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This tutorial is designed to take a simple digital design from RTL through
to a routed layout.
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ls List the items in the current directory.
cd[dir] Change to directory < dir >.
cp < source >< dest > Copy source file to destination
rm < file > Remove (or delete) < file >
more < file > Displays the contents of a file, pausing on each page.
lp < file > Prints a file to the standard printer.
man < command > Gives help on any unix command. eg. man ls

Table 1: Common Unix Commands

1 Introduction

This tutorial accompanies a set of files which can be obtained from www.doe.carleton.ca/ gal-
lan/digflow.gz. Together, they document how to take a sample design, a 16-bit
x 8-bit signed multiplier through the CMC supported design flow from RTL
description through to layout.

1.1 Introduction to UNIX

This tutorial assumes a basic knowledge of UNIX. The tutorial is run almost
entirely from the unix command prompt. For those unfamiliar with unix, some
basic commands are listed in Table 1. A good online reference can be found at
www.strath.ac.uk/CC/Courses/IntroToUnix.

1.2 Tutorial Installation

This tutorial can be obtained from www.doe.carleton.ca/˜gallan/digflow. In or-
der to install and configure the tutorial, follow these steps:

1. Save the appropriate version of digflow.gz to your home directory on the
unix system.

2. Unzip the gzipped file to a tar file — gunzip digflow.gz

3. Untar the tarball to create the directory structure — tar -xvf digflow.tar

4. Ensure you are using C-Shell1.

5. Add the line source ˜/digflow/setup.digflow.csh to your ˜/.cshrc file.

1 Issue echo $SHELL from a command prompt, the value should be either /bin/csh or
/bin/tcsh. If it is not, add the line tcsh to your ˜/.bashrc file
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1.3 Related Documentation

The documentation can be divided into the following categories:

• Cadence Tools
Online documentation is available via the cdsdoc command. This brings
up a document browser which allows you to select or search for help on any
of the Cadence tools. Selecting a document in the browser will, eventually,
open a Netscape window pointing to the relevent document2. All of this
documentation is provided in both .html and .pdf form and is physically lo-
cated at /CMC/tools/cadence/{tool-stream}/doc/{tool}. Within cdsdoc,
there are many possible libraries. To get access to all relevent libraries,
overwrite the file ˜/.cdsdoc/cdsdoc.ini with the one from digflow/samples/cdsdoc.ini.

• Standard Cells
There are two standard cell libraries available to us in the .180 um technol-
ogy — from Virtual Silicon Technologies (VST) and from Artisan. Short-
cuts to the standard cell documentation (.pdf’s) are located in digflow/vstlib
and digflow/artlib. More information is available within the /CMC/kits/cmosp18/...
directory structure if neccessary.

• Technology Parameters
As with the standard cells, a shortcut to the process parameter documen-
tation is provided in digflow/tech. This file contains all of the electrical
characteristyics regarding resistance and capacitance for different layers
and operating conditions.

• Synopsys Documentation
If using Synopsys’ tools, the Synopsys On-Line Documentation (SOLD)
can be accessed by typing the sold command. Within this documentation
there is a very good description of RTL coding styles for proper synthesis
— applying to both Synopsys and Cadence synthesis tools.

2 If Netscape is too slow, when it opens it will not be pointing to the proper document.
Re-selecting the document in the browser should fix the problem.
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2 Design Flow

ASIC design flows vary widely according to the current state of EDA (Electronic
Design Automation) tools and company preferences. The current flow is based
primarily on tools provided by Cadence Design Systems, but where appropriate,
competing tools are mentioned.

In this document we will focus on the steps from RTL Design through to
Global Routing, but for completeness the entire ASIC flow is described.

• Specification — The system design must meet any intended standards.
Referencing the standard, the designer would typically create custom C
models for their portion of the design. System-level verification is per-
formed by integrating these models with reference designs and ensuring
performance requirements are met. Typical tools for system level design
and specification include Matlab/Simulink, Cadence’s SPW, and Synop-
sys’ Co-Centric. SystemC and other variants are also emerging to perform
system level design and verification.

• RTL Design — With parameters from the system designer, the hardware
engineer must efficiently implement the required algorithm. This is done
at the Behavioural or Register-Transfer-Level (RTL) using constructs such
as adders, multipliers, memories and finite state machines. The mapping
from a system level algorithm to a hardware description is typically a
manual process, though there are efforts to automate it. Verification of the
RTL design is performed by comparing its I/O vectors with those applied
to the system-level model. Simulation of RTL can be done using tools
such as Cadence’s NC-Verilog, Synopsys’ VCS, or Mentor’s Modelsim.

• Generic Mapping — This automated step takes the RTL description and
attempts to map it to generic hardware components such as gates, flip-
flops, and adders. If there are portions of the RTL which cannot be
described by hardware (ie. unsynthesisable code) or other problems (eg.
latch inferencing), they are often found at this stage. The mapping step
is contained within the main synthesis tool where the available tools are
Synopsys’ Design Compiler(DC) and Cadence’s Buildgates/PKS.

• Constraints — After mapping to generic hardware, the designer could im-
mediately compile the design into digital library cells. Doing so, however,
the tool will pick the smallest available architectures to do the job (eg.
ripple-carry adders vs. carry look-ahead). This leads to slower designs.
Most often, the design will be required to operate with a certain through-
put, and thus, a certain clock frequency (fcritical). By constraining the
design, the user guides the tool to optimize certain paths.

• Floorplanning — As technologies become smaller, delay due to intercon-
nect resistance and capacitance becomes more significant than gate-delays.
Therefore, if two cells are physically beside each other they will experi-
ence much less delay than if seperated by the length of the chip. Thus,
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in order to fully determine whether a design will meet timing and area
requirements, it must be physically layed-out. During this step, the basic
floorplan of the chip is described so that the interconnect delays can be
estimated during compilation.

• Power Planning — Each cell must be connected to power and ground
along its edges. To protect the chip wiring, the current through any par-
ticular wire must be limited below some threshold. Based on your design’s
speed, layout, and toggling activity, power rails must be distributed across
the design so that this limit is not violated.

• Compiling — From the generic HW mapping, the tool picks elements from
the digital library and logically arranges them to perform the required
tasks within the timing constraints.

• Scan Insertion — If all of a design’s flip-flops can be configured to form
a long shift-register, manufacturing faults can be detected. Tools can
automatically place multiplexors at the input to all flip-flops and link
them together into a ‘scan-chain.’ During normal operation the circuit
is unaffected, but when a test signal is asserted the scan-chain can be
used to isolate manufacturing defects. Synopsys’ DC, Cadence’s PKS,
and Mentor’s FastScan can automatically insert the additional circuitry
to allow scan-testing.

• Clock Tree Insertion — Ideally the clock signal will arrive to all flip-flops
at the same time. Due to variations in buffering, loading, and interconnect
lengths, however, the clock’s arrival is skewed. A clock-tree insertion tool
evaluates the loading and positioning of all clock related signals and places
clock buffers in the appropriate spots to minimize skew to acceptable
levels. Some clock tree insertion tools, all from Cadence, include CTSGen,
ctgen, and CTPKS.

