
VERILOG TUTORIAL

VLSI II

E. Özgür ATES

Outline
• Introduction
• Language elements
• Gate-level modeling
• Data-flow modeling
• Behavioral modeling
• Modeling examples
• Simulation and test
bench

• Have high-level language constructs to describe the
functionality and connectivity of the circuit
• Can describe a design at some levels of abstraction
– Behavioral (Algoritmic, RTL), Structural (Gate-level), Switch
(For example, an HDL might describe the layout of the wires,
resistors and transistors on an Integrated Circuit (IC) chip, i. e.,
the switch level. Or, it might describe the logical gates and

flip flops in a digital system, i. e., the gate level. An even higher
level describes the registers and the transfers of vectors of
information between registers. This is called the Register
Transfer Level (RTL). Verilog supports all of these levels.)

Hardware Description Language

• A design’s abstraction levels
– Behavioral
Algorithmic: A model that implements a design algorithm in
high-level language constructs
RTL: A model that describes the flow of data between registers
and how a design processes that data

– Gate-level: A model that describes the logic gates and the
connections between logic gates in a design
– Switch-level: A model that describes the transistors and
storage nodes in a device and the connections between them

Hardware Description Language

Verilog Hardware Description
Language

- Verilog was started initially as a proprietary hardware modeling
language by Gateway Design Automation Inc. around 1984. It is
rumored that the original language was designed by taking
features from the most popular HDL language of the time, called
HiLo, as well as from traditional computer languages such as C.

- Verilog simulator was first used beginning in 1985 and was
extended substantially through 1987. The implementation was
the Verilog simulator sold by Gateway. The first major extension
was Verilog-XL, which added a few features and implemented
the infamous "XL algorithm" which was a very efficient method
for doing gate-level simulation.

Verilog Hardware Description
Language

- The time was late 1990. Cadence
Design System, whose primary product
at that time included Thin film process
simulator, decided to acquire Gateway
Automation System. Along with other
Gateway products, Cadence now
became the owner of the Verilog
language.

Hardware Description Language

Hardware Description Languages describe the architecture
and behavior of discrete and integrated electronic systems.
Modern HDLs and their associated simulators are very
powerful tools for integrated circuit designers.

Main reasons of important role of HDL in modern design
methodology:

- Design functionality can be verified early in the design
process. Design simulation at this higher level, before
implementation at the gate level, allows you to evaluate
architectural and design decisions.

Hardware Description Language

- Coupling HDL Compiler with logic synthesis
tools, you can automatically convert an HDL
description to a gate-level implementation in a
target technology.

- HDL descriptions provide technology-
independent documentation of a design and its
functionality. Since the initial HDL design
description is technology-independent, you can
use it again to generate the design in a different
technology, without having to translate from the
original technology.

Hardware Description Language

Verilog digital logic simulator tools allow you to
perform the following tasks in the design process
without building a hardware prototype:

- Determine the feasibility of new design ideas
- Try more than one approach to a design
problem
- Verify functionality
- Identify design problems

Number Representation

<size><base format><number>

549 // decimal number

'h 8FF // hex number

'o765 // octal number

4'b11 // 4-bit binary number 0011

3'b10x // 3-bit binary number with least significant bit unknown

5'd3 // 5-bit decimal number

-4'b11 // 4-bit two's complement of 0011 or 1101

Parameter Statement

The parameter statement allows the designer to give a
constant a name. Typical uses are to specify width of
registers and delays. For example, the following allows
the designer to parameterized the declarations of a
model.

parameter byte_size = 8;

reg [byte_size - 1:0] A, B;

for(i = 0; i < 10; i = i + 1)
begin

$display("i= %0d", i);

end repeat (5)

begin

$display("i= %0d", i);

i = i + 1;

end

i = 0;

while(i < 10)

begin

$display("i= %0d", i);

i = i + 1;

end

Multiplexer Example

Where is the register?
-- TheThe synthesissynthesis tooltool figuresfigures outout thatthat thisthis is a is a
combinationalcombinational circuitcircuit. . ThereforeTherefore, it , it doesdoes not not needneed a a
registerregister..

HowHow doesdoes it it figurefigure outout thatthat thisthis is is combinationalcombinational??
-- TheThe outputoutput is is onlyonly a a functionfunction of of thethe inputsinputs ((andand not not
of of previousprevious valuesvalues))
-- AnytimeAnytime an an inputinput changeschanges, , thethe outputoutput is reis re--
evaluatedevaluated..

Combinational Design Error

Tasks and Functions

Tasks are like procedures in other programming languages, e. g., task

may have zero or more arguments and do not return a value. Funct

act like function subprograms in other languages. Except:

1. A Verilog function must execute during one simulation time unit.

That is, no time controlling statements, i. e., no delay control (#), no

event control (@) or wait statements, allowed. A task may contain time

controlled statements.

2. A Verilog function can not invoke (call, enable) a task; whereas a

task may call other tasks and functions.

