
159

Initializing and Finalizing Initializing and Finalizing
ObjectsObjects4

160

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

ContentContent
►Constructors

– Default Constructor
– Copy Constructor

►Destructor

161

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The class designer can guarantee initialization of every
object by providing a special member function called the
constructor.

►The constructor is invoked automatically each time an
object of that class is created (instantiated).

►These functions are used to (for example) assign initial
values to the data members, open files, establish
connection to a remote computer etc.

►The constructor can take parameters as needed, but it
cannot have a return value (even not void).

Initializing Objects: ConstructorsInitializing Objects: Constructors

162

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Initializing Objects: ConstructorsInitializing Objects: Constructors
►The constructor has the same name as the class itself.
►Constructors are generally public members of a class.
►There are different types of constructors.
►For example, a constructor that defaults all its arguments

or requires no arguments, i.e. a constructor that can be
invoked with no arguments is called default constructor.

►In this section we will discuss different kinds of
constructors.

163

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A constructor that defaults all its arguments or requires no
arguments, i.e. a constructor that can be invoked with no
arguments.

class Point{ // Declaration Point Class
int x,y; // Properties: x and y coordinates

public:
Point(); // Declaration of the default constructor
bool move(int, int); // A function to move points
void print(); // to print coordinates on the screen

};

Point::Point() { // Default Constructor
cout << "Constructor is called..." << endl;
x = 0; // Assigns zero to coordinates
y = 0;

}

int main() {
Point p1, p2; // Default construct is called 2 times
Point *pp = new Point; // Default construct is called once

Default ConstructorsDefault Constructors

164

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Like other member functions, constructors may also have
parameters.

►Users of the class (client programmer) must supply constructors
with necessary arguments.

class Point{ // Declaration Point Class
int x,y; // Properties: x and y coordinates

public:
Point(int, int); // Declaration of the constructor
bool move(int, int); // A function to move points
void print(); // to print coordinates on the screen

};

►This declaration shows that the users of the Point class have to give
two integer arguments while defining objects of that class.

Constructors with ParametersConstructors with Parameters

165

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Point::Point(int x_first, int y_first) {
cout << "Constructor is called..." << endl;
if (x_first < 0) // If the given value is negative

x = 0; // Assigns zero to x
else

x = x_first;
if (y_first < 0) // If the given value is negative

y = 0; // Assigns zero to x
else

y = y_first;
}
// -------- Main Program -------------
int main() {

Point p1(20, 100), p2(-10, 45); // Construct is called 2 times
Point *pp = new Point(10, 50); // Construct is called once
Point p3; // ERROR! There is not a default constructor
:

}

Example: Constructors with ParametersExample: Constructors with Parameters

166

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Constructors parameters may have default values
class Point{
public:

Point(int x_first = 0, int y_first = 0);
:

};
Point::Point(int x_first, int y_first) {

if (x_first < 0) // If the given value is negative
x = 0; // Assigns zero to x

else x = x_first;
if (y_first < 0) // If the given value is negative

y = 0; // Assigns zero to x
else y = y_first;

}

►Now, client of the class can create objects
Point p1(15,75); // x=15, y=75
Point p2(100); // x=100, y=0

►This function can be also used as a default constructor
Point p3; // x=0, y=0

Constructor Parameters with Default ValuesConstructor Parameters with Default Values

167

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The rules of function overloading is also valid for constructors. So, a
class may have more than one constructor with different type of
input parameters.
Point::Point() { // Default constructor

............... // Body is not important
}

Point::Point(int x_first, int y_first) { // A constructor with parameters
................. // Body is not important

}

►Now, the client programmer can define objects in different ways:
Point p1; // Default constructor is called
Point p2(30, 10); // Constructor with parameters is called

►The following statement causes an compiler error, because the class
does not include a constructor with only one parameter.

Point p3(10); //ERROR! There isn't a constructor with one parameter

Multiple ConstructorsMultiple Constructors

168

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►When an array of objects is created, the default
constructor of the class is invoked for each element (object)
of the array one time.

Point array[10]; // Default constructor is called 10 times
►To invoke a constructor with arguments, a list of initial
values should be used.
►To invoke a constructor with more than one arguments, its
name must be given in the list of initial values, to make the
program more readable.

