Synthesis and Timing Verification Tutorial
By
Dr. Ahmet Bindal

Computer Engineering Department
San Jose State University

A. Synthesis

This tutorial introduces the basics of Cadence’s Synthesis and Timing Verification tool
(Ambit BuildGates Synthesis), and how to obtain a gate-level netlist from a Verilog RTL
code.

To learn more on Synthesis commands or scripts please refer to Synthesis and Timing
Verification Manual.

(i) Getting started
(a) First, make a directory called “synthesis™ in your home directory.

(b) Generate the following Verilog RTL files pertinent to Figure 1 in the “synthesis”
directory.

In this figure:
The top-level module is my_design.v

The full adder module under my_design.v is full_adder.v
The 2-1 mux and flip-flop modules under my_design.v are mux.v and ff.v, respectively.

Note: all the Verilog RTL files related to Figure 1 are given in Appendix A.

my_design:

bypassO b 9 wbypassO mux.v

o dwa full adder.v
a A — ¢———————out_sum
| wsum | =
+

b b wb
A
. ff.v
cin , | wein weout /
A
——t 4—————out_cout
A
wbypassl
bypassl b 9
yp A
sel : b wsel
A
clk

Figure 1

(i) Prepare the “environment” template for Synthesis, “setup.tcl”

Generate the setup.tcl file in “synthesis™ directory.

setup.tcl file:

proc setup {} {

show all commands on the monitor as they are executed
set_global echo_commands true

set maximum fanout limit at each synthesized gate
set_global fanout_load_limit 12

read all the library cells used during synthesis
read_alf /Zapps/cadence/bg40/lib/Ica500k.alf

transform lca500kv to a name called "target_techology" for future use
set_global target_technology lca500kv

include wireload models into library elements
read_library update /apps/cadence/bg40/lib/Ica500k.wireload3

by

(i) Synthesizing the Verilog RTL code

(a) Launch ac shell:

To launch synthesis, type ac_shell -gui at the prompt sign when you are still in
“synthesis” directory.
An “ac_shell”” window will pop up.

(b) Reading setup.tcl file:

Go to the prompt sign on the “ac_shell”” window.

To have Synthesis tool read your setup.tcl file type:
ac_shell> source setup.tcl.

To run the script in the setup.tcl file type:
ac_shell> setup

(c) Reading Verilog RTL files:

In order to have Synthesis tool read your Verilog files go to the “ac_shell”” window, and
type the following:
ac_shell> set top “my_design”

This command assigns “my_design” as the top-level module in your design.
Next, load all the Verilog files into the Synthesis tool. To do this go to the “ac_shell”
window and type the following:

ac_shell> read_verilog my_design.v full_adder.v ff.v mux.v

(d) Generate a netlist:

To generate a netlist corresponding to your Verilog RTL files, type the following on the
“ac_shell” window:

ac_shell> do_build_generic —module my_design

(e) View the schematic of the design:

Once the gate-level netlist is generated then you can view your final schematic.

To view the schematic:

From within the module browser shown in Figure 2, double click the my_design module.
The schematic of my_design will display on the schematic window.

Module Browser

Fle Ed|lew Gommands Bepots Window Hep

[rafence
1 T
! HOL | Tel | Constisnie | Eohervunc | Dislibusd | Schematic
Hoamal | M Ko g [T =-@mg HAay “&—@= 7| Button Bar
Module fzpu cou 1 B s fdesot .H L Module
Title Bar
| — Schematec
L Viewer
Display

Lpdsamide: adomde

Figure 2

(f) Zoom in and out on the schematic:

To zoom in, use the left mouse button, click and hold on the schematic and move
downward.

You can also use the “zoom in” and “zoom out” buttons right above the schematic
window.

(a) Hierarchical schematic views:

To see the gates in each box of the top-level schematic highlight a flip-flop with your left
mouse button and double click the box. You will see the gates that make up the flip-flop.
Repeat this process for the full adder and the 2-1 mux in your top-level schematic and
examine each cell.

You can use the “hierarchy up” and “hierarchy down” buttons right above the
schematic window to go to different cell levels in the schematic window.

B. Timing Verification

(i) Prepare the “timing verification” template for timing verification tool,
“timing.tcl”

You need to generate another template in your synthesis directory for timing verification
after synthesizing your Verilog module(s) in order to see timing violations that this
synthesized circuit may have caused. The following timing.tcl file is a very basic file to
execute timing verification.

timing.tcl file:

proc timing { } {

Defining an ideal clock

FAIAAXAXAAAAAAXAAAAXX

-waveform {leading_edge trailing_edge}

-period: the value of the period

"ideal_clock" is the name of the clock

-clock: specifies the name of the ideal clock

-pos: the positive edge of the ideal clock

-neg: the negative edge of the ideal clock

xxxxxxx T I e e e e S e e e S b e e S S e e e

set_clock ideal_clock -waveform {0 4} -period 10
set_clock root -clock ideal_clock -pos module_clock

Source all_inputs

R e R e e e

proc all_inputs {} {find -port -input -noclocks "=}

Source all_outputs
E R R S S e S = S e e

proc all_outputs {} {find -port -output "*"}

Defining the set-up and hold times for all input(s) with respect to ideal_clock
-early refers to a set-up time value for your input(s)

