VERILOG TUTORIAL

VLSI I

E. Ozgur ATES

Outline

e Introduction

e Language elements
e Gate-level modeling
e Data-flow modeling
e Behavioral modeling
 Modeling examples
e Simulation and test
bench

Hardware Description Language

e Have high-level language constructs to describe the
functionality and connectivity of the circuit

e Can describe a design at some levels of abstraction

— Behavioral (Algoritmic, RTL), Structural (Gate-level), Switch
(For example, an HDL might describe the layout of the wires,
resistors and transistors on an Integrated Circuit (IC) chip, I. e.
the switch level. Or, it might describe the logical gates and
flip flops in a digital system, I. e., the gate level. An even highe
level describes the registers and the transfers of vectors of
Information between registers. This is called the Register
Transfer Level (RTL). Verilog supports all of these levels.)

Hardware Description Language

* A design’s abstraction levels

— Behavioral

Algorithmic: A model that implements a design algorithm in
high-level language constructs

RTL: A model that describes the flow of data between register
and how a design processes that data

— Gate-level: A model that describes the logic gates and the
connections between logic gates in a design

— Switch-level: A model that describes the transistors and
storage nodes in a device and the connections between them

Verilog Hardware Description
Language

- Verilog was started initially as a proprietary hardware modeling
language by Gateway Design Automation Inc. around 1984. It is
rumored that the original language was designed by taking
features from the most popular HDL language of the time, called
HiLo, as well as from traditional computer languages such as C.

- Verilog simulator was first used beginning in 1985 and was
extended substantially through 1987. The implementation was
the Verilog simulator sold by Gateway. The first major extension
was Verilog-XL, which added a few features and implemented
the infamous "XL algorithm" which was a very efficient method
for doing gate-level simulation.

Verilog Hardware Description
Language

- The time was late 1990. Cadence
Design System, whose primary product
at that time Included Thin film process
simulator, decided to acquire Gateway
Automation System. Along with other
Gateway products, Cadence now
became the owner of the Verilog
language.

What is Verilog HDL ?

Hardware description language

Mixed level modeling
— Behavioral
« Algorithmic
« Register transfer
— Structural
« Gate
« Switch
Single language for design and
simulation
Built-in primitives and logic
functions

User-defined primitives
Built-in data types

High-level programming constructs

RTL

algo

switch

gate

Hardware Description Language

Hardware Description Languages describe the architecture
and behavior of discrete and integrated electronic systems.
Modern HDLs and their associated simulators are very
powerful tools for integrated circuit designers.

Main reasons of important role of HDL in modern design
methodology:

- Design functionality can be verified early in the design
process. Design simulation at this higher level, before
Implementation at the gate level, allows you to evaluate
architectural and design decisions.

Hardware Description Language

- Coupling HDL Compiler with logic synthesis
tools, you can automatically convert an HDL
description to a gate-level implementation in a
target technology.

- HDL descriptions provide technology-
Independent documentation of a design and its
functionality. Since the initial HDL design
description is technology-independent, you can
use it again to generate the design in a different
technology, without having to translate from the
original technology.

Hardware Description Language

Verilog digital logic simulator tools allow you to
perform the following tasks in the design process
without building a hardware prototype:

- Determine the feasibility of new design ideas

- Try more than one approach to a design
problem

- Verify functionality
- ldentify design problems

HDL Compiler and Design Compiler

Verilog
Description

~ ASIC Technology
- Library

Optimized
Technology-Specific
*,_ Netlist or Schematic

Basic Unit -- Module

* Modules communicate externally with input,
output and bi-directional ports

A module can be instantiated in another module

: module
module module name (port list);

declarations:
port declaration (input, output, inout, ...)
data type declaration (reg, wire, parameter, ...)
task and function declaration

statements

Ao non

Slatements: rer {1

initial block }_ , :
Behavioral .