Initializing Arrays of ObjectsInitializing Arrays of Objects

169

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Initializing Arrays of ObjectsInitializing Arrays of Objects
►// Constructor
Point(int x_first, int y_first = 0) { }
// Can be called with one or two args
►// Array of Points
Point array[]= { {10} , {20} , Point(30,40) };
►Three objects of type Point has been created and the

constructor has been invoked three times with different
arguments.
Objects: Arguments:
array[0] x_first = 10 , y_first = 0
array[1] x_first = 20 , y_first = 0
array[2] x_first = 30 , y_first = 40

Con’t

170

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►If the class has also a default constructor the programmer may
define an array of objects as follows:
Point array[5]= { {10} , {20} , Point(30,40) };

►Here, an array with 5 elements has been defined, but the list of
initial values contains only 3 values, which are sent as
arguments to the constructors of the first three elements. For
the last two elements, the default constructor is called.

►To call the default constructor for an object, which is not at the
end of the array
Point array[5]= { {10} , {20}, Point() , Point(30,40) };

►Here, for objects array[2] and array[4] the default constructor is
invoked.
Point array[5]= { {10} , {20} , , Point(30,40) }; // ERROR!

Initializing Arrays of ObjectsInitializing Arrays of Objects Con’t

171

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Constructor InitializersConstructor Initializers
►Instead of assignment statements constructor initializers can be used
to initialize data members of an object.
►Specially, to assign initial value to a constant member using the
constructor initializer is the only way.
►Consider the class:

class C{
const int CI;
int x;

public:
C() {

x = 0;
CI = 0;

}
};

class C{
const int CI = 10 ;
int x;

};

172

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

SolutionSolution
The solution is to use a constructor initializer. class C{

const int CI;
int x;

public:
C() : CI(0) {

x = -2;
}

};

All data members of a class
can be initialized by using
constructor initializers.

class C{
const int CI;
int x;

public:
C(int a) : CI(0), x (a)

{ }
};

173

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The destructor is very similar to the constructor except
that it is called automatically
1. when each of the objects goes out of scope or
2. a dynamic object is deleted from memory by using the

delete operator.
►A destructor is characterized as having the same name as

the class but with a tilde ‘~’ preceded to the class name.
►A destructor has no return type and receives no

parameters.
►A class may have only one destructor.

DestructorsDestructors

174

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

ExampleExample
class String{

int size; // Length (number of chars) of the string
char *contents; // Contents of the string

public:
String(const char *); // Constructor
void print(); // An ordinary member function
~String~String(); // Destructor

};
►Actually, the standard library of C++ contains a string

class. Programmers don't need to write their own string
class. We write this class only to show some concepts.

175

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

String::String(const char *in_data) {
cout<< "Constructor has been invoked" << endl;
size = strlen(in_data); // strlen is a function of the cstring library
contents = new char[size +1]; // +1 for null ('\0') character
strcpy(contents, in_data); // input_data is copied to the contents

}
void String::print() {

cout << contents << " " << size << endl;
}
// Destructor: Memory pointed by contents is given back
String::~String() {

cout << "Destructor has been invoked" << endl;
delete[] contents;

}

// Constructor : copies the input character array that terminates with a null character
// to the contents of the string

int main() {
String string1("string 1");
String string2("string 2");
string1.print();
string2.print();
return 0; // destructor is called twice

}
176

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

► It is a special type of constructors and used to copy the contents of
an object to a new object during construction of that new object.

►The type of its input parameter is a reference to objects of the same
type. It takes as argument a reference to the object that will be
copied into the new object.

►The copy constructor is generated automatically by the compiler if
the class author fails to define one.

► If the compiler generates it, it will simply copy the contents of the
original into the new object as a byte by byte copy.

►For simple classes with no pointers, that is usually sufficient, but if
there is a pointer as a class member so a byte by byte copy would
copy the pointer from one to the other and they would both be
pointing to the same allocated member.

Copy ConstructorCopy Constructor

177

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Copy ConstructorCopy Constructor
►For example the copy constructor, generated by the

compiler for the String class will do the following job:

Existing object

size

contents

The new object

8

0x008d0080

size:

contents:

8

0x008d0080

s t r i n g 1 \0

Shallow CopyShallow Copy

Con’t

178

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The copy constructor, generated by the compiler can not copy the
memory locations pointed by the member pointers.

►The programmer must write its own copy constructor to perform these
operations.