-late refers to a hold-time value for your input(s)

AAAAXAAAAAXAAAAAAAAXAAAAAAAAAAAAAXAAKXAAAAAXK

set_input_delay -clock ideal_clock -early 0.1 [all_inputs]
set_input_delay -clock ideal_ clock -late 0.2 [all_inputs]

Defining the set-up time for the next module's input ports
set_external_delay 0.0 -clock ideal_clock [all_outputs]

Defining the drive (output) resistance of your input(s)
set_drive_resistance O [all_inputs]

by

Set Input Delay Set External Delay
to (tclkq+Tin) to (tsu+Tex)

1, —~ L . ~ L
Q Tin { w Q Q 3 Tex Q
}

INPUT PORTS OUTPUT PORTS
Previous Module My Module Next Module
- o
system_clock
Previous Module must supply the earliest and latest data Next Module must supply the earliest and latest required
arrival times to my INPUT PORTS with respect to clock. data times at my OUTPUT PORTS with respect to clock.
These data arrival times constitute my input delays, and These required data times constitute my external output
they have to be specified delays, and they have to be specified
by set_delay_input command in my timing.tcl file. by set_external _delay command in my timing.tcl file.
- Tperiod ————— p»
system_clock
DATA
4 Tearly » Lt
Tearly
= th
—— Tlate >
Tperiod - Tlate
= tsu
EXAMPLE:

set_input_delay -clock system_clock -early (tclkq + Tin_min) -late (tclkg + Tin_max) -rise [all_inputs]

set_external_delay -clock system_clock -early (tclkq) -late (Tperiod -tsu - Tex_max) -rise [all_outputs]

(iiy Define the top-level module for timing verification

Just like what you have done for Synthesis you need to define the top-level module for
timing verification.
Go to the “ac_shell” window and type the following:

ac_shell> set_top_timing_module $top
ac_shell> set_current_module $top

set_top_timing_module is a command that identifies the module, $top, to be used in
subsequent steps to apply timing constraints.
The module, $top, was the variable, my_design, in an earlier command.

set_current_module sets the module, $top, as the top-level current module.

(iii) Run the timing constraint script, timing.tcl

Just like what you have done for Synthesis you need to run the script file(s) for timing
verification.

To run the timing.tcl file, go to the *“ac_shell” window and type the following:
ac_shell> source timing.tcl

To run the timing.tcl script type the following in the “ac_shell”” window.
ac_shell> timing

(iv) Prepare the “timing report” template for timing verification tool,
“report.tcl”

You need to generate another file under “synthesis” directory that manages all the timing
related reports of your circuit following a timing verification step.

report.tcl file:

proc report {} {

mkdir report
mkdir netlist

report_timing > report/timing.rpt
report_area -hier -cell > report/area.rpt
report_hierarchy > report/hierarchy.rpt

write_verilog -hier netlist/my_design.net

}

As you can see this script generates a “report” and a “netlist” directory under
“synthesis” directory. It subsequently forms 3 files, timing.rpt, area.rpt and
hierarchy.rpt under “report” directory, and 1 file, my_design.net under “netlist”
directory.

(v) Generating the reports

To generate the timing reports, compile the report.tcl script by typing:
ac_shell> source report.tcl

Furthermore, run the script by typing:
ac_shell> report

Refer to Appendix B for more detail on the timing report.

(vi) View the reports

You can use the “Tcl” button on “ac_shell” window or a UNIX window to view the
timing.rpt.
Note that, by default the report lists the most critical path in the design.

In the timing.rpt, search for slack time. If it is a negative slack, it means a time violation.
Experiment by changing the clock period to avoid the timing violation if there is one.

Hint: Editing the timing constraint file, timing.tcl, can correct the violation.

Also view the area.rpt and hierarchy.rpt in the “report” directory along with
my_design.net in the “netlist” directory. Understand the contents of each file.

C. Optimization

One last thing you should experiment is to optimize your gate-level netlist to reduce the
propagation delay between the flip-flop boundaries and perhaps to reduce its real estate
foot print on the chip (circuit area).

(a) Viewing unoptimized cells after the synthesis:

Before starting to optimize the top-level schematic, my_design, view the contents of your
unoptimized full adder.

On the top-level schematic, my_design, find your full adder, and double click the
full_adder module, view and print your unoptimized full adder schematic.

(b) Optimize the design:

To Optimize the design, type:
ac_shell> do_optimize

(c) Re-view the schematic of the design:

Now, double click the newly created full_adder module.
Print and compare the difference between the unoptimized and optimized full adder
schematics in terms of propagation delays and area.

(d) Exit ac shell:

Type:
ac_shell> exit.

