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Summary

According to the correspondence principle, the classical world should
emerge from the quantum world whenever Planck’s constant h is

negligible. But the limit h → 0 is mathematically singular. This fact
(shared by many physical theories that are limits of other theories)

complicates the reduction to classical mechanics. Particular interest

attaches to the situation where the classical orbits are chaotic, that is,
unpredictable. Then if the system is isolated the corresponding quantum

motion (e.g. of a wave-packet) cannot be chaotic; this is the ‘quantum
suppression of chaos’. Chaos occurs in the world because quantum

systems are not isolated: the limit h → 0 is unstable, and the associated

quantum interference effects are easily destroyed by tiny uncontrolled
influences from the environment, and chaos returns; that is,

‘decoherence’ suppresses the quantum suppression of chaos. This is
illustrated by the chaotic tumbling of Saturn’s satellite Hyperion. For

isolated systems, there are nevertheless quantal reflections of classical

chaos, in the form of borderland phenomena, allowed because the
semiclassical limit is singular. These are nonclassical, but emerge as
h → 0. Examples are interference associated with focusing (e.g.

supernumerary rainbows), and the energy-level statistics of highly excited
states, with tantalizing connections to prime numbers and the Riemann

hypothesis.
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1. Introduction

The question of how chaos in classical mechanics gets reflected in the
quantum mechanics of the microworld is slippery and subtle [1-3]. On the

one hand, it is known from observations, computations, and mathematical

theorems that newtonian mechanics often predicts unpredictability: some
systems of forces are so unstable that nearby trajectories separate

exponentially fast [4]. This is chaos - the celebrated ‘sensitivity to initial
conditions’. Chaos is, strictly speaking, a phenomenon defined in the

limit of long times, for systems that are confined to a restricted region of

space (for example, a particle bouncing in a billiard table in the shape of a
stadium). One of the hallmarks of chaos is the lack of periodicity or

quasi-periodicity in the time-development of any dynamical variable (for
example, the x component of position or the y component of velocity); the

mathematical statement of this is that these variables have a continuous

spectrum.

On the other hand,  the corresponding quantum systems always

have discrete (that is, quantized) energy levels, and since the energy

spectrum governs the time-development of any dynamical quantity such
evolution cannot be chaotic. This is the origin of the often-repeated, and

strictly true, assertion that there is no chaos in quantum mechanics. Two
awkward questions immediately arise. The first stems from the fact that

classical mechanics is supposed to be the limit of quantum mechanics in

situations where Planck’s constant h can be neglected. This looks like a
contradiction, and we ask: what kind of limit is it where a system is not

chaotic for any finite value of h, yet is chaotic when h=0? The second
question is connected with the recognition that strictly speaking all

systems  - even our orbiting moon – obey the laws of quantum

mechanics, and yet they are often observed to evolve chaotically (even
the moon is slightly chaotic, and other astronomical bodies much more

so). We ask: what is the origin of the observed chaos in our macroscopic
but strictly quantum world?
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My purpose here is to try to answer these questions in the simplest
way, that is without formalism. First, though, I draw attention to the fact

that the relation between chaos and quantum physics, important enough
as it is in its own right, can also be regarded as a microcosm of much

larger questions. Our scientific understanding of the world is a patchwork

of vast scope; it covers the intricate chemistry of life, the sociology of
animal communities, the gigantic wheeling galaxies, and the dances of

elusive elementary particles. But it is a patchwork nevertheless, and the
different areas do not fit well together. This is the notorious problem of

reduction: we might believe that a living organism is described

completely by the quantum mechanics of all its molecular (atomic,
electronic, nucleonic, quarkish…) parts, but where in its byzantine

wavefunction, governed by the Schrödinger equation, is the spark of life?
Even if we knew, how could that quantum description extend beyond

living cells and individual creatures, to the displays of peacocks and the

flocking of birds?