always block h
module instantiation !
gate instantiation Structural
UDP instantiation
continuous assignment } Data-flow

endmodule

An Example

module FA MIX (A, B, CIN, SUM, COUT);
input A.B.CIN:
output SUM, COUT;
reg COUT:
reg 1'1. 12,713:
wire S1;

xor X1 (S1. A. B): // Gate instantiation.

always @ (A or B or CIN) // Always Block
begin
T =A & CIN;
12 =B & CIN;
1T3=A & B:
COUT=(T1|T2]|T3):
END
assign SUM = S1 7 CIN: // Continuous assignment
endmodule

Structural Hierarchy Description Style

« Direct instantiation and connection of models from
a separate calling model
— Form the structural hierarchy of a design

« A module may be declared anywhere in a design
relative to where it is called

« Signals in the higher “calling” model are connected
to signals in the lower “called” model by either:

— Named association
— Positional association

Structural Hierarchy Description Style

+ Example: (Full Adder)
module FULL_ADD (A, B, CIN, SUM, COUT);
input A, B, CIN;
output SUM, COUT;
wire NET1, NET2, NET3;

HA U1T(NET1, NETZ2, B, CIN); /* positional association */
HA U2(.S(SUM), .CO(NET3), .A(A), .B(NET1)); /* named ™/
OR2 U3(COUT, NETZ2, NET3);

endmodule instance name
A D " - a SUM
5 HA cO
NET1 0z

MET3

B D A S
CIN O B HA co NETZ COUT

U1 v 2-10

Lexical Conventions

Verilog is a free-format language
— Like C language

White space (blank, tab, newline) can be used freely
Verilog is a case-sensitive language

|dentifiers
— User-provided names for Verilog objects in the descriptions
— Legal characters are “a-z", “A-Z", “0-9", * 7 and “$”

« First character has to be a letter oran "_"
— Example: Count, R2D2, FIVES

Keywords
— Predefined identifiers to define the language constructs

— All keywords are defined in lower case
— Cannot be used as idenfiers

— Example: initial, assign, module

Lexical Conventions

« Comments: two forms

/* First form: can
extend over many
lines */
/I Second form: ends at the end of this line
« Strings
— Enclosed in double quotes and must be specified in

one line
« "Sequence of characters”

— Accept C-liked escape character
* \n = newline
« \t=tab
« \\ = backslash
« \" = quote mark (")
* %% = % sign

Value Set

0: logic-0 / FALSE

1: logic-1/ TRUE

X: unknown / don’t care, can be 0, 1 or z.
z: high-impedance

Number Representation

<size><base format><number>

549 /I decimal number

'h 8FF // hex number

'0765 // octal number

4'b11 /I 4-bit binary number 0011
3'n10x // 3-bit binary number with least significant bit unknowt
5'd3 // 5-bit decimal number

-4'b11 // 4-bit two's complement of 0011 or 1101

Data Types

« Nets
— Connects between structural elements
— Values come from its drivers

« Continuous assignment
« Module or gate instantiation

— |f no drivers are connected to net, default value is Z

« Registers
— Represent abstract data storage elements
— Manipulated within procedural blocks
— The value in a register is saved until it is overridden
— Default value is X

Net Types

wire, tri: standard net

wor, trior: wired-or net

wand, triand: wired-and net

trireg: capacitive

— If all drivers at z, previous value is retained

tri1: pull up (if no driver, 1)

tri0: pull down (if no driver, 0)

supply0: ground

supply1: power

A net that is not declared defaults to a 1-bit wire

wire reset;
wor [7:0] DBUS;
supply0 GND;

Register Types

reg: any size, unsigned

integer: 32-bit signed (2’s complement)
time: 64-bit unsigned

real, realtime: 64-bit real number

— Defaults to an initial value of O

Examples:

reg CNT;

reg [31:0] SAT;

integer A, B, C; // 32-bit
real SWING:

realtime CURR_TIME;
time EVENT;

Outline

Introduction

Language elements

Gate-level modeling

Data-flow modeling
Behavioral modeling
Modeling examples
Simulation and test bench