• Optimization — After placing the cells, adding scan circuitry and inserting
a clock-tree, the design may no longer meet timing requirements. This op-
timization step can restructure logic, re-size cells, and vary cell placement
in order to meet constraints.

• Routing — Up until this point, all timing estimates assume that signals can
be routed without being detoured, as can be caused by wiring congestion.
After initial optimization, the routing is actually performed in two steps:

1. Global Routing creates a coarse routing map of the design. It evalu-
ates areas which are highly congested and plans how signals should go
around those area. After global routing, the design can be re-timed
using more accurate interconnect data.

2. Final Routing uses the plan from the global route and lays out the
metal tracks and vias to physically connect the cells. Two final-
routers are available - WarpRoute and NanoRoute.
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• Parasitic Extraction — Once the detailed routing tracks are inserted, an
extraction tool is used to more accurately determine the resistance and
capacitance of each net. Two such extraction tools are ‘Fire and Ice’
and ‘HyperExtract.’ These tools can also be used to determine the cross-
coupling capacitance between two signals which are important when eval-
uating signal integrity.

• Post-Routing In-Place-Optimization — After importing the parasitic in-
formation (usually in the form of a .rspf file), timing is re-evaluated to
ensure it meets the constraints. At this stage limited changes can be
performed, such as cell re-sizing and net re-routing in attempts to ‘close
timing’.

• Signal Integrity Fixes — If the cross-coupling capacitance between two
signal lines is high, quick transitions on one net can affect the other.
Within the EDA tools, these nets are referred to as ‘victims’ and ‘agres-
sors’. Agressors are characterized by large drivers and quick transistion
times, whereas victims posess the opposite characteristics. Signal integrity
violations can be divided into two categories:

1. Crosstalk is caused when a victim and agressor pair transition at
the same time. The victim may be either sped up (if both signals
transition in the same direction), or delayed. This variation is then
taken into account for either best or worst case timing analysis.

2. Glitching is caused when a transition on the agressor net can cause
a logical change (from 1-to-0 or 0-to-1) on the victim net.

In either case, the signal integrity tool (Cadence’s CeltIC) identifies the
victim and agressor nets for repair. To fix such a violation, buffers can be
inserted, nets can be re-routed, or shielding can be inserted between the
offending nets. After any signal integrity fixes, extraction is re-done and
timing closure must be verified.

• Physical Checks — Once timing closure has been assured, various physical
checks are carried out. If any changes are made, extraction should be re-
done and timing re-evaluated:

– Antenna Check — During manufacture, when a metal patch is being
deposited charge builds upon it. If the charge builds faster than it can
be dissipated than a large voltage can be developed. If a transistor’s
gate is exposed to this large voltage then it can be destroyed. This is
referred to as an antenna violation. To prevent this, leakage diodes
can be inserted to drain excess charge, or long metal traces on a
single layer can be prevented.

– Layout vs. Schematic (LVS) — The LVS tool extracts the connec-
tivity information from the routed layout and compares it with the
final logical netlist. An LVS match confirms that errors were not in-
troduced during the physical layout of the design. Tools to perform
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for LVS include Cadence’s Assura (formerly Diva, formerly Dracula)
and Mentor’s Calibre.

– Design Rule Checking (DRC) — The design rule check validates that
the spacing and geometry in the design meets the requirements of the
foundry. The same tools used for LVS are used to perform DRC.
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3 HDL Coding Guidelines

Many of these items are taken, with permission, from ”HDL Coding Guidelines,”
by Damjan Lampret and Jamil Khatib, June 7, 2001, www.opencores.org

3.1 Description

The guidelines are of different importance, and fall into three classes

• Good practice - signifies a rule that is common good practice and should
be used in most cases. This means that in some cases there are specific
problems that violate this rule.

• Recommendation - signifies a rule that is recommended. It is uncommon
that a problem can not be solved without violating this rule.

• Strong recommendation - signifies a hard rule, this should be used in all
situations unless a very good reason exists to violate it.

3.2 Resets

Resets make the design deterministic. It prevents reaching prohibited states
and avoides simultation/synthesis mismatches.

• Recommendation: All flip-flops should have a reset. Prevents simula-
tion/synthesis mismatches.

• Recommendation: Resets should be active-low. Cell libraries contain
active-low reset flops. Coding them as such prevents the insertion of un-
wanted buffering on the reset logic.

• Recommendation: Resets should be asynchronous. Most flops have them.
Maintains compatibility between ASIC/FPGA code. Easier debugging.

• Good Practice: The active-low reset should be applied asynchronously,
de-asserted synchronously.

// synchronize the external reset
always @(posedge clk)

rst_sn <= rst_an_pushbutton;

// reset comes off once when pushbutton is ’high’ AND posedge clk
assign rst_an = rst_sn & rst_an_pushbutton;

All flops reset as soon as the pushbutton is applied — eases debugging.
The reset track has a full clock cycle to de-assert after a clock edge —
eases timing.
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• Strong Recommendation: Active-low, asynchronously reset flops are coded
as follows:

always @(posedge clock or negedge rst_an)
if(~rst_an) q <= 0;
else q <= d;

• Strong Recommendation: On an FPGA or CPLD the reset should be glob-
ally connected. FPGAs and CPLDs have fixed routing that are connected
to all device resources.

3.3 Clocks

• Recommendation: Signals that cross different clock domains should be
sampled before and after the crossing domains (double sampling is pre-
ferred). Prevent meta-stability state.

• Good practice: Use as few clock domains as possible in any design.

• Recommendation Do not use clocks or reset as data or as enable. Do not
use data as clock or as reset. Code such as this must be prevented:

always @(posedge signal) begin ... end

Synthesis results may be different than HDL, causes timing verification
problems.

• Recommendation: Don’t use gated clocks. It negatively effects timing and
can cause unwanted glitching. If necessary, they will be implemented at
the top level of an IC.

• Strong Recommendation: Clock signal must be connected to global dedi-
cated reset or clock pin on an FPGA or CPLD. This is because such pins
provide low skew routing channels.

3.4 Naming Conventions

• Good Practice: Try to write one module in one file. The File name should
be the same as the module’s name.

• Recommentation: Try to use named notation for instantiating instead of
positional notation. For easier debugging and understanding the code.

• Good Practice: Keep the same signal name through different hierarchies.
So tracing after the signal will be easy. Enable easy netlist debugging.

• Good Practice: Suffix signal names with a for asynchronous and n for
active-low. eg. rst an is an active-low asynchronous reset signal. Helps
keep logic clear.
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• Recommendation: Start buses at bit 0. Some tools don’t support buses
that don’t start at bit 0.

• Recommendation: Use MSB to LSB for busses. This is to avoid misin-
terpretation through the design hierarchy.

3.5 Synchronous design and timing optimization

• Strong Recommendation: Use only synchronous design. It avoids problems
in synthesis, in timing verification and in simulations.

• Recommendation: Avoid using latches. They causes synthesis, testing,
and timing verification problems.

• Strong Recommendation: Do not use delay elements.

• Strong Recommendation: All blocks external IOs should be registered. It
prevents long timing paths.

• Good Practice: Block internal IOs should be registered. This is a design
issue but is recommended in most cases.

• Recommendation: Avoid using FlipFlop with negedge clock. Causes syn-
thesis problems and timing verification problems.