Even within physical science, reduction between different levels of

explanation is problematic – indeed, it is almost always so. Chemistry is

supposed to have been reduced to quantum mechanics, yet people still
argue over the basic question of how quantum mechanics can describe the

shape of a molecule. The statistical mechanics of a fluid reduces to its
thermodynamics in the limit of infinitely many particles, yet that limit

breaks down near the critical point, where liquid and vapour merge, and

where we never see a continuum no matter how distantly we observe the
particles; the critical state is a fractal, and much theoretical physics of the

last forty years has gone into getting a clear understanding of  it.  The
geometrical (newtonian) optics of rays should be the limit of wave optics

as the wavelength becomes negligibly small, yet we shall see that the

reduction (mathematically similar to that of classical to quantum
mechanics) is obstructed by singularities, even when there is no chaos. (A

singularity is a place where the smoothness of a mathematical quantity or
geometrical pattern is disrupted, for example by the quantity becoming

infinite; I will give examples later.)
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What follows should not be misconstrued as antireductionist. On
the contrary, I am firmly of the view, beautifully expressed recently [5],

that all the sciences are compatible and that detailed links can be, and are
being, forged between them. But of course the links are subtle, and my

emphasis will be on a mathematical aspect of theory reduction that I

regard as central, but which cannot be captured by the purely verbal
arguments commonly employed in philosophical discussions of

reduction.

My contention here will be that many difficulties associated with

reduction arise because they involve singular limits [6].  These

singularities have both negative and positive aspects: they obstruct the
smooth reduction of more general theories to less general ones, but they

also point to a great richness of borderland physics between the theories.
So, indeed, the problem to be considered here, of chaos in the quantum

world, is an example of something grander. But examples are important.

To paraphrase the numerical analyst Beresford Parlett: “Only wimps
study only the general case. Real scientists study examples”.

 Before getting started, I must make four points. The first is that

although we will be dealing with the limit h → 0, at first encounter this
seems meaningless. Planck’s constant cannot be set equal to zero,

because it is a constant of nature, with a fixed value. And on the other
hand, h has dimensions, so its ‘fixed’ value can be anything,  depending

on the system of units used. In fact, by ‘the semiclassical limit h → 0’ I

will mean ‘situations where the dimensionless variable obtained by
dividing h by any classical quantity with the same dimensions (action) is

negligibly small’.

The second point is that discussions of chaos have been confused

by conflating two different questions. The first is: How does classical

behaviour (e.g. chaos) emerge in the semiclassical limit?  If the limit
h → 0 were not singular, this emergence would be trivial: simply solve

the quantum problem, which involves h, then set h=0. But we shall see
that the true answer is much more subtle. This first question is important

for the intellectual coherence of our description of the physical world, yet

in a sense it is backward-looking, since we know the answer: the classical
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world has to emerge somehow. The second question, more productive of
new physics, is: What nonclassical phenomena emerge as h → 0? This

sounds like nonsense, and indeed if the limit were not singular the answer
would be: no such phenomena.

The third point is that in discussions of chaos and quantum physics

there always lurks a second limit, in addition to h → 0. This is the limit
of long times, t → ∞ . As mentioned above, it is only in the long-time

limit that classical chaos emerges: it takes infinitely long time to verify
that a trajectory explores all the possibilities compatible with

conservation of energy (and similar quantities), or to determine that two

initially infinitesimally close trajectories separate exponentially fast. But
the semiclassical and long-time limits do not commute, and thereby hangs

much of the difficulty and subtlety associated with our subject.

The fourth point is that there are two questions that were the

legitimate focus of attention by most of the other participants at the

meeting, but that I will not discuss. One is the relation, if any, that these
considerations of quantum chaology bear to theological matters; I am

unqualified (and also, as a nonbeliever, unmotivated) to do that. The other

is the relation, if any, between quantum chaology and the interpretation of
quantum mechanics (measurement, wavepacket reduction, etc); I have

some sympathy with the opinion mischievously expressed recently [7]
that such interpretation is unnecessary.

 2. Singular limits: when one plus one does not make two

To see that singularities in the semiclassical limit are unavoidable,

consider the simplest possible situation [8] (where there is no chaos) of
two beams of quantum particles, or waves of light, + and -, travelling in

opposite directions, and coherent (e.g. created from a common source).

The associated waves – complex functions of position and time - are

ψ π
λ

ν±( ) = ± −













x t
x

t, exp 2 i ,                (1)

where the wavelength λ and frequency ν are related to the momentum p



6

and and energy E of the quantum particles by the de Broglie and Planck
laws:

λ ν= =h p E h/ , / .                         (2)

Each wave has intensity ψ 2 1= .