Primitive Gates

The following gates are built-in types in the simulator

and, nand, nor, or, xor, xnor
— First terminal is output, followed by inputs
and a1l (outl, in1, in2);
nand a2 (out2, in21, in22, in23, in24);
buf, not
— One or more outputs first, followed by one input
not N1 (OUT1, OUT2, OUT3, OUT4, INA);
buf B1 (BO1, BIN);
bufif0, bufif1, notif0, notif1: three-state drivers

— Qutput terminal first, then input, then control
bufif1 BF1 (OUTA, INA, CTRLA);

pullup, pulldown

— Put 1 or O on all terminals
pullup PUP (PWRA, PWRB, PWRC):

Instance names are optional
ex: not (QBAR, Q)

D3 < B
-
D1 < F
. .
= P
D2 = 5|
* L/
D0 <= s Y
! module MUX4x1 (Z. DO, DI. D2, D3, S0. §1);
g output Z;
S?Q‘ID, input DO, D1, D2, D3, S0, SI;
5 and (T0, DO, SOBAR. SIBAR),
. N (T1. DI, SOBAR, S1).
4 X 1 multiplexer circuit (T2. D2. S0. SIBAR).

(T3, D3, 80, 51);

not (SOBAR. S0),
(SIBAR., S1):

nor (Z. TO, TI1, T2.T3):

endmodule 4%

Outline

Introduction
Language elements
Gate-level modeling

Data-flow modeling

Behavioral modeling
Modeling examples
Simulation and test bench

Data-Flow Description Style

Models behavior of combinational logic
Assign a value to a net using continuous assignment

Examples:
wire |3:0] Z, PRESET, CLEAR;
assign Z = PRESET & CLEAR:

wire COUT, CIN;

wire [3:0] SUM, A, B;

assign {COUT, SUM} =A + B + CIN;
Left-hand side (target) expression can be a:
— Single net (ex: Z)
— Part-select (ex: SUM[2:0])
— Bit-select (ex: Z[1])
— Concatenation of both (ex: {COUT, SUMI[3:0]})
Expression on right-hand side is evaluated whenever
any operand value changes

2-21

Delays

« Delay between assignment of right-hand side to left-

hand side
assign #6 ASK = QUIET || LATE; //Continuous delay

* Net delay
wire #5 ARB:
/I Any change to ARB is delayed 5 time units before it

takes effect
+ |f value changes before it has a chance to propagate,
latest value change will be applied
— Inertial delay

Operators

Arithmetic Operators

Relational Operators <, <=, > >=
Logical Equality Operators == I=
Case Equality Operators === |==
Logical Operators , &&, ||
Bit-Wise Operators ~ &, |, Mxor), ~*(xnor)
Unary Reduction Operators &, ~&, |, ~|, A, ~°
Shift Operators >> <<
Conditional Operators ?:
Concatenation Operator {}
Replication Operator {{}}

Outline

Introduction

Language elements
Gate-level modeling
Data-flow modeling

Behavioral modeling_

Modeling examples
Simulation and test bench

Behavioral Modeling

Procedural blocks:
— initial block: executes only once
— always block: executes in a loop

Block execution is triggered based on user-
specified conditions
— always @ (posedge clk)

All procedural blocks are automatically activated
attime O

All procedural blocks are executed concurrently
reg is the main data type that is manipulated

within a procedural block
— It holds its value until assigned a new value

Parameter Statement

The parameter statement allows the designer to give a
constant a name. Typical uses are to specify width of
registers and delays. For example, the following allows

the designer to parameterized the declarations of a
model.

parameter byte size = 8§;

reg [byte size - 1.0] A, B;

Initial Statement

« Executes only once at the beginning of simulation
initial

slatemenis

« Used for initialization and waveform generation

/fInitialization:
reg [7:0] RAM[0:102
reg RIB REG:

lud

|

initial
~ begin
integer INX;

group RIB REG =0:
multiple < . N e
statements for (INX =0; INX < 1024; INX =INX + 1)

RAM[INX] = 0;