• Strong recommendation: Include all signals that are read inside a com-
binational process in its sensitivity list. (i.e. Signals on Right Hand
Side RHS of signal assignments or conditions. This is to prevent sim-
ulation/synthesis mismatches.

• Strong recommendation: Ensure variables are assigned in every branch of
a combinational logic process. Prevents inferring of unwanted latches.

3.6 General rules

• Strong Recommendation: In RTL, never initialize registers in their dec-
laration. Use proper reset logic. Initialization statements can not be syn-
thesised.

• Recommended: Write fsms in two always blocks — one for sequential as-
signments (registers) and the other for combinational logic. This provides
more readability and prediction of combinational logic size.

• Strong Recommendation: Use non blocking assignment (<=) in clocked
blocks, and blocking assignment (=) in combinational blocks. Synthesis
tools expects for this format. Makes the simulation respond deterministi-
cally.

• Recommendation: Try to use the ’include’ command without a path. HDL
should be environment independent.
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• Good Practice: Compare buses with the same width. The missing bits
may have unexpected value in the comparison process.

• Strong recommendation: Avoid using long if-then-else statements and use
case statement instead. This is to prevent inferring of large priority de-
coders and makes the code easier to be read.

• Strong Recommendation: Avoid using internal tri-state signals. They
increase power consumption and make backend tuning more difficult.

3.7 Simulation and Debugging

• Strong Recommendation: Test benches should be intelligent enough to
determine sucessfull operation without user interaction. Reduces devel-
opment time and human oversights.

• Strong Recommendation: The same test-bench should be used for RTL
and gate-level simulations. Ensures that synthesis and optimization is
sucessfull.

• Recommendation: Try to write the test bench in two parts, one for data
generation and checking and one for interfacing to the device-under-test.
The interface to the device should be written with normal hardware coding
rules in place. This is to isolate data (results checking) from the hardware
interfacing. By writing the interface logic with conventional hardware de-
scription (ie. registers), it allows for interchangable RTL and gate level
simulation.

• Good Practice: Use $display(”%t - (%m) Message”, $time, vars...) liber-
ally to provide information while debugging a design.

• Good Practice: Ensure the ‘timescale command is specified only once.
Different ‘timescale causes simulation problems: races and too long paths.
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Figure 1: Tutorial Directory Structure

4 The 16x8 Signed Multiplier

4.1 Directory Structure

Before starting any project it is important to organize the directory hierarchy
logically. The structure that comes with this flow is shown in Figure 1. At the
top level, there are links to current designs and library locations. The links to
the library information are there for convenience, allowing the tools to reference
common locations across different system configurations. In addition to the
library data, design directories exist for each major project, or project revision.
Also for convenience, a symbolic link is created which points to the current
project.

Within each project, directories exist for the RTL source code, testbenches,
simulation runs, and for each major tool used in the design flow. There is also a
Release directory which holds all the relevent files at a certain point in the design
flow. This approach allows for easy handoff of design data between tools, and
provides check-points in the design which can be restored in case of problems.

4.2 Multiplier Design

Figure 2 is the schematic representation of the signed multiplier used in this
tutorial. Provided in the tutorial’s RTL directory (digflow/signed mult/rtl) are
4 variations of the design, all of which perform the same ultimate function.

• Instantiating a ‘Canned’ Multiplier : In this implementation, we specifi-
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Figure 2: 16-bit * 8-bit Signed Multiplier Sample Design

cally instantiate a signed multiplier that is provided by Synopsys in it’s
DesignWare Component Library. 3 This approach tends to give the best
synthesis results, but requires that these components be researched and
available on the target system.

• Behavioural Description: The simplest way to describe a multiplier is to
use verilog’s ∗ operator. Without extra precautions however, this will not
work for signed values. To perform signed multiplication, the inputs A
and B must first be sign-extended to the width of the result — in this
case 24 bits. Then, performing Z = Aextended ∗ Bextended will create a
24x24 unsigned multiplier, producing a 48-bit result. Of which, the least-
significant 24-bits are actually our signed result. We then rely on the
synthesis tool to remove the unnecessary logic for the upper half of the
multiplier. Depending on the tool, this approach synthesises almost as
well as instantiating an optimzed signed multiplier. 4

• Structural Description: Many experienced designers still tend to write
structural descriptions of their hardware, assuming that they can do a
better job structuring the logic than the synthesis tool. This is likely a
holdback to the time when the tools weren’t nearly as competant as today.
For datapath components (eg. adders, multipliers, etc...) this approach
almost always results in less efficient designs than those generated auto-
matically. In this case, an ‘optimal’ signed multiplier was coded without
using any high-level constructs. The resultant circuit was twice as large
and half as fast as the circuit synthesised from the behavioural description.

3The documentation for Designware components can be accessed via the ‘sold’ command
to open the Synopsys On-Line Documentation.

4Using Cadence PKS the resultant design was 10% larger than using the DesignWare
multiplier, wheras Synopsys’ Design Compiler, produced a circuit twice as large.
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• Paramaterized Behavioural Description: This description and architecture
is equivalent to the sign-extension solution earlier, but, in this case the
operand widths of A and B are specified as parameters. This allows the
code to be re-used in any situation and is higly encouraged. On the other
hand, paramaterized code is often more difficult to read and understand.
A UNIX symbolic link is used to make this file the default for this tutorial.

4.3 Verification Platform

The cardinal rule of verification is that test-benches should be able to evaluate a
circuit’s performance without user interaction. In most cases this is performed
by applying a set of inputs and automatically comparing the outputs against
proper results.

Most often, the proper results (or expected vectors) can be generated within
verilog itself. As a software language, similar to C, it can perform all basic
floating point and integer operations. Also, included in digflow/verilog lib/lib
is a library which expands verilog to perform complex functions using system
calls such as $sin(realval) or $powxy(3.1415, realval). Performing vector checks
and error accounting within verilog, keeps the verification environment in one
tool,reducing complexity. We use this method in the case of the signed multi-
plier, since expected vectors are easily generated ‘in-house’ using integer arith-
metic.

When the trusted results can not be generated within verilog, or have been
generated using system-level design tools, there are two choices.

• A co-simulation environment can allow the verilog to run along-side the
system level model and the results can be actively compared.

• The system tool can print IO vectors to files, and read into a verilog
testbench using the $readmemh system function.

In many cases it is convenient to ignore the effects of hardware induced
latency when we compare results versus expected vectors. To achieve this,
functions are provided in digflow/verilog lib/src/vector search.v that search for
the partial occurance of one vector within another.

Overall, the testbench structure shown in Figure 3 is used in this tutorial.
It is also recommended for use in your own designs. To ensure proper synthesis,
the same set of tests should be used to verify your RTL and gate level designs.
We accomplish this using two top-level wrapper files, rtlsim.v and gatesim.v,
which call the same testbench.

The main testbench, main tb.v, provides a framework for running many
small independent tests. It is responsible for initializing variables, instantiating
the device under test (DUT), providing IO facilities for individual tests, and for
including any common functions which may be usefull. By housing many small
tests in a common environment, large-scale verification can be performed while
minimizing testbench complexity.
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module rtlsim

‘include ../rtl/rtl_files.v

‘include ../tb/main_tb.v ‘timescale 1ns/10ps

tb/main_tb.v

// Vector IO Stimulation

‘include ../tb/functions.v

end

‘include ../tb/testn.v

‘include ../tb/test1.v

initial begin

dut filter_int(....)

