APPENDIX C

Analysis of the relative DCELL row current error due to IN_AMP non idealities and leakage currents

Detailed analysis of relative DCELL row current error with respect to random non idealities of the block IN_AMP and template value change due to the leakage current. DCELL row current I_I can be expressed as

$$I_{i} = \sum_{i=1}^{m} I_{ij}$$

We assume that each DCELL have the same input and template voltage. Thus, standard deviation of I_I

$$\sigma^2[I_i] = m\sigma^2[I_{ii}]$$

DCELL output current can be expressed as

$$I_{ij} = \frac{\beta}{2} \left\{ V_{DD} + V_{TP} - V_{bias} + \frac{C}{C_{T}} \left[K \left(X_{j} - T_{ij} \right) \right] \right\}^{2}$$

K and V_{bias} are random variables. Gain accuracy of unity gain amplifier in IN_AMP is not important. We can model its gain error as a coefficient in front of term $\frac{C}{C+C_T}$ in Equation [2.1.18]. This coefficient is smaller than one, thus it will not

increase voltage range on nodes N1 and N2. Standard deviation of DCELL output current with respect to random variable K and $V_{\rm bias}$.

$$\begin{split} \sigma^{2} \Big[I_{ij} \Big] &= \frac{\beta^{2}}{4} \Bigg[\underbrace{V_{DD} + V_{TP} - V_{bias} + \frac{C}{C_{T}} \Big[K \Big(X_{j} - T_{ij} \Big) \Big]}_{M_{1}}^{2} \sigma^{2} \Bigg[V_{DD} + V_{TP} - V_{bias} + \frac{C}{C_{T}} \Big[K \Big(X_{j} - T_{ij} \Big) \Big] \Bigg] \\ &= \frac{\beta^{2}}{4} M_{1}^{2} \Bigg[\sigma^{2} \Big[V_{bias} \Big] + \Bigg[\frac{C}{C_{T}} \Big(X_{j} - T_{ij} \Big) \Bigg]^{2} \sigma^{2} \Big[K \Big] \Bigg] \\ I_{ij}^{2} &= \frac{\beta^{2}}{4} M_{1}^{4} \end{split}$$

$$\frac{\sigma^{2} \left[I_{ij} \right]}{I_{ij}^{2}} = \frac{\sigma^{2} \left[V_{bias} \right] + \left[\frac{C}{C_{T}} \left(X_{j} - T_{ij} \right) \right]^{2} \sigma^{2} \left[K \right]}{\left[\underbrace{V_{DD} + V_{TP} - V_{bias} + \frac{C}{C_{T}} \left[K \left(X_{j} - T_{ij} \right) \right] \right]^{2}}_{M_{I}}$$

$$= \frac{{V_{bias}}^2}{{M_1}^2} \frac{{\sigma^2 \left[{V_{bias}} \right]}}{{{V_{bias}}^2}} + \frac{{K^2 {\left[{\frac{C}{{C_T}}{\left({{X_j} - {T_{ij}}} \right)} \right]}^2}}}{{{M_1}^2}} \frac{{\sigma^2 \left[K \right]}}{{K^2}}$$

All DCELL have the template and input voltage. Thus

$$I_{i} = mI_{ij}$$

$$I_{i}^{2} = m^{2}I_{ij}^{2}$$

Relative DCELL current error can be expressed as follows

$$\frac{\sigma^{2}[I_{i}]}{I_{i}^{2}} = \frac{1}{m} \frac{\sigma^{2}[I_{ij}]}{I_{ij}^{2}}$$

$$\frac{\sigma^{2}[I_{i}]}{I_{i}^{2}} = \frac{1}{m} \left[\frac{V_{bias}^{2}}{M_{1}^{2}} \frac{\sigma^{2}[V_{bias}]}{V_{bias}^{2}} + \frac{K^{2}[C_{T}(X_{j} - T_{ij})]^{2}}{M_{1}^{2}} \frac{\sigma^{2}[K]}{K^{2}} \right]$$

We substitute V_{bias} and K by their mean value.

$$V_{\text{bias}} = V_{\text{DD}} + V_{\text{TP}}$$
 and $K = 1$

Then relative error is

$$\frac{\sigma^{2}[I_{i}]}{I_{i}^{2}} = \frac{1}{m} \left[\left[\frac{V_{DD} + V_{TP}}{\frac{C}{C_{T}} (X_{j} - T_{ij})} \right]^{2} \frac{\sigma^{2}[V_{bias}]}{V_{bias}^{2}} + \frac{\sigma^{2}[K]}{K^{2}} \right]$$