceAssignment Operator and Inheritance

268

In
he

rit
an

ce
6

Object Oriented Programming

class String2 : public String { // String2 is derived from String
int size2;
char *contents2;

public:
const String2 & operator=(const String2 &);
:

};

// **** Assignment operator for String2 ****
const String2 & String2::operator=(const String2 &in_object) {

size = in_object.size; // inherited size
delete []contents;
contents= strdup(in_object.contents);
size2 = in_object.size2;
delete[] contents2;
contents2 = strdup(in_object.contents2);
return *this;

}

►Example: Class String2 is derived from class String. If an
assignment operator is necessary it must be written

269

In
he

rit
an

ce
6

Object Oriented Programming

//** Assignment operator **
const String2 & String2::operator=(const String2 & in_object)
{

String::operator=(in_object); // call the operator= of String (Base)
cout<< "Assignment operator of String2 has been invoked" << endl;
size2 = in_object.size2;
delete[] contents2;
contents2 = new char[size2 + 1];
strcpy(contents2, in_object.contents2);
return *this;

}

In previous example, data members of String (Base) class must be protected. Otherwise
methods of the String2 (Derived) can not access them.
The better way to write the assignment operator of String2 is to call the assignment
operator of the String (Base) class.
Now, data members of String (Base) class may be private.

In this method the assignment operator of the String is called with an argument of type
(String2 &). Actually, the operator of String class expects a parameter of type (String &).
This does not cause a compiler error, because as we will se in Section 7, a reference to
base class can carry the address of an object of derived class.

270

In
he

rit
an

ce
6

Object Oriented Programming

►Every time you place instance data in a class, you are
creating a “has a” relationship. If there is a class Teacher and
one of the data items in this class is the teacher’s name, I can
say that a Teacher object has a name.
►This sort of relationship is called composition because the
Teacher object is composed of these other variables.
►Remember the class ComplexFrac. This class is composed
of two Fraction objects.
►Composition in OOP models the real-world situation in
which objects are composed of other objects.

Composition vs. InheritanceComposition vs. Inheritance

271

In
he

rit
an

ce
6

Object Oriented Programming

Composition vs. InheritanceComposition vs. Inheritance
►Inheritance in OOP mirrors the concept that we call
generalization in the real world. If I model workers, managers
and researchers in a factory, I can say that these are all
specific types of a more general concept called an employee.
►Every kind of employee has certain features: name, age, ID
num, and so on.
►But a manager, in addition to these general features, has a
department that he/she manages.
►A researcher has an area on which he/she studies.
►In this example the manager has not an employee.
►The manager is an employee

272

►You can use composition & inheritance together. The following example
shows the creation of a more complex class using both of them.
class A {

int i;
public:

A(int ii) : i(ii) {}
~A() {}
void f() const {}

};

class B {
int i;

public:
B(int ii) : i(ii) {}
~B() {}
void f() const {}

};

class C : public B { // Inheritance, C is B
A a; // Composition, C has A

public:
C(int ii) : B(ii), a(ii) {}
~C() {} // Calls ~A() and ~B()
void f() const { // Redefinition

a.f();
B::f();

}
}; 273

In
he

rit
an

ce
6

Object Oriented Programming

►C inherits from B and has a member object (“is composed
of”) of type A. You can see the constructor initializer list
contains calls to both the base-class constructor and the
member-object constructor.
►The function C::f() redefines B::f(), which it inherits,
and also calls the base-class version. In addition, it calls
a.f().
►Notice that the only time you can talk about redefinition
of functions is during inheritance; with a member object you
can only manipulate the public interface of the object, not
redefine it.
►In addition, calling f() for an object of class C would not
call a.f() if C::f() had not been defined, whereas it would
call B::f().