// declarations... 
module tb() begin

     $shm_probe("AS"); Lists all of the RTL sources.

‘include ../rtl/sign_mult.v

     tb tb_inst();

     $sdf_annotate(...);
     $shm_probe("AS");

module gatesim
Gate Level Netlist

Standard Cell Definitions

Used for Timing Back−annotation

tb/rtlsim.v

tb/gatesim.v

‘include ../../artlib/cells.v

‘include ../release/filter.v

‘include ../tb/main_tb.v

Records Signal Waveforms

     tb tb_inst();

Source Code References

tb/test1.v

tb/test2.v

tb/testn.v

.

. Individual Tests
Sets up IO vectors and sequences test..

Testbench and Verification Suite

rtl/rtl_files.v

Simulation Wrappers

Figure 3: Testbench and Simulation File Structure
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5 Verilog Simulation

Within the UNIX environment we will use Cadence’s NC-Verilog for our simu-
lations.

5.1 Setting up NC-Verilog

NC-Verilog is the new version of Cadence’s Verilog-XL. It is much faster than
most simulators since it compiles the code before executing it.

In theory, to simulate with NC-Verilog requires three seperate steps — com-
pling, linking and execution — each of which normally uses a seperate command.
However, for the purposes of this tutorial we are going to use NC-Verilog in
Verilog-XL compatibility mode. This allows us to perform all three steps at
once.

Unlike Verilog-XL, when NC-Verilog is run, it must have a directory avail-
able for storing temporary files. This is specified in multiply/sim/cds.lib. This
file, the referenced work directory, and an empty file hdl.var must exist in the
directory where ncverilog is run.

To simulate a set of files, one then issues the command 5:

ncverilog [+options] testbench.v rtlfile1.v rtlfile2.v

5.2 Simulating a Design

1. Referring to Section 4.2, examine the file multiply/rtl/signed mult.v to
obtain some understanding of the sample design.

2. From the multiply/sim directory, run the command:

ncverilog ../rtl/signed_mult.v

Though this will not run a simulation, it will compile the design and inform
you of any syntax errors. Note that the output from any ncverilog run is
captured in the file ncverilog.log.

3. Familiarize yourself with the main testbench ../tb/main tb.v :

• Line 1: The ‘timescale directive should only be included once at the
beginning of a simulation.

• Line 7: The VERBOSE constant is used to determine the extent of
debugging information displayed. 0 for None, and higher values to
dump more information.

5For speedy operation, by default, NC-Verilog does not record waveform traces, even when
told to. Using the “+access+r” options over-rides this behaviour. Running the setup script
in this tutorial “aliases” ncverilog to ncverilog +access+r so that signal recording is on by
default.
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• Lines 27-28: The check vectors routine in verilog lib/src/vector search.v
searches for the occurance of expected buffer in output buffer. Since
arrays cannot be passed in standard verilog, these must be global
variables.

• Line 34: The instantiation of the multiplier, or the device-under-test
(DUT).

• Line 47: If the vector search routines are used they must be included
within the module definition.

• Line 53: The result from the DUT is converted to an integer using
sign-extension.

• Lines 56-63: The interface to the DUT should behave like hardware,
capturing the result on the positive edge of the clock like a register.
The integer results are stored sequentially in output buffer for later
comparison.

• Lines 66-67: It is convenient to specify the inputs A and B as integers.
This truncates them for application to the DUT.

• Line 73: Displays the IO vectors if the VERBOSE constant is above
0.

• Line 87: Start of main test sequencing.

• Lines 104-110: Reset the system at the start of each test. A good
rule of thumb is not to change inputs at the active clock edge. As
such we use the negative edge of the clock to trigger all changes to
DUT inputs.

• Lines 115-121: Prepare random inputs for the DUT within the proper
range of values.

• Line 123: Calculate the expected result using verilog’s integer multi-
plication abilities.

• Line 127: Call the check vector function to search for 90 consecutive
matching positions between output buffer and expected buffer. The
routine displays whether a match was found or not.

• Line 133: Start the next test using the same format as lines 104
through 130.

4. Having looked at the RTL and the testbench, run the simulation from the
multiply/sim directory, with the command:

ncverilog ../tb/main_tb.v ../rtl/signed_mult.v

Examine the output and note how the search function reports that the
expected vectors were found in the recorded output stream. To get more
detailed information, change Line 7 of main tb.v to ‘define VERBOSE
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2 and re-run the simulation. Now each result is displayed as it occurs,
and the output and expected buffers are displayed by the search routine.
Change the VERBOSE level to 1 and re-run the simulation to observe the
difference.

5. Now we’ll intentionally introduce a bug and view the simulation result. In
rtl/signed mult.v, change Line 78 to use the unextended inputs Areg and
Breg instead of Aext and Bext. Re-run the simulation and examine the
output to see how the errors are reported. Ensure you fix rtl/signed mult.v
before moving on.

6. Rather than using “NC-Verilog”, we’ll try using the slightly older (and
slower) “Verilog-XL” for the next simulation (just so you can say you’ve
used Verilog-XL). Replace “ncverilog” with “verilog” on the command
line.

verilog ../tb/main_tb.v ../rtl/signed_mult.v

7. To see the advantage of the vector-search routines, run the testbench
against a different implementation of the multiplier.

verilog ../tb/main_tb.v ../rtl/signed_mult_bisec.v

In this design, the output is not registered within the module and so the
results appear a cycle earlier. Note how the search-routine reports that
the expected string was found at position 2 in the output buffer, not 3 as
before. Without a flexible routine to match up the output and expected
vectors, the test would have improperly failed.

5.3 Waveforms in UNIX simulations

5.3.1 Recording

Though log files should inform the user whether a test was successfull, they
are not as usefull as waveforms for tracking down bugs. Unlike Silos on the
PC’s, Verilog-XL and NC-Verilog do not automatically record waveforms for
viewing and debugging. To record such a waveform, we use the $shm open and
$shm probe system functions. Since these are unavailable on non Cadence simu-
lators, we should avoid putting them in the main testbench. Instead, we create
a wrapper. Look at the file tb/rtlsim.v. Here, we issue the $shm open(”rtlsim”)
function to open a waveform database called rtlsim, and $shm probe(”AS”)
to record all-signals (AS). Instead, we could list specific signals within the
$shm probe statement. We then instantiate the main testbench to run under-
neath.

From the multiply/sim directory, run the simulation and record waveforms
with:
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Figure 4: Simvision Waveforms for Signed Multiplier

ncverilog ../tb/rtlsim.v

The simulation will run as before, but will record the waveforms in the rtlsim
subdirectory.