Copy ConstructorCopy Constructor Con’t

The new object

size8

0x00ef0080

s
t
r
i
n
g

1
\0

Existing object

size:

contents:

8

0x008d0080

s
t
r
i
n
g

1
\0

Deep CopyDeep Copy

179

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class String {
int size;
char *contents;

public:
String(const char *); // Constructor
String(const String &); // Copy Constructor
void print(); // Prints the string on the screen
~String(); // Destructor

};

String::String(const String &object_in) { // Copy Constructor
cout<< "Copy Constructor has been invoked" << endl;
size = object_in.size;
contents = new char[size + 1]; // +1 for null character
strcpy(contents, object_in.contents);

}

int main() {
String my_string("string 1");
my_string.print();
String other = my_string; // Copy constructor is invoked
String more(my_string); // Copy constructor is invoked

Example: The copy constructor of the String classExample: The copy constructor of the String class

180

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The programmer may use the keyword const to specify that an
object is not modifiable.

►Any attempt to modify (to change the attributes) directly or
indirectly (by calling a function) causes a compiler error.

►C++ compilers totally disallow any member function calls for
const objects. The programmer may declare some functions as
const, which do not modify any data of the object. Only const
functions can operate on const objects.

Constant Objects and Const Member FunctionsConstant Objects and Const Member Functions

const TComplex cz(0,1); // constant object

void print() const // constant method
{
cout << “complex number= “ << real << “, “ << img;

}

181

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A const method can invoke only other const methods, because a
const method is not allowed to alter an object's state either
directly or indirectly, that is, by invoking some nonconst
method.

// -------- Main Program -------------
int main()
{

const Point cp(10,20); // constant point
Point ncp(0,50); // non-constant point
cp.print(); // OK. Const function operates on const object
cp.move(30,15); // ERROR! Non-const function on const object
ncp.move(100,45); // OK. ncp is non-const
return 0;

}

// Constant function: It prints the coordinates on the screen
void Point::print() const
{

cout << "X= " << x << ", Y= " << y << endl;
}

182

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

int main() {
const TComplex cz(0,1); // constant object
TComplex ncz(1.2,0.5) // non-constant object
cz.print(); // OK
cz.reset(); // Error !!!
ncz.reset(); // OK
}

class TComplex{
float real,img;

public:
TComplex(float, float); // constructor
void print() const; // const method
void reset() {real=img=0;} // non-const method

};

void TComplex::print() const { // const method
std::cout << “complex number= “ << real << “, “ << img;

}

TComplex::TComplex(float r=0,float i=0){
real=r;
img=i;

}

183

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Normally, each object of a class has its own copy of all
data members of the class.

►In certain cases only one copy of a particular data member
should be shared by all objects of a class. A static data
member is used for this reason.

class A{
char c;
static int i;

};

int main()
{

A p, q, r;
:

}

int i
static

char c

Object p

char c

Object q

char c

Object r

static Class Membersstaticstatic Class Members

184

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

static Class Membersstaticstatic Class Members
►Static data members exist even no objects of that class

exist.
►Static data members can be public or private.
►To access public static data when no objects exist use the

class name and binary scope resolution operator.
for example A::i= 5;

►To access private static data when no objects exist, a
public static member function must be provided.

►They must be initialized once (and only once) at file
scope.

185

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class A {

char c;

static int count; // Number of created objects (static data)

public:

static void GetCount(){return count;}

A(){count ++; std::cout<< std::endl << "Constructor “ << count;}

~A(){count--; std::cout<< std::endl << "Destructor “ << count;}

};

int A::count=0; // Allocating memory for number

186

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

int main(){

std::cout<<"\n Entering 1. BLOCK............";

A a,b,c;

{

std::cout<<"\n Entering 2. BLOCK............";

A d,e;

std::cout<<"\n Exiting 2. BLOCK............";

}

std::cout<<"\n Exiting 1. BLOCK............";

}

187

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Entering 1. BLOCK............
Constructor 1
Constructor 2
Constructor 3
Entering 2. BLOCK............
Constructor 4
Constructor 5
Exiting 2. BLOCK............
Destructor 5
Destructor 4
Exiting 1. BLOCK............
Destructor 3
Destructor 2
Destructor 1

188

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►Objects should be passed or returned by reference unless there are
compelling reasons to pass or return them by value.

►Passing or returning by value can be especially inefficient in the case
of objects. Recall that the object passed or returned by value must be
copied into stack and the data may be large, which thus wastes storage.
The copying itself takes time.

► If the class contains a copy constructor the compiler uses this function
to copy the object into stack.