By linearity (one of the principles of quantum mechanics), the
resultant wave is the sum (superposition) of the two, so the (observable)

intensity is

I x
x( ) = + = 



+ −ψ ψ π

λ
2 24

2
cos .             (3)

This is the simplest representation of interferometry, where x would be

distance measured on an observation screen. The oscillatory function (3)

describes the interference fringes familiar since their explanation in terms
of superposition by Young two centuries ago, and its mathematization by

Fresnel (they were studying light, but nowadays the same interference is
routinely observed for all quantum particles). Its values oscillate (figure

1a) between zero and 4, with a spatial period of λ/2.

Now we ask: what is the classical, or geometrical-optics, limit of

this wave? By (2), h → 0 corresponds to fixing the momentum and
letting λ → 0. Classically (or in geometrical optics) there is no

interference, so the intensity resulting from adding two waves, each with

unit intensity, should be I=2. But it is not! As h → 0, the intensity (3)
oscillates faster and faster (figure 1b), and in the limit it attains all values

between zero and 4 in arbitrarily small ranges of x. In fact, (3) has a

powerful singularity at λ=0 (or h=0), obstructing the smooth passage to

the limit. We used to tell ourselves, and our students, that this singular
function, and others like it, are mathematical curiosities, of no interest in

physics. Now we see that the singularity arises unavoidably when we try
to bridge the gap between two of our major theories, in the simplest

possible case. For wave intensities, 1+1=2 is false, all the way to the

classical limit.
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And yet we know that, in words attributed to Lord Rayleigh, two
candles are twice as bright as one, that is, when waves are irrelevant, one

plus one is indeed two. The only way to extract this result from (3) is by
averaging. Any external influence that compromises the purity of (3) will

have the effect of blurring (3), and in the classical limit this function is

infinitely sensitive to blurring. Two possible influences are finite x-
sensitivity (window size) of the detector, and non-monochromaticity of

the beams (finite spreads in wavelength or momentum). Now the average
of the function cos2 is 1/2, so

I x
x( ) = 



 = × =4

2
4

1
2

22cos
π
λ

,            (4)

which is of course the classical result.

We need a slightly expanded version of (4). The average is over the

phase difference χ between the two waves. Imagine the external

influences result in a gauss-distributed χ with spread ∆; then

cos cos exp exp2 2
2

2
21

2 2

1
2

1 2χ
π

χ χ χ
= ⌠

⌡
−












= + −{ }( )

−∞

∞

∆ ∆
∆d .        (5)

Phase randomness is very efficient: for phase spread ∆=π/2,

<cos2χ>=0.5003; for ∆=π, <cos2χ>=0.500000001. 

So, the correspondence principle does hold, but there has been a
price to pay: because of the singularity, classical mechanics emerges not

directly, but only after averaging over phase-scrambling effects that can

be ascribed to the environment – that is, influences external to the pure
quantum wave initially calculated – in modern parlance, decoherence

effects. All this to get 1+1=2! I cannot resist recalling that in a classic
work [9] constructing mathematics from its basis in logic (before Gödel

proved that enterprise is doomed), 1+1=2 is derived as a theorem,

somewhere in the middle of volume 2.
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3. Decoherence and the emergence of chaos

Now, what about chaos? To fix our ideas, consider Hyperion, the

sixteenth satellite of the planet Saturn. This body is a potato-shaped rock
about as big as New York City (R~142km). To the best of our

knowledge, Hyperion is unique in that its rotation is chaotic [10, 11].

Under resonant forcing  from the big moon Titan, in combination with
Saturn’s gravity and its own nonsphericity, Hyperion tumbles erratically.

The instability has a time-constant (for exponential forgetting of its initial
state) of about 100 days, long compared with both its orbital period (21.3

days) and its instantaneous rotation period (about 5 days).

Now consider the rotation of Hyperion, regarded as a quantum

object.  Its quantized angular momentum J consists of 2πJ/h≈2x1058

Planck units (see Appendix A for the basis of the estimates given in this
section). From this enormous number, together with the correspondence

principle - and with the same modelling as we use for the classical

dynamics, where the only forces come from Saturn and Titan - the
quantum predictions for the motion ought to coincide with the classical to

very high accuracy. Let us see.