5.3.2 Viewing with SimVision

To view the waveforms, we use Cadence’s SimVision 6. From multiply/sim, issue
the command:

simvision rtlsim &

This launches the tool, loads the rtlsim database, and returns the command
prompt. The tool opens to the design-browser. Expand the signal hierarchy by
highlighting the rtlsim folder, and selecting Edit - Explode. Select the tb icon.
Note how the signals are displayed in the viewer. Chose ‘Select - All’ from the
menu, and click on the waveform icon to view the selected traces (Figure 4). In
the waveform viewer you can zoom-in and out, pan around, go to specific time
periods, etc... As in many graphical systems, there are many ways to perform
any task and it is usually easiest to learn through exploration.

If there is a particular waveform setup that you wish to record, you can save
a Command script from the file menu. Note that this only saves the Setup —

6The previous version was called Signalscan and is still available.
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such as the list of signals, cursors, zoom settings, etc... — but does NOT save
the underlying signal data.

5.4 Running Gate-Level Simulations

Gate level simulations are run the same way as the RTL simulation. When
running a gate-level simulation, however, you must be sure to point the simulator
to the verilog models for the standard cells. Looking at tb/gatesim.v, this is done
through a ‘include statement. Also, we typically want any gate-level waveforms
to be stored in a seperate waveform database - and so the $shm open uses a
different filename.

The final difference in gate-level simulation includes the use of the $sdf annotate
system function. This function reads the design’s timing data from an SDF
(Standard Delay Format) file and applies it to the simulation. As the design is
pulled further through the ASIC flow, the SDF file, and thus the timing in the
simulation, becomes more accurate. If a specific SDF file is not yet available for
the design, unreliable default settings are applied for gate-delays and the tcq of
a flip-flop via the digflow/vstlib/stdcells.sdf file.
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6 Quick Synthesis

Cadence and Synopsys are the two primary providers of ASIC synthesis tools.
Synopsys’ Design Compiler (DC) has long been the standard, but Cadence’s
Builgates and Physical Synthesis (PKS) tools have recently emerged as a com-
perable, lower cost, solution.

For the purpose of this tutorial we will focus on Cadence tools, but we’ll also
introduce you to basic synthesis in Synopsys’ DC.

The Cadence tool-set can be subdivided into 3 classes:

• Buildgates (BG) - Basic synthesis tool. Started with bg shell.

• Buildgates Extreme (BGX) - Adds advanced synthesis techniques for dat-
apath components. Started with bgx shell.

• Physical Synthesis (PKS) - Adds physical awareness to BGX. Started with
pks shell.

All 3 flavours have the same interface, but with different capabilities. The orig-
inal Buildgates is highly crippled and generates very poor results. For normal
synthesis, BGX is the flavour to use, but, if the design is timing critical or
floorplanning is required then PKS is the appropriate tool.

Often during initial design phases, area and timing estimates are required
long before a project is ready for layout. Tables 2 and 3 list the required
commands to quickly synthesize an RTL or Behavioral design using the Cadence
or Synopsys tools.

Start the tools from their respectively directories (multiply/pks and multi-
ply/syn). In the GUI version of PKS, the command prompt is available along
the bottom of the screen (Figure 5). To get the command prompt in Design An-
alyzer (which is the GUI version of dc shell), select Setup - Command Window
from the Menu bar (Figure 6).

Following the commands listed in Tables 2 and 3, synthesize the signed
multiplier in both tools.

By examining the generated reports, try to compare the results in terms of
speed and area before we go further into the details. Exit the tools using either
the GUIs, or the quit command.

6.1 Scripting Repeated Commands

Throughout the industry, GUI interfaces are rarely used. Instead, scripts are
used to automate common processes. This not only reduces check-out time of
licences, but ensures consistency among designs.

When either of the tools are run, they log executed commands in either
ac shell.log (PKS) or command.log (DC). To create a script, simply record the
useful commands in a file and then run them using: source filename in PKS, or
include filename in DC. Synthesis scripts can become quite elaborate and often
make use of parameters, variables and control constructs such as if statements
and for loops.
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Figure 5: Screenshot of Multiplier in PKS

Start the tool: pks shell -gui &
Read Cell Libraries: read tlf ../../vstlib/cells wc.tlf
Read Source Code: read verilog ../rtl/signed mult.v
Generate Generic Hardware: do build generic
Constrain the Clock: set clock myclk -period 10; set clock root -clock myclk clk
Map to Standard Cells: do optimize
Report the Area: report area
Report the Timing: report timing
Save Database: write adb adb/quicksynth.adb
Save Netlist: write verilog gates/quicksynth.v
Save Timing: write sdf -edges noedge sdf/quicksynth.sdf

Table 2: Quick Synthesis Commands In BGX/PKS
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Figure 6: Screenshot of Multiplier in Design Analyzer

Start the tool: design analyzer &
Read Cell Libraries: Done automatically via the .synopsys dc.setup startup file
Read Source Code: analyze -format verilog ../rtl/signed mult.v
Generate Generic Hardware: elaborate signed mult
Constrain the Clock: create clock -name myclk -period 10 clk
Map to Standard Cells: compile
Report the Area: report area
Report the Timing: report timing
Save Database: write -output db/quicksynth.db
Save Netlist: write -format verilog -output gates/quicksynth.v
Save Timing: write sdf -version 1.0 sdf/quicksynth.sdf

Table 3: Quick Synthesis Commands In Design Compiler
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Examine the files multiply/pks/tcl/quicksynth.tcl and multiply/syn/scr/quicksynth.scr,
and compare them with Tables 2 and 3. Note how values such as the clock pe-
riod and root pin have been replaced with variables, allowing the script to be
re-used for other designs.

From the multiply/pks directory, re-synthesize the multiplier automatically
by issuing the command:

pks_shell -f tcl/quicksynth.tcl

This will start PKS in text mode, and immediately run the referenced script.
Once synthesis is finished, it will end with the PKS command prompt. From
there, you can issue further PKS commands or quit to the UNIX shell.

Remember, the GUIs are useful for learning and experimentation, but once
issues are settled, scripts should be written to automatically generate your layout
from RTL.

7 Getting Started with PKS

7.1 Environment Setup

In digflow/setup.digflow.csh the path is modified to include /CMC/tools/SOC23/tools/bin.
This is where the PKS executables reside.

7.2 The PKS Graphical User Interface (GUI)

Though the command interface is typically the best way to perform functions -
this tutorial would be remiss without a few words about the PKS GUI. Notice
from Figure 7 that the GUI is divided into three sections:

• The command window is used for entering tcl commands and monitoring
the response.

• The Hierarchy Browser can be used to select signals or instances by name
or logical relationship.

• Depending on the selection tab, the panel on the right can be used as a
text editor (for HDL or tcl scripts), to setup timing constraints, or to view
a schematic or physical layout.

Within the GUI, “Control-M” can be used to toggle a window section to full-size.

7.3 The PKS Command Interface (TCL)

Many of the EDA tools have been moving towards a common scripting language
called TCL (pronouned “tickle”). The following are some basic points of the
language:

• All variables in tcl are strings. Numeric conversion only occurs within
functions, and are transparent to the programmer.
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Hierarchy Design Browser

Default Toolbar Quickbuttons

Main Menu

Tcl Command Shell

Text Editor
Schematic Viewer

Layout Viewer

Figure 7: Layout of the PKS GUI

• Each line of a tcl statement is parsed into tokens, seperated by white
space.