274

In
he

rit
an

ce
6

Object Oriented Programming

Multiple InheritanceMultiple Inheritance
class Base1{ // Base 1
public:

int a;
void fa1();
char *fa2(int);

};

class Base2{ // Base 2
public:

int a;
char *fa2(int, char*);
int fc();

};

class Deriv : public Base1 ,public Base2{
public:

int a;
float fa1(float);
int fb1(int);

};

Base1 Base2

Deriv

+ +

int main(){
Deriv d;
d.a=4;
float y=d.fa1(3.14);
int i=d.fc();
}

char * c=d.fa2(1);
is not valid.
In inheritance functions are not
overloaded. They are overridden.
You have to write

char * c=d.Base1::fa2(1);
or

char * c=d.Base2::fa2(1,"Hello");

example20.cpp

275

In
he

rit
an

ce
6

Object Oriented Programming

►Both Mother and Father inherit from Gparent, and Child inherits
from both Mother and Father. Recall that each object created through
inheritance contains a subobject of the base class. A Mother object and
a Father object will contain subobjects of Gparent, and a Child object
will contain subobjects of Mother and Father, so a Child object will
also contain two Gparent subobjects, one inherited via Mother and one
inherited via Father.
►This is a strange situation. There are two subobjects when really
there should be one.

Child

Gparent

Mother Father

Repeated Base ClassesRepeated Base Classes
class Gparent

{ };
class Mother : public Gparent

{ };
class Father : public Gparent

{ };
class Child : public Mother, public Father

{ };

276

In
he

rit
an

ce
6

Object Oriented Programming

►Suppose there’s a data item in Gparent:

►The compiler will complain that the reference to gdata is ambiguous.
It doesn’t know which version of gdata to access: the one in the Gparent
subobject in the Mother subobject or the one in the Gparent subobject in
the Father subobject.

Repeated Base ClassesRepeated Base Classes

class Gparent {
protected:

int gdata;
};

class Child : public Mother, public Father {
public:

void Cfunc() {
int temp = gdata; // error: ambiguous

}
};

277

In
he

rit
an

ce
6

Object Oriented Programming

►You can fix this using a new keyword, virtual, when deriving Mother
and Father from Gparent :

►The virtual keyword tells the compiler to inherit only one subobject
from a class into subsequent derived classes. That fixes the ambiguity
problem, but other more complicated problems arise that are too
complex to delve into here.
►In general, you should avoid multiple inheritance, although if you
have considerable experience in C++, you might find reasons to use it in
unusual situations.

class Gparent
{ };

class Mother : virtual public Gparent
{ };

class Father : virtual public Gparent
{ };

class Child : public Mother, public Father
{ };

example21.cpp

Solution: Virtual Base ClassesSolution: Virtual Base Classes

278

In
he

rit
an

ce
6

Object Oriented Programming

class Base
{

public:
int a,b,c;

};
class Derived : public Base
{
public:

int b;
};
class Derived2 : public Derived
{
public:

int c;
};

BaseBase

DrivedDrived

Derived2Derived2

279

In
he

rit
an

ce
6

Object Oriented Programming

class A {
...

};
class B {

...
};
class C {

...
};
class D : public A, public B, private C {

...
};

AA
BB

DD

CC

280

In
he

rit
an

ce
6

Object Oriented Programming

class L {
public:
int next;

};
class A : public L {

...
};
class B : public L {

...
};
class C : public A, public B {

void f() ;
...

};

A B

C

L L

281

In
he

rit
an

ce
6

Object Oriented Programming

class L {
public:
int next;

};
class A : virtual public L {

...
};
class B : virtual public L {

...
};
class C : public A, public B {

...
};

A B

C

L

282

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : virtual public B {

...
};
class Z : public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

B

283

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : public B {

...
};
class Z : public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

B

284

In
he

rit
an

ce
6

Object Oriented Programming

class B {
...

};
class X : virtual public B {

...
};
class Y : virtual public B {

...
};
class Z : virtual public B {

...
};
class AA : public X, public Y , public Z {

...
};

X Y

AA

B

Z