It helps to think of the classical motion on the phase space
represented by the angular momentum vector J (whose magnitude is

J=|J|); this is the surface of a sphere with polar coordinates θ, φ. The

motion of the vector J can be regarded as that of a mechanical system

with a single freedom, whose ‘coordinate’ is the azimuth angle φ and

whose ‘momentum’ is p=Jcosθ; therefore phase-space area is area on the

sphere, divided by J. For Hyperion, the total available phase-space area is

4πJ2/J≈1058h.

If we knew the motion precisely,  Hyperion’s rotation would be a
single point moving on the sphere. But even classically our measurements

are not perfectly precise, so the state of Hyperion is a little blurry patch,

tiny on the sphere but with an area many times h; call its boundary B(0),
evolving into B(t). Chaotic evolution means that the different points on B
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separate exponentially, so that B(t) develops into a convoluted curve, with
tendrils exploring the whole phase sphere. The area enclosed by B(t)

remains constant (this is Liouville’s theorem); however B’s perimeter
length grows exponentially, as L(t)≈L(0)exp(t/Tc), where for Hyperion the

chaos time is Tc≈100 days.

Classically, the convolutions get ever more intricate. For a while,
the quantum state representing Hyperion follows these convolutions; this

is the spreading of the wavepacket, chaos-style. But quantum physics
prevents the intricacy – that is, the chaos – from developing forever,

because phase-space fine structure is limited by Planck’s constant h. Any

smaller structure must be blurred. After some time Tq, the areas of typical
tendrils get finer than h; thereafter, classical and quantum evolutions are

different. This is the quantum suppression of classical chaos [12-14]. At
first thought, Tq for astronomical objects must be enormously long,

probably irrelevant to any observations on time scales relevant to

astronomers – remember that gigantic 1058. Not so. A simple estimate
(Appendix A) gives

T T J hq c~ log /( )            (6)

For Hyperion, this is

Tq
58days log 10 years~ 100 37× ( ) = (7)

- an astonishingly short time, first calculated in a similar way by Ronald

Fox (private communication).

Now, the chaotic rotation of Hyperion was discovered less than 37
years ago, but nobody thinks that after the year 2020 astronomers will

begin to see quantum effects – specifically the calming of Hyperion’s
instability and its replacement by some more moderate multiply periodic

motion. And indeed, the predicted quantum suppression of chaos is itself

suppressed, and classicality restored, by another quantum effect. This is
decoherence. It arises from the fact that Hyperion is not isolated.

At the very least, seeing Hyperion involves photons from the sun,
arriving unpredictably. We would never think to include these photons in
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the calculation of Hyperion’s dynamics, because their energy is so

minuscule: 4x10-19J for a visible photon, as compared with 2x10+19J for
Hyperion’s rotational energy.  On the other hand, their energy is vast in

comparison with the energy spacing 10-39J of Hyperion’s quantum
rotational levels, so a quantum effect from these photons is conceivable.

The proper way to calculate this effect would be to enlarge the

physical system to include not just Hyperion in the field of Saturn and
Titan but also the sun’s radiation field, and formally eliminate the

radiation variables (by tracing over them), to get a modified quantum
mechanics involving only Hyperion’s dynamics. In recent years powerful

formalisms have been developed for doing this [15, 16], and have been

applied to the situation where there is classical chaos [17-19]. Rather than
repeat these arguments here, I will first estimate the effects of

decoherence in a bare-handed way, by treating the environment as a

random time-dependent modification of Hyperion’s hamiltonian – a kick
from each impact of a photon from the sun. In Appendix B I give a

slightly more formal treatment, but still incorporating what John
Polkinghorne calls ‘the patter of photons’ as an external influence, rather

than a constituent of a composite system.