• The first token is the command, and all other tokens are options to that
command

• Most commands work on, and return lists. Lists are arrays of words
seperated by whitespace.

• To continue a command on the next line, end with the “
” character.

• A good quick TCL reference can be found at: http://panic.fluff.org/quickref/tcl.htm

Additionally, within PKS, Cadence has defined over 200 synthesis related tcl
proceduces. Keep in mind the following points:

• help * can be used to list all synthesis commands

• help <command name> or <command name> -help can be used to get
information on any specific command.

• help <keyword> will list all commands related to that keyword (eg. help
floorplan, help constraints, help dft).

• The TAB key can be used to complete a command name.
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• Commands and switches do not need to be fully specified. (ie. set clock root
-clock myclk clkpin and set clock ro clkpin -cl myclk are equivalent.)

• Most synthesis commands begin with one of:

– get — to return an attribute or global variable (eg. get fanin)

– set — to set an attribute or global variable (eg. set input delay)

– do — to perform some action (eg. do build generic, do optimize)

– report — report design values (eg. report library, report area, re-
port timing)

– read — read an input file (eg. read tlf, read adb, read sdf, read verilog)

– write — write to some output (eg. write verilog, write adb)

8 Digital Libraries

8.1 Logical Libraries

The first step in ASIC synthesis is to read the library data for standard cells
and any macro blocks (eg. RAMS). The logical and timing data for the library
may be provided in any of the following (roughly) equivalent forms7:

• .tlf - Cadence Timing Library Format

• .ctlf - Compiled (Binary) TLF

• .alf - Cadence Ambit Library Format

• .lib - Synopsys Library Format

• .db - Synopsys Database Format

These libraries contain:

• Design Rules

– Maximum Slew

– Maximum Load

– Maximum Fanout

• Default Design Units (typical unit)

– Capacitance (pF )

– Delay (nS)

– Area (um2)
7Though tools can convert from one format to another, the process is typically buggy and

frustrating.
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– Power (Dynamic - mW , Static - uW )

– Resistance (kΩ)

And then for Best, Worst, and Typical process conditions:

• Process, Temperature, Voltage Ratings

• Wireload Estimates — Average Interconnect RC vs Net Fanout

• Cell Data

– Logical Function

– Timing Delay Tables (Delay versus Load and Slew)

– Pin Capacitance Estimates

– Static and Dynamic Power Dissipation

– Cell Area

Typically a library vendor will provide the cell data in seperate files for best,
worst, and typical environments. Most circuit synthesis should be performed
using the worst-case delays, however, best-case models must be considered when
fixing hold-time violations. In the quick-synthesis of Section 6 we loaded only
the worst case libraries, but for full synthesis we should merge the best and
worst case libraries. After the merge operation, PKS will chose the fast or slow
model appropriately.

To use the Artisan cells, and merge the best and worst case data into a
library called ”cells”, issue the PKS command:

read_tlf -min ~/digflow/artlib/cells_bc.tlf \
-max ~/digflow/artlib/cells_wc.tlf \
-name cells

You can safely ignore the warnings “Missing ’Input( )’ expression for LATCH(
)”.

After having read in the data, use the command report library -wireload -
operating cond to view the global information listed in the library files. Using
another variation of the report library command we’ll experiment with pattern
matching. Issues the commands:

1. report library -help to see the syntax of the command.

2. report library -cell NAND2* to list all variations of 2 input NAND gates.

3. report library -cell NAND*XL to list all low-power (XL) NAND gates.

4. report library -cell NAND?X? to list all NAND gates with un-inverted
inputs.
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8.2 Physical Libraries

As device sizes shrink, interconnect RC delays are becoming more significant
than traditional gate delays. As such, wireload models — which assume an
interconnect delay based on chip area and fan-out — are inaccurate. To decrease
estimation errors, Physical Synthesis tools perform the placement and global
routing of cells as part of the mapping process.

In order to perform the layout, the tool needs additional information. A .tf
(technology file) or LEF8 (Library Exchange Format) normally contains contains
data regarding a process’ parasitic information (ie. TSMC CMOSP18). And
often a sperate LEF file contains the physical dimensions of the standard cells.
In the case of the Artisan cells, all of the data has been combined in a single
file and can be read using the command9:

read_lef ~/digflow/artlib/cells.lef

Unfortunately, there is some overlap between what is specified in the log-
ical libraries, and what is in a LEF file. Specifically, thy both includes data
regarding a cell’s area and logical function. The dual-specifications can create
inconsistencies. To ensure this is not the case, run the command:

check_library cells

Though all logical cells should have physical equivalents, there are rare cells
— such as loading capacitors or antenna diodes — that may not have logical
equivalents.

Scripts to load either the VST or Artisan cell libraries are provided as
tcl/load vstlib.tcl and tcl/load artlib.tcl. These scripts also load additional li-
braries for the IO pads which are available. Once PKS starts, either of these
can be run using source tcl/<script name.tcl>

8.3 Section Summary

Key Points:

• Logical Library Formats can come in various forms — .tlf, .ctlf, .lib, .alf,
.db.

• The units for Area, Resitance, Capacitance, Power, etc. are declared in
the library file.

• Both Best AND Worst Case libraries need to be used to ensure proper
operation.

• Wireload models are not accurate for high-speed, small geometry, designs
8 Due to advanced Antenna information, there are two incompatible versions of the LEF.

PKS (as well as SE) can only read the older version, whereas the router (wroute) can use the
newer version.

9 In cases where the process and cell information are in seperate files, the process informa-
tion must be read first, and then the cell data is read with a read lef update command.
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Read logical libraries read tlf -min cells bc.tlf -max cells wc.tlf -name cells
Report on logical libraries report lib
Read physical libraries read lef tech.lef
Additional physical libraries read lef update morecells.lef
Check consistency of library check library cells

Table 4: Library Commands Summary

• Physical Libraries (Normally .LEFs) contain the data neccessary for lay-
out.

• Consistency should be verified between physical and logical libraries.

• Wildcards (* and ?) can be used in TCL based pattern matching.

• The scripts tcl/load vstlib.tcl and tcl/load artlib.tcl are provided.

9 Reading and Constraining a Design

9.1 Reading Source Files

Once the libraries are loaded we need to read all of the project’s verilog (or
VHDL) source files. In large projects it is normally convenient to have one file
reference all of the others with ‘include statements so that we only need to read
the single file. In this case, the source file ../rtl/rtl files.v lists the rest of the
project files.

To read the design:

read_verilog ../rtl/rtl_files.v

The design can also be read via the GUI by selecting File — Open, Select
Verilog, Select the File. Any syntax errors are normally reported at this stage.

9.2 Generic Mapping

After having read the design into memory, we tranform it into generic hardware
by running do build generic on the top level of the design. If there is an obvious
top module implied by the code then no options need to be specified.

do_build_generic

During this step, it will inform you of any unsynthesizable code and outline
how it is iterpreting various case statements or memory elements. You should
ensure that there are no unwanted latches geneated in this stage.

If we want to build a design with non-default parameters, for example to
build a 17x9 multiplier, the we specify them as a tcl list when the design is
built. For example:

do_build_generic -param {{A_WIDTH 17} {B_WIDTH 9}}
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9.3 Timing Constraints

In order to synthesize a design properly we need to inform the tool of all relevent
boundary conditions and constraints. In large projects this is often the most
complex part of the design.