Appendix A

Verilog RTL files:

(a) The top level-module, my design.v:

module my_design (bypassO, bypassl, module_clock, rst, a, b, cin, sel, out_sum,
out_cout);

input bypassO0, bypassl, module_clock, rst, a, b, cin, sel;
output out_sum, out_cout;

wire wbypassO, wbypass1, wa, wb, wcin, wsel, wout_sum, wout_cout;

ff ff1 (.clk(module_clock), .rst(rst), .d(bypass0), .q(wbypass0));
ff ff2 (.clk(module_clock), .rst(rst), .d(bypassl), .q(wbypassl));

ff ff3 (.clk(module_clock), .rst(rst), .d(a), .q(wa));
ff ff4 (.clk(module_clock), .rst(rst), .d(b), .q(wb));
ff ff5 (.clk(module_clock), .rst(rst), .d(cin), .q(wcin));
ff ff6 (.clk(module_clock), .rst(rst), .d(sel), .g(wsel));

ff ff7 (.clk(module_clock), .rst(rst), .d(wout_sum), .g(out_sum));
ff ff8 (.clk(module_clock), .rst(rst), .d(wout_cout), .q(out_cout));

full_adder fa (.a(wa), .b(wb), .cin(wcin), .sum(wsum), .cout(wcout));

mux mx0 (.a(wbypass0), .b(wsum), .sel(wsel), .out(wout_sum));
mux mx1 (.a(wbypassl), .b(wcout), .sel(wsel), .out(wout_cout));

endmodule

(b) full adder.v:

module full_adder (a, b, cin, sum, cout);
input a, b, cin;
output sum, cout;

wire cout = (a & b) | (cin & (a | b));
wire sum = a”™ b "™ cin;

endmodule

(c) ff.v:
module ff (clk, rst, d, q);
input clk, rst, d;
output q;
reg q;
always @(posedge clk)
begin
if(rst)

else

end
endmodule

(d) mux.v:

module mux (a, b, sel, out);

input a, b, sel;
output out;

wire out = sel ? a : b;

endmodule

Appendix B

To understand the timing report, first right-click on your mouse button when you are on
the schematic window. Select “worst path” to highlight the most timing critical path as
shown in Figure 3 and compare this with your timing report.

arrive = 28.17 arrive = 43.50

arrive = 8.05

delay = 20.12 delay = 7.29 delay = 8.04
3 V/\ V/\ / f8
fa mx1

a d q a cout b d qr—-
—b — a out
4/‘ —cin sum|— — sel
delay = 8.05 A
arrive = 35.46
arrive = 0

module_clock

SET UP VIOLATION = 10 - 43.50 = -33.50
module_clock

-

time

0 4 10
«— T=10 ———»

Figure 3

Now it is time to open the timing.rpt file under “synthesis/report” directory and examine
its contents.

timing.rpt file:

e +
| Report | report_tinmng |
|- e |
| Options | > report/timng.rpt
oo oo +
| Date | 20021014.121316 |
| Tool | ac_shell

| Rel ease | v4.0-s008 |
| Version | Apr 20 2001 04:20:50
oo oo +
Modul e	my_design
Timng	LATE
Sl ew Propagation	VORST
Operating Condition	NOM
PVT Mode	max
Tree Type	bal anced
Process	1.00
Voltage	3.30

| Tenperature | 25.00 |
| tinme unit | 1.00 ns |
| capacitance unit | 1.00 pF

| resistance unit | 1.00 kGhm |
Fom e e e e e e e e e e e e e e e e e e a o +

Path 1: VIOLATED Setup Check with Pin ff8/q_reg/CLK
Endpoi nt : ff8/g_reg/D (v) checked with |[|eading edge of
Begi npoint: ff3/q reg/Q (v) triggered by |I|eading edge of

O her End Arrival Tinme 0. 00

- Setup 0.00

+ Phase Shift 10. 00

= Required Time 10.00

- Arrival Time 43.50

= Slack Time -33.50

e e e e o e m e e e m e e mm e m = =
| Instance | Arc | Cel | | Delay | Arrival | Required
| | | | | Tine | Ti ne

| ----------- S B S B S, [S S
| | modul e_cl ock 7| | | 0. 00 | -33.50
| ff3 [clk ~ | ff | | 0. 00 | -33.50
| ff3/g_reg |[CLK" -> Qv |ATL_MACRO FF | 8.05 | 8. 05 | -25.44
| ff3 g v | ff | | 8. 05 | -25.44
| fa |a v | full _adder | | 8.05 | -25.44
| fal/i_87 [IOV -> Q0 v |ATL_OR | 7.04 | 15.10 | -18. 40
| fa/i_88 [11 v -> 00 v |ATL_AND | 6.54 | 21.64 | -11. 86
| fa/i_89 [11 v ->00 v |ATL_OR | 6.54 | 28. 17 | -5.32
| fa | cout v | full _adder | | 28.17 | -5.32
| mx1 |[b v | mux | | 28.17 | -5.32
| mx1/i 80 |10 v -> Q0 v |ATL_MJX 21 | 7.29 | 35.46 | 1.96
| mx1 | out v | mux | | 35. 46 | 1.96
| ff8 [d v | ff | | 35.46 | 1.96
| ff8/i_67 |10 v -> 00 v |ATL_MJX 21 | 8.04 | 43.50 | 10. 00
| ff8/g_reg |[Dv | ATL_MACRO FF | 0.00 | 43.50 | 10. 00

"ideal clock'
"ideal _clock'

