
197

Operator OverloadingOperator Overloading5

198

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►It is possible to overload the built-in C++ operators such
as +, >=, and ++ so that they invoke different functions,
depending on their operands.

►►aa++bb will call one function if aa and bb are integers, but will
call a different function if aa and bb are objects of a class.

►Operator overloading makes your program easiereasier to write
and to understand.

►Overloading does not actually add any capabilities to C++.
Everything you can do with an overloaded operator you
can also do with a function.

►However, overloaded operators make your programs
easier to write, read, and maintain.

Operator OverloadingOperator Overloading

199

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Operator OverloadingOperator Overloading

►Operator overloading is only another way of calling a
function.

►You have no reason to overload an operator except if it
will make the code involving your class easier to write and
especially easier to read.

►Remember that code is read much more than it is written

200

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►You can’t overload operators that don’t already exist in
C++. You can overload only the built-in operators.

►You can not overload the following operators
. .
**
-->>
,,
::::
?:?:
sizeofsizeof

LimitationsLimitations

201

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

LimitationsLimitations

►The C++ operators can be divided roughly into binary and
unary. Binary operators take two arguments. Examples are
a+b, a-b, a/b, and so on. Unary operators take only one
argument: -a, ++a, a--.

►If a built-in operator is binary, then all overloads of it
remain binary. It is also true for unary operators.

►Operator precedence and syntax (number of arguments)
cannot be changed through overloading.

►All the operators used in expressions that contain only
built-in data types cannot be changed. At least one
operand must be of a user defined type (class).

202

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the + operator for ComplexTOverloading the + operator for ComplexT
/* A class to define complex numbers */
class TComplex {

float real,img;
public:

: // Member functions
TComplex operator+(TComplex&); // header of operator+

function
};
/* The Body of the function for operator + */
TComplex TComplex::operator+(TComplex& z) {

TComplex result;
result.real = real + z.real;
result.img = img + z.img;
return result;

}

int main() {
TComplex z1,z2,z3;
: // Other operations
z3=z1+z2; like z3 = z1.operator+(z2);

}

203

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Because assigning an object to another object of the same
type is an activity most people expect to be possible, the
compiler will automatically create a type::operator=(const
type &) if you don’t make one.

►The behavior of this operator is member wise assignment.
It assigns (copies) each member of an object to members
of another object. (Shallow Copy)

►If this operation is sufficient you don't need to overload
the assignment operator. For example, overloading of
assignment operator for complex numbers is not
necessary.

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

204

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

void ComplexT::operator=(const ComplexT& z)
{

re = z.re;
im = z.im;

}

►You don't need to write such an assignment operator
function, because the operator provided by the compiler
does the same thing.

205

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►In general, you don’t want to let the compiler do this for
you.

►With classes of any sophistication (especially if they
contain pointers!) you want to explicitly create an
operator=.

Overloading the Assignment Operator (=)Overloading the Assignment Operator (=)

206

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

ExampleExample
class string {

int size;
char *contents;

public:
void operator=(const string &); // assignment operator
: // Other methods

};
void string::operator=(const string &s)
{

size = s.size;
delete []contents;
contents = new char[size+1];
strcpy(contents, s.contents);

}

207

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

a
b
c
\0

3

0x00185d12

Destination objectDestination object

sizesize

contentscontents

8

0x008d0080

s
t
r
i
n
g

1
\0

Source objectSource object

sizesize

contents:contents:

8

0x008d0080

XX

Data is still wasting
memory space.

Operator Provided by the CompilerOperator Provided by the Compiler

208

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

a
b
c
\0

3

0x00185d12

Destination objectDestination object
sizesize

contentscontents

8

0x00ef0080

s
t
r
i
n
g

1
\0

Source objectSource object
sizesize

contentscontents

8

0x008d0080

s
t
r
i
n
g

1
\0

X

Operator of the ProgrammerOperator of the Programmer

209

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►When there’s a void return value, you can’t chain the
assignment operator (as in a = b = c).

►To fix this, the assignment operator must return a reference
to the object that called the operator function (its address).
// Assignment operator , can be chained as in a = b = c
const String& String::operator=(const String &in_object) {

if (size != in_object.size){ // if the sizes of the source and destination
size = in_object.size; // objects are different
delete [] contents; // The old contents is deleted
contents = new char[size+1]; // Memory allocation for the new contents

}
strcpy(contents, in_object.contents);
return *this; // returns a reference to the object

}

Return value of the assignment operatorReturn value of the assignment operator

210

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Copy Constructor vs. Assignment OperatorCopy Constructor vs. Assignment Operator

►The difference between the assignment operator and the
copy constructor is that the copy constructor actually
creates a new object before copying data from another
object into it, whereas the assignment operator copies data
into an already existing object.