In Section 6 we constrained the design merely by asserting the clock period.
This assumes that our IO will not be a factor in timing analysis. If the critical
path is internal to the circuit than this is okay for experimentation purposes.
When the design is integrated into a larger project, however, we need to consider
the boundary conditions. This involves setting:

• Input Delay - The time, after the clock edge, that it will take for the signal
to reach the input port. This should be specified for both the best, and
worst-case scenarios.

• External Delay - The delay a signal will experience outside of our design’s
boundary, before it reaches a register. Again, external delay should be
specified for the best and worst-case.

• Port Capacitances - The capacitance that our design must drive, or any
additional capacitance that must be driven by input drivers.

• Driving Cell/Resistance - This determines how fast the input driver can
charge the port-capacitance, and is added on to the specified input delay.

When every IO of a design is registered, such as in our reference design (Figure
8), the constraints are simplified.

Unfortunately, this is not often the case and more elaborate constraints need
to be applied. In Figure 9 we illustrate how to accomodate:

• Elaborate IO timing variations

• False and multi-cycle timing paths

• Clock Insertion Delay and Uncertainty

Constraints become even more complex when we need to consider data trans-
fer across clock-domains. In this case, all clocks must be synchronously related,
and the timing relationship between each domain is explicitly stated. Since con-
straint description can be quite involved, we will not go into such complications.

Following the commands outlined in Figure 8, finish properly constraining
the tutorial design. Note the use of the command find -inputs * which returns a
list of input object-ids. To return the names instead of object-ids, use get names
[find -inputs *]. Feel free to experiment with different variations of the find
command as it can be very usefull in larger designs.

When finished, save the result in the Ambit Database Format (ADB):

write_adb adb/constrained.adb
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Bind clock waveform to the actual CLK pin.

Create a symbolic clock called refclk with a 20nS period. set_clock refclk −period 20.0
set_clock_root −clock refclk clk

set_port_capacitance 0.01 [find −ports *]

set_input_delay

Drive Cell set_drive_cell
Load set_port_capacitance

Resistance set_drive_resistance

Z

Ideal Flop
Assumed

B

Ideal Flop
Assumed

en

rst_an

Input

set_external_delay −clock refclk −early −0.1
set_external_delay −clock refclk −late 0.5

Ensures that we meet hold time−requirements.
The data must arrive at least a setup time before the next edge.

Assume a load of 10fF (about 2 standard loads) for all ports.

Set the worst−case input delay to a slow tcq (500ps)
Set the best−case input delay to a fast tcq (200ps)

set_input_delay −clock refclk −late 0.5 [find −inputs * −noclocks]
set_input_delay −clock refclk −early 0.2 [find −inputs * −noclocks]

Assumes all inputs, other than the CLK, are driven by a 1X flop.set_drive_cell −cell DFFX1 −pin Q [find −inputs * −noclocks]

Assumes infinite drive strength on the CLK and RST pins. set_drive_resistance 0 clk

clk

Primary Constraints

Delay

Output
Delay
Load
Resistance
Fanout set_fanout_load*

set_wire_resistance
set_port_capacitance
set_external_delay

Clock−Uncertaintly

Internal

False Path
Multi−Cycle

Clock Period
set_false_path
set_clock

set_cycle_addition
set_clock_insertion_delayClock−Insertion
set_clock_uncertaintly

A

Figure 8: Simple Constraints Specifications
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Y

Z

Assumed
Ideal Flop Ideal Flop

Assumed

ENA

D

V

B

C

E

W

X

3n

M

Nmulti−cycle path

2k

5f

1n

 

set_input_delay −clock refclk −early 0.5 A
set_input_delay −clock refclk −late 2.5 A
set_input_delay −clock refclk 3.0 E

set_port_capacitance 0.005 {C D V W X Z}
set_port_capacitance 0.010 B

set_input_delay −clock refclk 2.0 C

set_cycle_addition 1.0 −from [get_drive_pin M] −to [get_load_pin N] set_port_capacitance [expr 2 * [get_cell_pin_load NAN2X1]] Y

set_external_delay −clock refclk 2.0 W
set_external_delay −clock refclk 1.0 Y
set_external_delay −clock refclk −late 2.5 X
set_external_delay −clock refclk −early 2.0 X

set_drive_cell −cell MUX2X1 A
set_drive_cell −cell BUFX2 {B C}

set_drive_resistance 2.0 D
set_drive_resistance 0 {E CLK}

set_clock refclk −period 20.0
set_clock_root −clock refclk CLK

set_clock_insertion_delay −source −pin CLK 1.0
set_clock_uncertaintly −pin CLK 0.2

set_false_path −from E −to W

5f

Primary Constraints

Delay
Input

set_input_delay

Drive Cell set_drive_cell
Load set_port_capacitance

Resistance set_drive_resistance

0.5n

2n

2X

2X

5f

5f

5f

5f

5f

5f

1X

false path

0.2n

1n

CLK

1n

2n

2n

Internal

set_wire_resistance
set_port_capacitance
set_external_delay

set_fanout_load*

False Path
Multi−Cycle

Clock Period
set_false_path
set_clock

set_cycle_addition
set_clock_insertion_delay
set_clock_uncertaintlyClock−Uncertaintly

Output
Delay
Load
Resistance
Fanout Clock−Insertion

Figure 9: More realistic Constraints
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Read verilog sources read verilog ../rtl/rtl files.v
Map to generic hardware do build generic
Create a clock waveform set clock refclk -period 10
Bind the waveform to clk pin set clock root -clock refclk clk
Set input drive strengths set drive cell -cell DFFX1 -pin Q {A B en rst an}
Set port loads set port capacitance 0.01 {A B Z en rst an}
Prepare infinite clock drive set drive resistance 0 CLK
Set best case input delay set input delay -early 0.1 {A B en rst an}
Set worst case input delay set input delay -late 0.5 {A B en rst an}
Set best case external delay set external delay -early -0.1 Z
Set worst case external delay set external delay -late 0.3 Z
Save the design write adb adb/constrained.adb

Table 5: Constraints Command Summary

9.4 Section Summary

Once you’ve become familiar with the concepts of this chapter you can use or
modify the PKS scripts pks/tcl/load rtl.tcl and pks/tcl/constrain timing.tcl or
the DC scripts syn/scr/load rtl.scr and syn/scr/constrain timing.scr to load
and constrain other designs.

Key Points:

• All Verilog (or VHDL) source files must be read into the tool.

• The top level module must be mapped to generic hardware.

• Basic timing constraints must be applied including:

– Clock Period

– Clock Root

– Port Loading

– Any Input/Output External Delays

• The find command can be used to return a list of object id’s.

• The get names command converts object-ids to names.

• An .adb file stores the complete design at any point.

10 Floorplanning

The floorplanning process takes a logical netlist and lays out the standard cells
in groups of rows.
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The ‘chicken and the egg’ phenomema is alive and well when it comes to
floorplanning. We can’t floorplan until we have a netlist, but we can’t get
an accurate netlist until we have an idea of the floorplan. The solution is to
floorplan an initial netlist — but leave enough flexibility for optimization, and
the addition of test-features, and clock buffers.