L end

Always Statement

Executes continuously; must be used with some form of
timing control
always (timing control) always
statements CLK =~CLK
// Will loop indefinitely
Four forms of event expressions are often used
An OR of several identifiers (comb/seq logic)
The rising edge of a identifier (for clock signal of a register)
The falling edge of a identifier (for clock signal of a register)
Delay control (for waveform generator)
Any number of inifial and always statements may appear
within a module

Initial and always statements are all executed in parallel

Truth Table to Verilog

module COMB(A, B, Y1, Y2);
input A, B;

output Y1, Y2;
rec Y1. Y2 Any value changes of A or B

/ will trigger this block

always (@(A or B)

begin
case (JA.B}) -
2'b 00 : begin Y1=1: Y2=0: end f; {E: T 1 [;“
2b 01 : begin Y1=I: Y2=0: end 01 11 o
2'b 10 : begin Y1=1: Y2=0: end 10 |1 0
2'b 11 :begin Y1=0: Y2=I: end 11 |0 1
endcase
end

endmodule

Other Examples

module example (D, CURRENT STATE, Q, NEXT STATE):
input D, CURRENT STATE;
output Q, NEXT STATE:

o =T delay-controlled always block
reg CLK, Q. NEXT STATE:

clock period = 10

always #5 CLK = ~CLK: activated when CLK has
R a0 -> 1 transition
always (@(posedge CLK) "
begin
Q=D: activated when CLK has
end a 1 -> 0 transition

always (@(negedge CLK)
begin

NEXT STATE =CURRENT STATE;
end

endmodule

Procedural Assignments

« The assignment statements that can be used
Inside an always or initial block

« The target must be a register or integer type

» The following forms are allowed as a target
— Register variables
— Bit-select of register variables (ex: A[3])
— Part-select of register variables (ex: A[4:2])
— Concatenations of above (ex: {A, B[3:0]})
— Integers
always @(posedge CLK) begin
= A;
= B.;

end

Conditional Statements

« jfand else if statements « case statement

if (expression) case (case_expression)
statements case item expression

{ else if (expression) {, case_item_expression } :
statements } Statements

[else .
statements] [default: statements |

endcase

if (total < 60) begin

grade = C;
total_C = total_C + 1; Ca;igg_lj—cggli +B:
end ‘4. _ .’
else if (sum < 75) begin ;E;} g _ i:BB
grade = B; LA _
2b00: Z=A/B
total B =total B + 1; , e
end default: Z =2"bx;

endcase
else grade = A;

Loop Statements

Four loop statements are supported
— The for loop

— The while loop

— The repeat loop

— The forever loop

The syntax of loop statements is very similar to
that in C language

Most of the loop statements are not synthesizable
In current commercial synthesizers

fori=0;i<10;i=i+1)
begin
$display("i= %0d", i);
end repeat (5)
| begin
1 =0; $display("i= %0d", i)
while(i < 10) =i+ 1
begin end
$display("i= %0d", 1);
=1+ 1;
end

Outline

Introduction
Language elements
Gate-level modeling
Data-flow modeling
Behavioral modeling

Modeling examples

Simulation and test benches

Combhinational Circuit Design

« Qutputs are functions of inputs

iInputs
—»

outputs

Combinational .

Circuit

» The sensitivity list must include all inputs
always @ (a or b orc)
f=a&~c|b&c;

« Wrong example:
always @ (a or b)
f=a&~c|b&c;
— The changes of ¢ will not change the output immediately
— May cause functional mismatch in the synthesized circuits

« Unlike simulation, synthesizers will skip the sensitivity
list and deal with the following statements directly

An Example: Multiplexer

« Continuous assignment « RTL modeling
module mux2_1(out,a,b,sel); module mux2_1(out,a,b,sel);
output out; output out;
input a.b,sel; input a,b.sel;
assign out = (a&~sel) | reg out;
(b&sel);
I = always @(a or b or sel)
if (sel)
out=b;

a else
out = a;
endmodule
sel
out
b U

Multiplexer Example

Whereistheregister?