Tasks and Functions

The definition of a task is the following:
task <task name>; // Notice: no parameter list or ()s

<argument ports>
<declarations>
<statements>

endtask
An invocation of a task is of the following form:

<name of task> (<port list>);

Tasks and Functions

where <port list> is a list of expressions which correspond by position

to the <argument ports> of the definition. Port arguments in the

definition may be input, inout or output. Since the <argument ports>

in the task definition look like declarations, the programmer must be

careful in adding declares at the beginning of a task.

Tasks and Functions
// Testing tasks and functions
module tasks;

task add; // task definition
input a, b; // two input argument ports
output c; // one output argument port
reg R; // register declaration
begin

R = 1;
if (a == b)

c = 1 & R;
else

c = 0;
end

endtask

Tasks and Functions

Task Continue…

initial begin: init1
reg p;
add(1, 0, p); // invocation of task with 3 arguments
$display("p= %b", p);

end

endmodule

Tasks and Functions

input and inout parameters are passed by value to the task and output

and inout parameters are passed back to invocation by value on return.

Call by reference is not available.

• Allocation of all variables is static

• A task may call itself but each invocation of the task uses the same

storage

• Since concurrent threads may invoke the same task, the programm

must be aware of the static nature of storage and avoid unwanted

overwriting of shared storage space.

Tasks and Functions

• The purpose of a function is to return a value that is to be used in an

expression

• A function definition must contain at least one input argument

• The definition of the function is as below:

function <range or type> <function name>;// Notice: no parameter list

or ()s

<argument ports>

<declarations>

<statements>

endfunction

Tasks and Functions

// Testing functions

module functions;

function [1:1] add2; // function definition

input a, b; // two input argument ports

reg R; // register declaration

begin R = 1;

if (a == b) add2 = 1 & R;

else add2 = 0;

end

endfunction

initial

begin: init1 reg p; p = add2(1, 0); // invocation of function with

2 arguments

$display("p= %b", p);

end

endmodule

Verilog Template [1]

module <module_name> (<ports>)

input <input_port_names>;

output <output_port_names>;

reg <outputs_and_values_to_be_used_in_always_blocks>;

wire <values_to_be_used_in_continuous_assignments>;

//wire outputs do not need to be declared again

<called_module_name> U1(<module_ports>);

<called_module_name> U2(<module_ports>);

….

//continuous assignment

assign <wire_name> = <operation_of_wire_and_reg>;

//combinational always -> use blocking assignment “=“

always@ (<wire_or_reg1> or <wire_or_reg2> ..) begin

<combinational_reg_name> = <operation_of_wire_and_reg>;

end

Verilog Template [2]

//sequentional always -> use non-blocking assignment “<=“

always@ (posedge clk or negedge reset) begin

if(!reset) begin

<sequentional_reg_names> <= 0; //reset reg values

end

else begin

<sequentional_reg_names> <= <operation_of_wire_and_reg>;

end

endmodule

Verilog Template [3]

Example Testfixture
`timescale 1ns / 1ps

reg [7:0] id1[0:63999];
reg [7:0] id2[0:63999];
reg [7:0] a[0:8];
integer c;

initial
begin

$readmemh ("e:\\matlabr12\\work\\clowngray.txt",id1);
$readmemh ("e:\\matlabr12\\work\\cartmangray.txt",id2);
a[0]=100;
a[1]=125;
a[2]=100;
a[3]=125;
a[4]=200;
a[5]=125;

a[6]=100;
a[7]=125;
a[8]=100;

#5 RST=1'b0;
#1 RST=1'b1;
#2 ModSel=1'b0;
#1431 StartFrame=1'b1;
InSelect=1'b0;
#1000 StartFrame=0;

$writememh("e:\\matlabr12\\work\\filtered1.txt",id3,0,63999);
$writememh("e:\\matlabr12\\work\\filtered2.txt",id4,0,63999);

#100 $finish;

end

always@ #50 CLK=~CLK;

always@(posedge RAMclk)
begin

if(OutWrite==0)
begin

if (OutSelect==1'b0)
id3[AddOut16[15:0]]=DOut8[7:0];

else
id4[AddOut16[15:0]]=DOut8[7:0];

end

end

Some useful Verilog links,

http://www.cs.du.edu/~cag/courses/ENGR/ence3830/VHDL/
http://www.see.ed.ac.uk/~gerard/Teach/Verilog/manual/
http://oldeee.see.ed.ac.uk/~gerard/Teach/Verilog/manual/
http://www.ece.utexas.edu/~patt/02s.382N/tutorial/verilog_manual.html
http://www.eg.bucknell.edu/~cs320/1995-fall/verilog-manual.html
http://mufasa.informatik.uni-mannheim.de/lsra/persons/lars/verilog_guide/
http://www.sutherland-hdl.com/on-line_ref_guide/vlog_ref_top.html
http://www-cad.eecs.berkeley.edu/~chinnery/synthesizableVerilog.html
http://ee.ucd.ie/~finbarr/verilog/
http://athena.ee.nctu.edu.tw/courses/CAD/