211

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Copy Constructor vs. Assignment OperatorCopy Constructor vs. Assignment Operator

►A a;
►A b(a);
►b=a;
►A c=a;

212

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Unary operators operate on a single operand. Examples are the
increment (++) and decrement (--) operators; the unary minus, as in -5;
and the logical not (!) operator.

►Unary operators take no arguments, they operate on the object for
which they were called. Normally, this operator appears on the left
side of the object, as in !obj, -obj, and ++obj.

int main() {
ComplexT z(1.2, 0.5);
++z; // operator++ function is called
z.print();
return 0;

}

Example: We define ++ operator for class ComplexT to increment the
real part of the complex number by 0.1 .

Overloading Unary OperatorsOverloading Unary Operators

void ComplexT::operator++() {
re=re+0.1;

}

213

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// ++ operator
// increments the real part of a complex number by 0.1
const ComplexT & ComplexT::operator++() {

re=re+0.1;
return *this;

}
int main() {

ComplexT z1(1.2, 0.5), z2;
z2 = ++z1; //++ operator is called, incremented value is assigned to z2
z2.print();
return 0;

}

►To be able to assign the incremented value to a new object,
the operator function must return a reference to the object.

214

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Same rules apply to all operators. So we don’t need to
discuss each operator. However, we will examine some
interesting operators.
►One of the interesting operators is the subscript operator.
►It can be declared in two different ways:

class C {
returntype & operator [] (paramtype);

or
const returntype & operator [] (paramtype) const;

};

Overloading the “[]” OperatorOverloading the “[]” Operator

215

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Overloading the “[]” OperatorOverloading the “[]” Operator
►The first declaration can be used when the overloaded
subscript operator modifies the object. The second
declaration is used with a const object; in this case, the
overloaded subscript operator can access but not modify the
object.

If cc is an object of class C, the expression
cc[i]
is interpreted as
cc.operator[](i)

216

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// Subscript operator
char & String::operator[](int i) {

if(i < 0)
return contents[0]; // return first character

if(i >= size)
return contents[size-1]; // return last character

return contents[i]; // return i th character
}
int main() {

String s1("String 1");
s1[1] = 'p'; // modifies an element of the contents
s1.print();
cout << " 5 th character of the string s1 is: " << s1[5] << endl;
return 0;

}

►Example: Overloading of the subscript operator for the String
class. The operator will be used to access the iithth character of the
string. If ii is less the zero then the first character and if ii is greater
than the sizesize of the string the last character will be accessed.

217

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

The function call operator is unique in that it allows any number of
arguments.
class C{

returntype operator () (paramtypes);
};

If c is an object of class C, the expression
c(i, j, k) is interpreted as
c.operator()(i, j, k)

// The function call operator without any argument, it prints a complex number
void ComplexT::operator()() const {

cout << re << " , " << im << endl ;
}

Example: The function call operator is overloaded to print complex
numbers on the screen. In this example the function call operator does
not take any arguments.

Overloading the “()” OperatorOverloading the “()” Operator

218

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

// The function call operator with two arguments
void String::operator()(char * dest, int num) const {

if (num > size) num=size; // if num is greater the size of the string
for (int k=0; k < num; k++) dest[k]=contents[k];

}

int main() {
String s1("Example Program");
char * c = new char[8]; // Destination memory
s1(c,7); // First 7 letters of string1 are copied into c
c[7] = '\0'; // End of string (null) character
cout << c;
delete [] c;
return 0;

}

Example: The function call operator is overloaded to copy a
part of the contents of a string into a given memory location.
In this example the function call operator takes two arguments:
the address of the destination memory and the numbers of
characters to copy.

219

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

►Recall that ++ and -- operators come in “pre” and “post”
form.
►If these operators are used with an assignment statement
than different forms has different meanings.

z2= ++ z1; // preincrement
z2 = z1++; // postincrement

►The declaration, operator ++ () with no parameters
overloads the preincrementpreincrement operator.
►The declaration, operator ++ (int) with a single int
parameter overloads the postincrementpostincrement operator. Here, the
int parameter serves to distinguish the postincrement form
from the preincrement form. This parameter is not used.

"Pre" and "post" form of operators ++ and --"Pre" and "post" form of operators ++ and --

220

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Post-Increment OperatorPost-Increment Operator

// postincrement operator
ComplexT ComplexT::operator++(int) {

ComplexT temp;
temp = *this; // old value (original objects)
re= re + 0.1; // increment the real part
return temp; // return old value

}

221

O
pe

ra
to

r O
ve

rlo
ad

in
g

5

Object Oriented Programming

Pre-Increment OperatorPre-Increment Operator

// postincrement operator
ComplexT ComplexT::operator++() {

re= re + 0.1; // increment the real part
return *this; // return old value

}