We begin by noting that the quantum suppression of chaos
involves the interference of waves and therefore their phases (in some

situations this is analogous to Anderson localization in solids [20]).
Therefore the suppression can be easily – and quickly - destroyed by

decoherence from external influences. The change in Hyperion’s angular

momentum resulting from the random impact (impulsive torque) of a

single visible photon (wavelength λ) is ∆J~(h/λ)R. This impact will

change the total phase of Hyperion’s wavefunction. And, with even slight

convolutions of B, so there is more than one classical contribution to the

wavefunction for some azimuth values φ, it will also (by about the same

amount) change the phase difference between these contributions. The

change (associated with the component of ∆J parallel to J, which spins

up Hyperion and swells the sphere and therefore also the convolutions of
B on it) is
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∆J h h R h R/ ~ / / / ~λ λ( ) = 1011      (8)

This uncontrollable phase shift between the waves associated with

any two classical contributions, acting according to (5), is
overwhelmingly sufficient  to induce decoherence, and so suppress the

suppression of chaos – and just from a single photon. In the stream of

sunlight (flux~10Wm-2), photons arrive at a rate of one every 10-30s, so
decoherence occurs extremely fast. Stretching this argument, we can

estimate the decoherence time Td for the stream of photons from the sun

to disturb the phase by about 2π radians:

Td~10-53s            (9)

Do not take the precise value of this number seriously. The

foregoing is very far from a proper calculation of the decoherence effect

for Hyperion. But the extreme smallness of Td should be taken very
seriously. It shows that an external disturbance so small that its effect on

a system’s dynamics is negligible (one photon, or a tiny fraction of a
photon) can nevertheless dramatically and effectively instantaneously

influence the kinematics of its quantum state - and more strongly as the

classical limit is approached. Decoherence – the generalization of the
1+1=2 calculation of the previous section – emerges as a dominant

physical effect, allowing classical chaos to persist [17-19].

I chose Hyperion’s chaos to dramatize the way in which

uncontrolled environmental influences can induce quantal decoherence.

In fact, when applied in such extreme situations the decoherence
argument has nothing to do with chaos per se, but to classicalization:

since Td<<Tc, the destruction of quantum interference occurs long before
chaos develops. So the claim sometimes made, that chaos amplifies

quantum indeterminacy, is misleading. The situation is more subtle:

chaos magnifies any uncertainty, but in the quantum case h has a
smoothing effect, which would suppress chaos if this suppression were

not itself suppressed by externally-induced decoherence, that restores
classicality (including chaos if the classical orbits are unstable).
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The calculation in Appendix B shows this decoherence-induced
classicalization more clearly for the illustrative example of Hyperion;

very recently, a more general and formal argument for the universality of
the phenomenon has been given [21]. At the opposite extreme from

Hyperion are the humble 2-state systems, where decoherence, and the

related inhibition of quantum transitions through the quantum Zeno
effect, can be explored in detail [22-29].

4. Emergent semiclassical phenomena

The example of Hyperion addressed the first of the two commonly-

conflated questions mentioned near the end of the Introduction, namely
the emergence of classical effects – specifically, chaos – as h→0. Now,

with two examples, we consider the more interesting question of what
nonclassical effects emerge and persist in the limit h→0. The first does

not involve chaos; the second does. Both of these emergent phenomena

are delicate, in the sense that their detection requires magnification that
increases as h gets smaller; this contrasts with more familiar examples of

macroscopic quantum phenomena (superfluidity, superconductivity, the

impenetrability of matter in bulk…).

Corresponding to a quantum scattering wavefunction (for example

of a beam of atoms striking a target of other atoms, or electrons in an
electron microscope) or to a field of diffracted light waves (for example

sunlight encountering a raindrop), is a family of trajectories. These are the

orbits of massive particles, or light rays. (Even a localized wavepacket
corresponds to a family, rather than a single trajectory, because its

localization cannot be perfect.)

Now, a family of trajectories possesses a holistic property not

inherent in any individual trajectory, namely focusing. In three

dimensions, focusing usually occurs on surfaces, and in two dimensions,
on lines. These are the envelopes of the family of trajectories. They are

called caustics. Caustics are the singularities of ray (geometrical,
classical)  theory [30, 31]. On them, the ray intensity rises to infinity.