- The synthesis tool figures out that this is a
combinational circuit. Therefore, It does not need a
register.

How does it figure out that thisis combinational ?

- The output is only a function of the inputs (and not
of previous values)

- Anytime an Input changes, the output IS re-
evaluated.

Combinational Design Error

module blah (f, g, a, b, c);
output f,g;
input a, b, c;
reg f, g;

always @ (a or b or c)
if (a==1)
f=b;
else

g=C,
endmodule

This says: as long as a==1, then f
follows b. (i.e. when b changes, so
does f.) But, when a==0, f remembers
the old value of b.

Combinational circuits don’t remember

anything!

What’s wrong?

f doesn’t appear in every control path
in the always block (neither does g).

IF-ELSE Statement

if (A(0) ==0and A(1) == 0) then
B=C,

else If (A(0) == 1 and A(1) == 0) then
B =D;

else If (A(O) == 0 and A(1) == 1) then
B=E;

else A[0] 'DD'
B=F; D %

end If;
Al1]

R

xXC=

—B

Case Statement

constant propagation

module

Al0]
Al1]

o —EQ

o
Al0]
Al eq 335&
1 o »

0 - ;

> B

Al0] -
Alll HEQ

ﬂ —_

y =
Al0] |
Alll HEQ

Al0] =

;_.31:@\

0 *@"’3 A[1]—:>°J

Callpal

case (A)
200:B=C;
201:B=D;
210:B=E;.
211 :B=F;

endcase:

Tri-State Buffers

« Two popular ways to describe a tri-state buffer

// continuous assignment
assignout = (sela) ?a: 1'bz;

// RTL modeling
always @(selb or b)
if (selb)

T N,
out=Db; a L'TEN out
out = 1'bz;

oV

selb

Tasks and Functions

Tasks are like procedures in other programming languages, e. ¢
may have zero or more arguments and do not return a value. FL
act like function subprograms in other languages. Except:

1. A Verilog function must execute during one simulation time ur
That is, no time controlling statements, I. e., no delay control (#),
event control (@) or wait statements, allowed. A task may conta
controlled statements.

2. A Verilog function can not invoke (call, enable) a task; wherea
task may call other tasks and functions.

Tasks and Functions

The definition of a task is the following:

task <task name>; // Notice: no parameter list or ()s
<argument ports>
<declarations>
<statements>

endtask

An invocation of a task is of the following form:
<name of task> (<port list>);

Tasks and Functions

where <port list> is a list of expressions which correspond by p

to the <argument ports> of the definition. Port arguments in th
definition may be input, inout or output. Since the <argument
In the task definition look like declarations, the programmer mu
careful in adding declares at the beginning of a task.

Tasks and Functions

I/ Testing tasks and functions
module tasks;

task add; // task definition
Input a, b; // two input argument ports
output c; // one output argument port
reg R; // reqgister declaration
begin
R=1;
If (a==0Db)
c=1&R;
else
c =0;
end
endtask

Tasks and Functions

Task Continue...

initial begin: initl
reg p,
add(1, 0, p); // invocation of task with 3 arguments

$display("p= %b", p);
end

endmodule

Tasks and Functions

Input and inout parameters are passed by value to the task an
and inout parameters are passed back to invocation by value o
Call by reference is not available.

* Allocation of all variables is static

A task may call itself but each invocation of the task uses the s
storage

 Since concurrent threads may invoke the same task, the progr
must be aware of the static nature of storage and avoid unwant
overwriting of shared storage space.

