
10.4 TORQUES AND TORQUERS 
 
 The torques, arising from moments of forces about the center of mass, and couples, 
must be identified as being external or inertial to the spacecraft. The former will affect its 
total momentum, whereas the later will affect only the distribution between its moving 
parts. The case has already been made that it is necessary to include controllable external 
torques whereas internal ones. 
 
 The main source of torques and accruing either naturally or as disturbances are 
introduced bellow and summarized in Table 10.1. The magnitude of torques in space is 
small when compared with terrestrial standards. Even very small ones become significant 
when there is no friction to oppose them and when the orientation has to be very accurate. 
 
 Some of the phenomena listed as disturbances torques in Table 10.1 may be used as 
means of achieving the required orientation of the spacecraft. For that job, they will 
normally need to be controllable. A possible exception is the gravity gradient torque, which 
will establish an Earth-facing equilibrium orientation passively, with the axis of last inertia 
along the local vertical (seen 10.4.3) 
 
 Table 10.2 summarizes the main advantages and disadvantages of various types of 
torquer. 
 

Type Advantages Disadvantages 
EXTERNAL TYPES   
Gas jet Insensitive to altitude Requires fuel 
 Suit any orbit On-off operation only 
 Can torque about any axis Has min impulse 
  Exhaust plume contaminants 
   
Magnetic No fuel required No torque about local field direction 
 Torque magnitude is controllable Torque is altitude and latitude sensitive 
  Can cause magnetic interference 
   
Gravity-gradient No fuel or energy needed No torque about the local vertical 
  Low accuracy 
  Low torque, altitude sensitive 
  Libration mode need damping 
   
Solar radiation No fuel required Need controllable panels 
  Very low torque 
INTERNAL TYPES No fuel required Cannot control momentum build-up 
 Can store momentum  
 Torque magnitude is controllable  
Reaction wheels (RW)  Non linearly at zero speed 
   
Momentum wheels (MW) Provide momentum bias  
   
Control momentum Suitable for three-axis control Complicated 
gyroscope (CMG) Provides momentum bias Potential reliability problem 

Table 10.2 Types of torquer 
 



 
10.4.1 Thrusters (external type) 
 
 Orbit-changing thrusters provide potentially the largest source of force on 
spacecraft, and potentially the largest source of torque. Being external, the torque will 
affect the total momentum. Ideally the thrust vector passes through the center of mass, but 
inevitably there is a tolerance on this and consequently a disturbance torque arises. 
 
 The main means of countering the effects of this torque when large thrust levels are 
present are either to spin the vehicle about the intended thrust direction (it was explained in 
the spinning spacecraft) or to provide means of controlling the achieved thrust direction. At 
lift-off, for example, the latter method must clearly be used. This involves mounting some 
of the thrusters in gimbals, or using secondary fuel injection into the rocket nozzle, and 
controlling the thrust direction so as to achieve the required trajectory. Later stages of 
booster rockets may adopt the alternative method of spinning the vehicle in order to 
average out the effects of thrust offset upon the trajectory. Thruster firings used for 
changing the orbit, such as from LEO to Transfer Orbit and again from transfer Orbit to 
GEO, will normally be preceded by a spin-up maneuver, followed by de-spin after the orbit 
changes are complete. 
 
 Thrusters with very much lower levels of thrust are in common use in attitude-
control systems for providing controllable external torquing, and hence controlling the total 
momentum of the spacecraft. For this purpose they will be mounted in clusters on the 
surface of the vehicle, pointing in different directions in order to provide three components 
of torque. They have a number of advantages and disadvantages compared with their main 
rival, the magnetic torquer. 
 
 Their main advantage is that their torque level is independent of altitude and there is 
potentially no limit to its magnitude. However, the magnitude is not controllable when 
installed; only the switch-on duration is. This torquing system integrates well with the 
strength of the Earth’s field reduces with height. The field’s strength and direction also 
vary with the position of the spacecraft in its orbit in general, and when using magnetic 
torquers it is common practice to carry a magnetometer to measure the local field. 
 
 
10.4.2 Magnetic Torque (external type) 
 
 Magnetic torques acting on a spacecraft can result from the interaction of the 
spacecraft’s residual magnetic field and the geomagnetic field. Thus, if M

G

 is the sum of all 
magnetic moments in the spacecraft the torque acting on the spacecraft is as bellow. 
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where B

G

 is geomagnetic field vector. In general, M
G

can be caused by permanent and 
induced magnetism or by spacecraft-generated current loops. The unit of M may be gauss-



cm3, amper-m2, or pole-cm. For example, if M is in amper-m2 and B in tesla or webers/m2, 
then T(m) is in newton-meters; or if M is in pole-cm and B in gauss, then T(m) is in gyne-cm  
In general, 
 
  1 amper-m2 = 100 pole-cm 
  1 pole-cm = 1 (dyne-cm/gauss) 
 
The spinning motion of the spacecraft causes torques, which are induced by eddy currents, 
which then interact with any magnetized permeable spacecraft materials. Eddy current 
torques are of the form 
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where ek  is a constant and ωG  is the spacecraft spin vector. 
 