13

They are the brightest places in the field.  Examples are rainbows
(angular focusing of sunlight refracted and reflected by raindrops, and

their analogues in atomic and molecular scattering) and the patterns of
light dancing on the bottom of a swimming-pool. In our eyes,

microscopes and cameras, the images of each point are also formed by

focusing, but of a very special kind, namely the non-generic points
fashioned by evolution or lensmakers’ art, rather than the surfaces and

lines occurring when there is no symmetry. Caustics are important.

But they are nonexistent! Close examination, on the scale of the

wavelength, dissolves the singularities, and reveals that they are

decorated by intricate and beautiful interference patterns. These can be
understood by an application of the same mathematics, developed in the

1960s and 1970s, that enables the different caustic singularities to be
classified. This is the celebrated and (in other contexts) notorious

catastrophe theory [32, 33].  The diffraction catastrophes [31, 34, 35] are

emergent semiclassical (more generally, short-wave) phenomena, with
many applications throughout mathematics as well as physics (they

describe the supernumerary arcs sometimes seen just inside the main

rainbow, that were impossible to explain using ray theory). Although they
are contained in wave equations (Schrödinger’s, Maxwell’s), they were

not derived by the reductionist approach of starting with solutions of
wave equations, but by top-down methods, starting with the caustic

singularities of ray physics; only later were the full connections with

wave equations elucidated, and consilience [5] established.

Before getting to the second example, I digress to point out that the

caustics story extends deep into wave physics, and in a way that nicely
illustrates the role of singularities. Wave physics dissolves the caustic

singularities of geometrical optics. But wave physics has singularities of

its own, complementary to caustics; these are the singularities of phase -
the new quantity introduced in the generalization from rays to waves. The

singularities are the dislocation lines [31, 36-38] (so called because of
their close analogy with dislocations in crystals), where the phase is

singular and the intensity is zero. Dislocations are fine-scale features of

waves; they are now beginning to be investigated in detail in optical
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experiments with interfering laser beams [39, 40]. They are optical
singularities  in the approximation where light is regarded as a scalar

wave. But light is not a scalar wave; its vector nature allows for
polarization. And in the passage from scalar to vector, the dislocations

are dissolved, and replaced by yet other singularities, of the pattern of

field vectors: lines again, but where the polarization is purely circular or
purely linear [41-43]. At each stage, generalization to a deeper theory

dissolves the singularities of the old theory, and replaces them by new
ones.

Now we return to chaos, with our second example, and consider

the conventional quantum mechanics of isolated systems, mindful of the
fact that as the classical limit is approached the criteria for effective

isolation become more stringent. An isolated bounded system possesses
discrete energy levels. For fixed energy, the semiclassical limit

corresponds to highly excited states, so we expect these to reflect the

nature of the corresponding classical trajectories, in particular their
chaology.  And so it turns out, in a remarkable example of an

asymptotically emergent phenomenon associated with a singular limit.

First, there is an obvious way in which the classical limit is
singular. Between the classical energy continuum and the quantum

discontinuum is a logically unbridgeable gap. In philosophers’ parlance,
the two theories are incommensurable. In practice, the

incommensurability is inconsequential, because any spectroscope has

finite resolution, and under sufficiently semiclassical conditions  the
discrete levels (spacing hD for systems with D freedoms) cannot be

discriminated. Beyond this, we can imagine studying the details of the
semiclassical spectrum by performing a mental magnification to keep the

average level spacing unity.

Now it is possible to ask whether the thus-magnified spectrum is
qualitatively different for a classically integrable (regular, non-chaotic)

system and for a chaotic one. For example, the much-investigated
quantum dots can be caricatured as quantum billiards, that is electrons

moving freely in planar regions with specular reflection at the boundary

walls; square or circular boundaries generate classically regular motion, a
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stadium-shaped wall generates chaos. (Other chaotic systems that have
been studied experimentally include hydrogen atoms in very strong

magnetic fields, and the vibrations of molecules whose atoms are
anharmonically coupled.)

These spectra display universality. There is a sense in which the

spectra of all quantum systems whose classical mechanics is chaotic are
the same, and similarly for integrable systems [2, 44-46]. The universality

does not extend to the positions of the individual levels: of course these
are different for different systems in each class. It is to the statistics of the

levels that universality applies. Statistics are natural in the semiclassical

limit, since there are many levels in a classically small energy interval.
Spectral statistics has become a richly elaborated subject [47], of which

the merest sketch must suffice here.