Tasks and Functions

e The purpose of a function is to return a value that is to be usec
expression

A function definition must contain at least one input argument
e The definition of the function is as below:

function <range or type> <function name>;// Notice: no paramet
or ()s

<argument ports>

<declarations>

<statements>

endfunction

Tasks and Functions

/[Testing functions

module functions;

function [1:1] add2; // function definition
iInput a, b; // two input argument ports
reg R; // register declaration

begin R = 1;

If (@a==b)add2 =1 &R;

else add2 = 0O;

end

endfunction

initial

begin: initl reg p; p = add2(1, 0); // invocation of function with
2 arguments

$display("p= %b", p);

end

endmodule

Register Inference

Allow sequential logic design
Keep technology independent
Latch — a level-sensitive memory device

Flip-Flop — an edge-triggered memory device

Flin-Flop Inference

« Wire (port) assigned in the synchronous section

module FF PN (Clock. X1. X2, Y1. Y2):
input Clock:

input X1, X2: X1 — Y1
output Y1, Y2:
reg Y1, Y2 Clock >
always (@(posedge Clock)
Y1 =XI;
X2 —— — Y2

always (@(negedge Clock)
Y2 =1X2;

endmodule Clock —G>

Flip-Fiop Inference

« Asynchronous / synchronous reset / enable

module FFS (Clock, SReset, ASReset, En. Datal. Data2, Y1, Y2
Y3, Y4 YS. YO6);

input Clock, SReset. ASReset, En, Datal, Data2:
output Y1, Y2, Y3, Y4, Y5, Yo;
reg YI.Y2, Y3, Y4, Y5, Y6:

always (@(posedge Clock)
begin
// Synchronous reset
if (! SReset)
YI=0;
clse
Y1 =Datal | Data2:
end

Flip-Flop Inference

// Negative active asynchronous reset
always (@(posedge Clock or negedge ASRescet)
1f (! ASReset)
Y2=0;
else
Y2 =Datal & Data2:

// One synchronous & one asynchronous reset
always (@(posedge Clock or negedge ASReset)
if(! ASReset)

3=0;

else 1f (SReset)
3=0:

else

Y3 = Datal | Data2;

Flip-Fiop Inference

// Single enable
always (@(posedge Clock)
it (En)
Y4 = Datal & DataZ2:

// Synchronous reset and enable
always @(posedge Clock)
1If (SReset)
Y5=0;
else 1f (En)
Y5 = Datal | DataZ2:

endmodule

Latch Inference

* Incompletely specified wire (port) in the synchronous
section

« D latch
always (@(enable or data)
if (enable)
q = data:

« D latch with gated asynchronous data
always (@(enable or data or gate)
if (enable)

q = data & gate: ~ data—
gate —

enablgD

More Latches

« D latch with gated “enable”
always (@(enable or d or gate)
if (enable & gate)

q=d. d—

enable[—>—
gate[>—

« D latch with asynchronous reset
always (@(reset or data or gate)
if (reset)
q=1"b0:
else if (enable)
q = data:

Avoid Latch Inference

« Avoiding latch inference
always (@(PHI 1 or A) begin

Y =0:
if (PHI 1)
Y = A;

end

* Another way
always (@(PHI 1 or A) begin

if (PHI 1)
Y =A;
else
Y = 0;

end

1-Process FSM

« Lump all descriptions into a single process

module counter (clk, rst, load, in, count) ;
Input clk, rst, load
input [7:0]In;

output [7:0] count ;

reg [7:0] count ;

always @(posedge clk) begin
if (rst) count=0;
else if (load) count = in ;
else if (count == 255) count =0 ;
else count = count + 1 :

end

endmodule

256 states 66047 transitions

2-52

Verilog Template [1]

module <module_name> (<ports>)

Input <input_port_names>;

output <output_port_names>;

reg <outputs and _values to be used in always blocks>;
wire <values to be used in_continuous assignments>;
//wire outputs do not need to be declared again

<called module_name> Ul(<module ports>);

<called_module_name> U2(<module_ports>);

Verilog Template [2]

//continuous assignment

assign <wire_name> = <operation_of wire and reg>;

//combinational always -> use blocking assignment “ ="

always@ (<wire or_regl> or <wire or_reg2> ..) begin
<combinational reg name> = <operation_of wire and reg>;

end

Verilog Template [3]