 
10.4.3 Gravity-gradient Torque (external type) 
 

This source of torque occurs because of a gravitational field, which gets weaker 
with increase in height a body will only be in stable equilibrium if its axis of minimum 
inertia is aligned with the local vertical. 

 
Gravitational gradient torque acting on a distributed mass body in orbit is given by 

the expression 
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Equation (10.4.3) can be integrated as follows in equation (10.4.4). Let GM=µ , and 
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where 1̂E  is the unit vector along the outward radius. Then equation (1) becomes as bellow: 
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where 332211

ˆˆˆˆˆˆ EEEEEEE ++=  is a unit dyadic, and where the inertia dyadic about the body 
‘s center of mass (origin of reference frame) is  
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With respect to the satellite body axes )3,2,1( =ααe , the gravity gradient torque becomes 
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where 
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and 1αa are the direction cosines between the 1̂E  and αê unit vectors. 
 
 Equation (10.4) can be written in scalar form to yields the body components of 
torque as follows: 
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where. εαβγ is the three-dimensional epsilon permutation symbol defined by 
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The α, β, γ indices range from 1 to 3. 
 

For the principal body axes, 0=γβI  for βγ ≠ , and the torque components become 
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where the αβα  terms are elements of the transformation matrix. That is βαβα Eae ˆˆ = . The 
gravitational torques about the principle axes are of the form as bellow. 
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These torques contribute to the total disturbance torque in general, but an oscillatory 
‘libration’  mode will occur if they govern the motion about equilibrium state (see section 
3.5.1 [3]). For small oscillations of an axisymmetric spacecraft ( )xxyy II =  the motion is like 
a conical pendulum, which frequency is as bellow. 
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Gravity-gradient torque provides a passive self-aligning torque, but the libration does need 
damping to be incorporated. The torque levels will be low unless a long thin configuration 
is used, or in the case of tethered satellites. 
 
 
10.4.4 Aerodynamic Torques (external type) 
 

Aerodynamic torques are the drag force dominated, which is dependent on frontal 
area A. Considering the projection in the direction of travel may assess their total moment 
about the center of mass C. 

 
A spacecraft, in general, pass through an atmosphere of density ρ, with a velocity of 

V
G

. The magnitude of aerodynamic force F(a) [1] is given as bellow. 
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where the A is reference area of a spacecraft (such as the cross section along V
G

). CD is 
total drag coefficient.  The torque contribution about the z-axis will be as bellow. 
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If the equation is integrated the new form will be as bellow. 
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where y is the length of the perpendicular from the mass center to the force line of action. 
At spacecraft altitudes, ρ is highly dependent on the time of day and the level of solar 
activity. See the Figure-10.1 bellow. 
 

Height (km) Density (kg/m3) 

200 4 × 10 - 10 

300 5 × 10 - 11 

400 1,5 × 10 - 11 

500 5 × 10 - 12 

600 2 × 10 - 12 

700 8 × 10 - 13 

 

 
 
 
 

 
Figure 10.1 Atmospheric density [2]   Table 10.3 Atmospheric density [1]. 
 
For a spacecraft having a spherical shape, an average value of CD = 2.2 and for a 
cylindrical shape, an average value of CD = 3 [1]. 
 

For zero torque spacecraft designers will of course aim to locate the center of mass 
close to the center of area, but tolerances, shifts of the center of the mass and thermal 
distortion will affect the balance. 
 
 
10.4.5 Solar Radiation Pressure (external type) 
 
 Solar radiation produces a force on a surface, which depends upon its distance from 
the Sun. It is independent of the height above the Earth. Large flat surfaces with a 
significant moment arm about the center of mass, such as solar arrays, may be produced a 
significant torque. 
 