Consider one of the simplest statistics of the magnified spectrum

(where the mean spacing is unity), namely the probability P(S) that

neighbouring levels have spacing S.  For almost all integrable systems
with more than one freedom,

P(S)= exp(-S) (integrable);          (10)

this is the negative exponential characteristic of Poisson-distributed
‘events’ (levels); in particular, the most probable spacing is S=0,

indicating clustering of the levels [44]. It is a little strange at first
encounter that regular classical motion coresponds to a random quantum

spectrum, but it is so.

For chaotic classical motion, the level spacings distribution is very
different, and closely approximated by the Wigner distribution [1, 48]

P S S S( ) = −( )1
2

1
4

2π πexp  (chaotic).          (11)

This is the statistic characteristic of the eigenvalues of random matrices

[49, 50]. Note that P(0)=0, indicating repulsion of levels, in contrast to

the clustering of (10).
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I have simplified matters. There are actually three universality
classes for classically  chaotic quantum spectra. Equation (10) applies

when there is time-reversal symmetry, when the particles have integer
spin (bosons) or where spin plays no part (as in electrons in quantum

billiards). The other universalities apply when there is time-reversal

symmetry for fermions [51], and when there is no time-reversal
symmetry [52-54].

It is one thing to identify universality classes, by computer
experiments inspired by intuition, or (now) by laboratory experiment, but

quite another to provide a theoretical explanation of the universality.

However, this has now been achieved, both in broad outline and in many
details [55-57]. It turns out that the quantum spectral universality is

begotten by a universality of the classical mechanics, connected with the
distribution of very long periodic orbits [58, 59]. And in one of those

unexpected connections that make theoretical physics so delightful, the

quantum chaology of spectra turns out to be deeply connected to the
arithmetic of prime numbers, through the celebrated zeros of the Riemann

zeta function: the zeros mimic quantum energy levels of a classically

chaotic system. The connection is not only deep but also tantalizing, since
its basis is still obscure - though it has been fruitful both for mathematics

and physics [60-66].

It is important to emphasize why spectral universality is an

emergent nonclassical semiclassical phenomenon. It is nonclassical

because it is a property of discrete energy levels, which have no classical
counterpart. It is semiclassically emergent because only as h → 0 are

there many levels in a classically small interval – it is impossible to
calculate statistics using only the ground state. And only the singular

nature of the semiclassical limit allows such nonclassical phenomena to

emerge without paradox.
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Appendix A

Caricaturing Hyperion as a homogeneous sphere with radius R (=142km)

and mass M (=1.77x1019kg), its moment of inertia is I=2MR2/5, and from
its rotational angular speed ΩH~2π/(5 days) follows the angular

momentum

J I MR= =Ω ΩH H
2
5

2 ,                   (A1)

and thence the number N=2πJ/h =2x1058 given in the text, of Planck units

in Hyperion’s angular momentum.

For the estimate of Tq (equations 6 and 7), we imagine the

boundary of the patch representing Hyperion’s classical state evolving

into tendrils each of area h. Since the total area of the angular-momentum

sphere (phase space) is 4πJ, the number of such tendrils is about N, and

their total perimeter is L(Tq)~Nx(radius of J sphere)~N√J=N3/2√h; the
initial perimeter is       L(0)~√J= √(Nh). Solving the chaos equation

L T L T Tq q c( ) = ( ) ( )0 exp /         (A2)

for Tq now gives (6) and (7).

To estimate the spacing of Hyperion’s rotational eigenenergies EN,
we use

E
J

I

N h

I
N = =

2 2 2

22 8π
.         (A3)

whence

∆
Ω

E E E
Nh

I

Jh

I

h
N N N≡ − = = =+1

2

24 2π π π
H

2
.         (A4)

This gives ∆EN~10-39J as stated in the text.
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Finally, to estimate the decoherence time Td we start with the
energy of sunlight reaching unit area of Hyperion each second. This is

about P=10Wm-2, since 1000Wm-2 reaches the earth and Saturn is about
10 times further from the Sun. The total power reaching Hyperion is thus

πR2P; thence the number of photons (frequency ν) reaching hyperion in

Td is Np~πR2PTd/hν. These give random impacts, so the total phase

change is √Np times the value in (8), and this must be of order unity,

leading to

 T
hc

R P
d ~

λ
π 4

        (A8)

and thence to (9).