►We should pass the argument by reference because we don’t want an
unnecessary copy of it to be created. Then, to prevent the function
from accidentally modifying the original object, we make the
parameter a const reference.
ComplexT & ComplexT::add(const ComplexT& z) {

ComplexT result; // local object
result.re = re + z.re;
result.im = im + z.im;
return result; // ERROR!

}

Remember, local
variables can not be
returned by reference.

Passing Objects to Functions as ArgumentsPassing Objects to Functions as Arguments

189

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►The only object that’s created is the return value in stack, which is
always necessary when returning by value.

►This could be a better approach, if creating and destroying individual
member data items is faster than creating and destroying a complete
object.

ComplexT ComplexT::add(const ComplexT& c) {
double re_new,im_new;
re_new = re + c.re;
im_new = im + c.im;
return ComplexT(re_new,im_new); // Constructor is called

}

► In the previous example, within the add function a temporary object
is defined to add two complex numbers.

►Because of this object, constructor and destructor are called.
►Avoiding the creation of a temporary object within add() saves time

and memory space.

Avoiding Temporary ObjectsAvoiding Temporary Objects

190

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►A class may include objects of other classes as its data
members.

►In the example, a class is designed (ComplexFrac) to
define complex numbers. The data members of this class
are fractions which are objects of another class (Fraction).

re

im

constructor
print()

ComplexFrac

numerator
denominator

constructor
print()Fraction

numerator
denominator

numerator
denominator

Nesting Objects: Classes as Members of Other ClassesNesting Objects: Classes as Members of Other Classes

Composition

191

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Composition & AggregationComposition & Aggregation

►The relation between Fraction and ComplexFrac is called
"has a relation". Here, ComplexFrac has a Fraction
(actually two Fractions).

►Here, the author of the class ComplexFrac has to supply
the constructors of its object members (re , im) with
necessary arguments.

►Member objects are constructed in the order in which they
are declared and before their enclosing class objects are
constructed.

192

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class Fraction { // A class to define fractions
int numerator, denominator;

public:
Fraction(int, int); // CONSTRUCTOR
void print() const;

};

Fraction::Fraction(int num, int denom) { // CONSTRUCTOR
numerator = num;
if (denom==0) denominator = 1;
else denominator = denom;

cout << "Constructor of Fraction" << endl;
}
void Fraction::print() const {

cout << numerator << "/" << denominator << endl;
}

►Example: A class to define fractions

193

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

class ComplexFrac { // Complex numbers, real and imag. parts are fractions
Fraction re, im; // objects as data members of another class

public:
ComplexFrac(int,int); // Constructor
void print() const;

};

ComplexFrac::ComplexFrac(int re_in, int im_in) : re(re_in, 1) , im(im_in, 1)
{

:
}
void ComplexFrac::print() const {

re.print();
im.print();

}
int main() {

ComplexFrac cf(2,5);
cf.print();
return 0;

}

Data members are initialized

When an object goes out of scope, the
destructors are called in reverse order:
The enclosing object is destroyed first,
then the member (inner) object.

Example: A class to define complex numbers. It contains two objects as
members

194

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►It is a good way to write each class or a collection of
related classes in separate files.

►It provides managing the complexity of the software and
reusability of classes in new projects.

Working with Multiple Files
(Separate Compilation)

Working with Multiple Files
(Separate Compilation)

195

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

Working with Multiple FilesWorking with Multiple Files

header header header

C++
source

object

C++
source

objectlibrary

executable

COMPILER

LINKER

object

Only declarations

Definitions

196

In
iti

al
iz

in
g

an
d

Fi
na

liz
in

g
O

bj
ec

ts
4

Object Oriented Programming

►When using separate compilation you need some way to
automatically compile each file and to tell the linker to build all the
pieces along with the appropriate libraries and startup code into an
executable file.

►The solution, developed on Unix but available everywhere in some
form, is a program called makemake.

►Compiler vendors have also created their own project building tools.
These tools ask you which files are in your project and determine all
the relationships themselves. These tools use something similar to a
makefile, generally called a project file, but the programming
environment maintains this file so you don’t have to worry about it.

►The configuration and use of project files varies from one
development environment to another, so you must find the
appropriate documentation on how to use them (although project file
tools provided by compiler vendors are usually so simple to use that
you can learn them by playing around).

►We will write the example e410.cpp about fractions and complex
numbers again. Now we will put the class for fractions and complex
numbers in separate files.