 
Figure 10.2 Reflection types [1,2] 
 
 

 
Figure 10.3 Solar force geometry [1] 
 
Specular Reflection: Consider an element of area dA oriented at an angle relative to the 
incoming radiation, as shown in Figure 3 the solar radiation differential force components 
in terms of coefficient of reflection β are as bellow. 
 
  ii uPdAFd ˆ cos θβ=

G

       (10.4.15) 
       = force due to incident ray, which is specular reflected. 
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        = force due to absorbed incident ray 
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        =  force due to specularly reflected ray 
 
The coefficient of reflection is the reflected fraction of the solar radiation constant 
I(0≤β≤1). Total force on an element of area dA for a specular reflection is as bellow. 
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Diffuse Reflection: If only a subfraction sβ of the reflected ray is reflected specularly, then 
(1 – s)β is reflected diffusely. Here 0 ≤ s ≤ 1. For pure specular reflection s = 1. For 
completely diffuse reflection s = 0. The force due only to the specular reflected ray is then 
as bellow. 
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The force due to the stopping of incoming ray is as bellow. 
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The force due to diffuse reflection of the (1 – s)β fraction is as bellow. 
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Total force is as bellow. 
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Limiting Cases: Elemental solar force expressions for the totally absorbing, specularly 
reflecting, and diffusely reflecting surfaces shown are as bellow. 
 
 a. Absorbing surface only 
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 b. Specularly reflecting surface only 
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β: coefficient of specular reflection, for this case s = 1. 
 
 c. Diffusely reflecting surface only 
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β: coefficient of diffuse reflection, for this case s = 0. 

 
In general, the solar radiation torque on a spacecraft is of the form as bellow. 
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Example, radiation torque on a geosynchronous satellite. Typical torques about e1, e2, and 
e3 body axes can be expressed as bellow. 
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Figure 10.4 Typical torques [2]. 



10.4.6 Mass Movement (internal type) 
 

The movements of masses within a spacecraft may directly exert torques upon the 
main structure. These are classified as internal torques and do not affect the total 
momentum. The movements may also alter the location of the center of mass within the 
spacecraft, and change the inertia matrix. 
 

The center of mass C has been identified as a key reference point for establishing 
the dynamic behavior (Chapter3 [3]). Moving the point affect balance of the vehicle in 
dynamic ways .It also affects the torques due to forces on the vehicle, but not the couple of 
the magnetic torquer. In principle the center of mass location could be controlled in order 
to balance out the disturbance torques. 

 
A major source of mass movement is that of the fuel. The tanks are normally 

located in such a way that as their contents are used up the center of mass does not shift. 
Fuel movement within the tanks causes a different sort of problem in that it moves in a 
dynamic way in response to the motion of the spacecraft-fuel slosh-affecting its modal 
characteristics. 

 
Mass movements from one position to another, such as the erection of solar arrays 

and other appendages, and movement of astronauts, etc., have an effect upon attitude which 
is best assessed by using the fact that angular momentum is conserved. 
 
 
10.4.7 Momentum Storage Torquers (internal type) 
 

Torquers associated with momentum storage such as reaction wheels (RWs) and 
momentum wheels (MWs) are essentially internal torquers, suitable for attitude control but 
not for controlling the total momentum. 
 

These devices are purpose-built precision-engineered wheels, which rotate about a 
fixed axis, with a built-in torque motor. In this, 3-phase coils in the stator are controlled by 
the drive electronics, which may be seen under the wheel. The resulting rotating magnetic 
field interacts with the permanently magnetized wheel to produce a torque on the stator, 
and hence on the structure of the spacecraft. The equal and opposite torque on the wheel 
changes its speed and its momentum. 
 

Reaction wheels have a nominally zero speed, and may be rotated in either direction 
in response to the control torques for called for by the spacecraft’ s ACS. 
 

Momentum wheels on the other hand have a high mean speed of perhaps 6000 
r.p.m. in order to provide momentum bias. The control torques will then slow or increase 
the wheel speed, the permissible amount being about 10% of the mean value. 
 

Both types of wheel provide momentum storage, and need to be used in conjunction 
with external torquers, as desirable in Section 10.2.2. See also Section 16.3.1. 



 
For three-axis control, three orthogonal wheels will be the minimum requirement. A 

redundant fourth is normally added at an equal angle to the other three, in order to avoid a 
single-point failure. When more than one momentum wheel is used the total bias is the 
vector sum of contributions from the separate wheels. 
 

The principle of momentum wheels has been extended by the development of more 
advanced forms, such as control moment gyroscopes(CMGs).By mounting the wheel in 
gimbals  fitted with torque motors all three components of torque may be developed from a 
single wheel. This can be done to a limited extent with sophisticated wheels mounted on 
five-degree-of-freedom magnetic bearings (see Section 16.3.1). There is potential for 
incorporating attitude-sensing with momentum-storage and momentum bias in 
sophisticated devices of this type. 
 
 
10.5 ATTITUDE MEASURMENT 
 
10.5.1 Attitude: Its Meaning and Measurement 
 
 The meaning of ‘attitude’ or ‘orientation’  usually represent no conceptual 
difficulties. There must be some datum frame of reference, and once this has been chosen 
then the attitude of a spacecraft refers to its angular departure from this datum. A right-
handed set of axes is normally used in order to define a frame of reference, and if both a 
datum set and a set of spacecraft axes are chosen, then the attitude may be defined in a way 
that may be quantified. 
 