To get an idea of the available floorplanning options, issue the command:

report_floorplan_parameters

We will start with these, just to get an idea of how our design will eventually
look. To generate the initial floorplan:

• Restart PKS, and load the appropriate libraries.

• Load (or recreate) the constrained design (read adb adb/constrained.adb).

• Run the command do optimize to compile and generate a default layout.

• View the generated floorplan in the GUI (Select the PKS tab in the
Viewer)

From here, we see an initial estimate of the design’s size and layout.

10.1 Power Planning

Though power-planning can be quite involved, we will touch on some of the
more important aspects.

The essence of power planning is getting the VDD and GND rails of the
standard cells connected, through low-resistance lines, to the external supply.
When designing the power grid for a circuit we should keep in mind the following
two rules:

1. Keep the average current density below technology limits. In the case
of CMOSP18, this is 1mA/um of wire width for M1 through M5, and
1mA/um for M6.

2. Prevent IR drop from adversly affecting circuit performance. IR drop is
caused when a rush of current is drawn through a high resistance line,
causing a temporary supply voltage (or IR) drop. We should try to keep
IR drop negligible - generally lower than 5% of the supply voltage (90mV).

In order to design our supply network, we need a reasonable estimate of the
circuit’s power and current consumption. Based on the clock period, and esti-
mates of toggling activity, PKS (or DC, or SOC) can provide these figures. Keep
in mind that the results we get are highly dependent on providing proper tog-
gling densities. In PKS the toggle density is the number of transitions expected
per ns.
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Figure 10: Result of an Initial Floorplan
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W = 0.415um

~140um

~415uA

~415uA

70um~ 140 Sq  

Estimated Avg Power = 530uW or 194 uA

Designed For Peak of ~1.5mW or 830 uA
Ideal Connections

70um ~ 170 Sq

~140 um or 25 cell rows

M1M2 Vias

Figure 11: The powerplan as originally designed.

set power_default_toggle_rate 0.05
set_switching_activity -prob 1 -td 0 -pin {en, rst_an}
set_switching_activity -prob 0.5 -td 0.05 -pin {A B Z}
set_switching_activity -prob 0.5 -td 0.2 -pin clk
report_power

The result indicates that the circuit will consume an average of 0.53mW,
before consideration of clock buffering and test-insertion. To accomodate these
additions, and respect peak power conditions, we’ll design for a system that
consumes 1.5mW. At 1.8V, this means that the circuit will consume up to
830uA. Viewing the initial layout, it appears that there are about 25 rows of
standard cells. If we assume roughly equal power distribution, each row will
draw about 35uA. If we power the design with a single stripe stripe down the
middle of the design, connected at both top and bottom then:

• The stripe must handle 830uA total. Referring to Figure 11, if evenly
drawing from top and bottom sources, the current bottlneck will be 415uA.
To satisfy current density limits, the power and ground supply stripes must
be at least 0.415um wide.

• To determine IR drop through the supply network, the furthest distance
the current will travel is to the midpoint of the chip on the M2 supply,
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Designed For Peak of ~1.5mW or 830 uA THEN added Engineering margin

~70um

M1M2 Vias

Estimated Avg Power = 530uW or 194 uA Connection points to ideal supply.

~140um

~140um

Figure 12: A powerplan with a ring and plenty of safety margin.

then across the row to an extreme edge on M1. From the initial layout this
would be about 70um of 0.415um wide M2 + 70um of 0.8um wide M1.
This is 170RsqM2 + 87RsqM1 . Referring to the process documentation,
RsqMx = 0.08Ω, wheras a typical VIA resistance is 6Ω. The maximum
resistance this path would face would therefore be 26Ω. Even if all 800uA
of the circuit’s current were consumed by this single cell at the extreme
edge of power, voltage drop would only be 21mV, well under the 90mV
allowace.

• As the above calculations show, IR drop is not a problem, but we must en-
sure the supply rails are at least 0.415um wide to prevent self-heat/electromigration
problems. Since the standard cell width is 0.66um, we’ll use this width
and spacing for our power stripes as well.

• There are tools available for more detailed analysis. Having used these
relatively ballpark figures, as shown in Figure 12, we should add even
more margin to the design — we’ll add a power ring, with a width of
2*0.66um, and make multiple connections to the ideal supplies.

When the power grid is eventually in place, it will occupy a portion of the
die which could otherwise be used for placing cells and routing signals. Though
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PKS does not perform power routing, we need to inform it of these planned
obstructions so that it can work around them. Issue the following command,
and note that all horizontal specifications should be a multiple of the cell pitch
(0.66um).

set_power_stripe_spec -direction vertical -layer METAL2 \
-width 0.66 -start_from 69.96 \
-number_stripes 1 \
-net_spacing 0.66 \
-net_name VDD VSS

To reserve space for the eventual power ring, we increase the core-to-boundary
offsets. This is done through the set floorplan paramaters command as follows:

10.2 Rearranging the Layout

In older technologies with few metal layers, it was common to leave extra spacing
between cells to permit routing. It is now common practice to create a dense
sea of gates without spacing between rows of cells. So that we don’t short VDD
and GND rails, however, we must flip alternate rows. Also, because we have yet
to add clock buffering, or test structures, we should allow extra space for them
to be inserted later. To do this, we should reduce the target density.

To adjust the layout, issue the commands:

set_floorplan_param -fixed false
set_floorplan_param -flip -abut -row_utilization_initial 70
do_optimize

At this point, the design is assuming an ideal clock, and test related overhead
has not been added. As such, timing will only get worse and so we should ensure
that our requirements are met at this point. To perform a timing analysis, run:

report_timing

Try to identify the critical path in the design, and how close you are to
meeting your timing goals.
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11 Clock Tree Insertion

11.1 What is a clock tree?

Ideally the clock signal will arrive to all flip-flops at the same time. Due to
variations in buffering, loading, and interconnect lengths, however, the clock’s
arrival is skewed. A clock-tree insertion tool evaluates the loading and position-
ing of all clock related signals and places clock buffers in the appropriate spots
to minimize skew to acceptable levels. Some clock tree insertion tools, all from
Cadence, include CTSGen, ctgen, and CTPKS. We will use CTPKS to create
a clock tree within PKS.

11.2 Setting the Clock Tree Parameters

For the simplest clock tree insertion, we must tell PKS maximum clock skew
can be tolerated. Since clock skew in normally more of a problem with respect
to hold times this is typically derived from the difference between the best-case
thold − tcq of a flop. Typically, for 0.18um designs, a skew of 50ps should be
tolerable.

We also need to specify a minimum and maxiumum insertion delay for the
buffer tree. Often, we will not be too concerned with these values and so we
provide a wide range to give the tool more freedom.

To set-up the clock-tree generator, we use the following command:

set_clock_tree_constraints -pin clk \
-min_delay 0 -max_delay 10 -max_skew 0.1

11.3 Building the Clock Tree

If the clock tree constraints are set before the do optimize command, then a
clock-tree will automatically be generated. To generate the clock-tree seperately,
issue the command: do build clock tree -pin clk.

To see the results of the clock-tree run, use the report clock tree command.
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