Appendix B

My aim here is to use a simple model to get an expression for the
‘decoherence factor’ that describes explicitly how impacts from photons

‘classicalize’ Hyperion’s rotation, by causing the density matrix, in the

representation corresponding to Hyperion’s angular position, to become
diagonal very rapidly.

On the very small time scales associated with the onset of
decoherence, Hyperion’s chaotic tumbling is irrelevant, so it suffices to

treat the rotation by a single angle θ, with associated angular momentum

component J. Let a photon with momentum p strike Hyperion with

impact parameter b (-R≤b≤R), and the the reflectivity be r. This will
change J by

∆J pb r= −( )1 .         (B1)

A classical hamiltonian incorporating these impacts (denoted by

subscripts i) is

H
J

I
J t ti i

i
= + −( )∑

2

2
θ δ∆ .         (B2)
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(H is not periodic in θ, but in the present context θ can be considered as

living on the covering space consisting of the whole real line.) 

Quantally, the variables θ and J become operators ˆ ˆθ and J , and the

evolution of a state ψ t( )  over the interval τi=ti+1-ti (~10-30s) between the

successive impacts is determined (from the Schrödinger equation

corresponding to (B2)) by the unitary evolution operator

U J J Ii i i= −{ } − ( ){ }exp ˆ / exp ˆ / .i iθ τ∆ h h2 2         (B3)

We apply this in the position representation, for wavepackets

ψ θ θ ψ,t t( ) ≡ ( )  that are classically narrow (corresponding to an

accurate specification of Hyperion’s rotation) and correspond to rotation
with average angular momentum J, yet wide enough to neglect the

spreading of the wavepacket during the tiny interval τi between photon

impacts. These conditions are very easy to justify for a planetary

wavepacket, as can be confirmed by exact calculations on a gaussian
model. Then the evolution is, approximately,

ψ θ θ θ τ ψ

θ τ ψ θ

, exp / exp ˆ /

exp / exp / , .

t J J I t

J J I t

i i i i

i i i

+( ) = −{ } − ( ){ } ( )
≈ −{ } − ( ){ } ( )

1
2

2

2

2

i i

i i

∆

∆

h h

h h
         (B4)

Expressing this in terms of the density matrix ρ̂ ψ ψi i it t= ( ) ( )
gives, for the evolution after N impacts,

θ ρ θ θ θ θ ρ θˆ exp / ˆi N m
m i

i N

iJ+
=

+
′ ≈ − ′( ) ∑









′i - ∆ h .         (B5)

Now comes the central step: averaging the exponential factor over the

random impacts. In a time T during which there are many impacts (which
can still be macroscopically extremely short), the exponent is a gaussian

random variable. With this observation, and introducing the average

photon frequency ω, the decoherence factor can be written
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F T p b r

A T

i i i
i

N
θ θ θ θ

ω θ θ

, , exp[ /

exp ,

′( ) = − ′( ) −( )∑










= − ′( ){ }
=

i -

-

av

1
1

2

h
        (B6)

where the dimensionless decoherence amplification constant A, expressed

in terms of the power P striking unit area of Hyperion, is

A
PR

hc
~ ~

4

2
3810 .         (B7)

The enormous value of A, together with (B6), ensures that in even

the shortest macroscopically significant time T the off-diagonal elements

of the density matrix are negligible for any difference θ θ− ′ in
Hyperion’s angular position that is large enough to conceivably be

measured. For a more general version of (B6), see equation (3) of
reference [21].
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Figure caption

Figure 1. Graphs of the intensity interference function (3) for (a) λ=0.5,

(b) λ=0.05, illustrating the approach to the singular limit λ=0,

where the intensity takes all values between 0 and 4.
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Figure 1. Graphs of the intensity interference function (3) for (a) λ=0.5, (b) λ=0.05,
illustrating the approach to the singular limit λ=0, where the intensity takes all values 
between 0 and 4.
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