//sequentional aways -> use non-blocking assignment “ <=*
always@ (posedge clk or negedge reset) begin
If(Ireset) begin

<sequentional reg names> <=0; //reset reg values
end
else begin

<sequentional_reg_names> <= <operation_of wire and reg>;
end

endmodule

Outline

Introduction
Language elements
Gate-level modeling
Data-flow modeling
Behavioral modeling
Modeling examples

Simulation and test bench

Simulation

+ Design, stimulus, control, saving responses, and verification
can be completed in a single language

— Stimulus and control
« Use initial procedural block

— Saving responses
« Save on change
« Display data

— Verification
« Automatic compares with expected responses

* The behavior of a design can be simulated by HDL simulators
— Test benches are given by users as the inputs of the design
— Some popular simulators
« Verilog-XL (Cadence'™ direct-translate simulator)
« NC-Verilog (Cadence™ compiled-code simulator)
« VCS (ViewLogic™, compiled-code simulator)

Supports for Verification

« Text output (show results at standard output)
— $display: print out the current values of selected signals
+ Similar to the printf() function in C language
— $write: similar to $display but it does not print a “\n”

— $monitor: display the values of the signals in the
argument list whenever any signal changes its value

— Examples:

Sdisplay (“A=%d at time %t", A, $time);
A=5 at time 10

Smonitor ("A=%d CLK=%b at time %t", A, CLK, $time);
A=2 CLK=0 attime O
A=3 CLK=1 attime 5

TestBench

module test_bench;
data type declaration
module instantiation
applying stimulus
display results

endmodule

A test bench is a top level module without inputs and outputs
Data type declaration
— Declare storage elements to store the test patterns

Module instantiation
— Instantiate pre-defined modules in current scope
— Connect their I/O ports to other devices
Applying stimulus
— Describe stimulus by behavior modeling
Display results
— By text output, graphic output, or waveform display tools

2-66

Example Testfixture

‘timescale 1ns/ 1ps

reg[7:0] 1d1[0:63999];
reg [7:0] 1d2[0:63999];

reg[7:0] 90:8];
Integer c;

initial
begin

$readmemh ("e\\matlabr12\\work\\clowngray.txt",id1);
$readmemh ("e\matlabr12\\work\\cartmangray.txt",id2);
a[0]=100;

a[1]=125;

a[2]=100;

a[3]=125;

a[4]=200;

a[5]=125;

a[6]=100;

a[7]=125;
a 8]=100;

#5 RST=1'b0;

#1 RST=1'b1;

#2 ModSe=1'b0:;

#1431 StartFrame=1'b1;
|nSel ect=1'b0;

#1000 StartFrame=0;

$writememh (" e\\matlabr12\\work\\filtered1.txt",id3,0,63999);
Swritememh (" e\\matlabr12\\work\\filtered2.txt",id4,0,63999);

#100 $finish;

end

aways@ #50 CLK=~CLK;

always@(posedge RAMCclk)
begin
If(OutWrite==0)
begin
If (OutSelect==1'b0)
1d3[AddOut16[15:0]]=DOut8[7:0];
else
1d4]{ AddOut16[15:0]]=DOut8[7:0];
end

end

Some useful Verilog links,

http://www.cs.du.edu/~cag/courses/ENGR/ence3830/VHDL/
http://www.see.ed.ac.uk/~gerard/Teach/Verilog/manual/
http://oldeee.see.ed.ac.uk/~gerard/Teach/Verilog/manual/
http://www.ece.utexas.edu/~patt/02s.382N/tutorial/verilog_manu
http://www.eg.bucknell.edu/~cs320/1995-fall/verilog-manual.htm
http://mufasa.informatik.uni-mannheim.de/lsra/persons/lars/verilo
http://www.sutherland-hdl.com/on-line_ref guide/vliog_ref top.ht
http://www-cad.eecs.berkeley.edu/~chinnery/synthesizableVeriic
http://ee.ucd.ie/~finbarr/verilog/
http://athena.ee.nctu.edu.tw/courses/CAD/