 Specifying attitude may be done in a number of ways such as Euler angles, 
direction cosines, quaternions, etc. Three pieces of information are need. A common way is 
to use the three Euler angles, which are defined in the same way, as is standard practice for 
aircraft. These are the angles of yaw ψ, pitch θ, and roll φ, as measures of the rotation 
about the z-, y-, and x-axes respectively, in that sequence, which are needed to bring the 
datum axes into alignment with those of the spacecraft. 
 

It is worth noting that angles, and consequently attitude, are not vector quantities. 
The combination ( φθψ ,, ) should not be thought of as three components of a vector. On the 
other hand the rates of change φθψ ��� ,,  can be interpreted as vector quantities, which 
directions are along the (non-orthogonal) axes about, which the rotation take place. 
Resolving φθψ ��� ,,  along spacecraft axes enables the components of the spacecraft’ s angular 
velocity ω relative to the datum axes to be expresses as bellow. 
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the inverse relation is 
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When the angles are small, then xyz ωφωθωψ ≈≈≈ ��� ,,  [3]. 
 
 Equation indicates how, by integration, the attitude in the form of the Euler angles 
( φθψ ,, ) may be obtained from measured components of angular velocity. The singularity 
at 

�

90=θ shows up in the form of θtan  and will lead to problems with the integration as θ  
approaches this value. 
 
 
10.5.2 Measurement System Fundamentals 
 
 Fundamentally, measurement of attitude requires the determination of three pieces 
of information, which relate the spacecraft axes to some datum set, whether they are in the 
form of Euler angles or in other forms. The measurement subsystem must include sufficient 
sensors to enable the information to be extracted with the necessary accuracy, and with 
reasonable simplicity. This must be done at all phase of the mission. 
 
 There are two categories of sensor, and they are commonly used to compliment 
each other in a measurement system: 

• Te reference sensor gives a definite ‘fix’  by measuring the direction of an object 
such as the Sun or a star, etc., but there are normally periods of eclipse during 
which its information is not available. 

• Inertial sensor, but they measure only changes 
 

Using reference and inertial sensors to complement each other may form a 
measurement system. In a simple combination the reference sensor will calibrate the 
inertial sensor at discrete times and the latter will then effectively ‘remember’  the 
reference object’ s direction until the next calibration. This allows a period in eclipse to 
be covered.  

 
Complete attitude information requires three pieces of information as explained 

above. Reference sensors that are based upon detecting the direction of a single vector 
are incapable of providing all three pieces. A sun sensor cannot detect any rotation of a 
spacecraft about the Sun vector for example. Two vector directions, and an angle is 
needed to complete attitude information to be obtained from simultaneous 
measurements. 

 



Reference Object Potential accurancy 
Stars 1 arc second 
Sun 1 arc minute 
Earth 6 arc minutes 
RF beacon 1 arc minute 
Magnetometer 30 arc minutes 

Table 10.4 Potential accuracies of reference sensors. This table gives only a guideline. 
 
 
10.5.3 Types of Reference Sensors 
 
 There are so many different sensors types. Only a few will be explained. 
 
Sun Sensor: 
 

The vector Sun sensor works on a different principle. In fact, a vector Sun sensor 
consists of two sensors, each consisting essentially of a rectangular chamber with a thin slit 
at the top. Light entering the chamber through the slit casts an image of a thin line on the 
bottom of a chamber. The bottom of chamber is lined with a network of light-sensitive cells 
that effectively measure the distance d of the image from a centerline. If h is the height of 
the chamber, then the angle of incidence to the sensor, α, is given as bellow. 

 

 
h
d=αtan         (10.5.3) 

 
By placing two sensors perpendicular to each other (Figure 10.5), one can measure the 
complete direction of the son with respect to the sensor axes. The geometry for interpreting 
these two measurements is shown in Figure 10.5. 

 
Figure 10.5 Two-slit Sun sensors. 
 

To determine the Sun direction in the sensor frame from the two angle 
measurements α and β, we note that these are related to the Sun direction by where zyx ˆ,̂,̂   
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are the axes of the sensor coordinate system. The z axis of the sensor is usually defined as 
the outwardly directed normal. From these measurements we construct the unit vector SunŜ  
in sensor coordinates as bellow. 
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This measurement is of the Sun direction in the Sun sensor frame, SunŜ . The measurement 
in the body frame is obtained from 
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and allowing for instrument noise 
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in analogy with similar relations for the vector magnetometer. 
 
 DSAD, Digital Solar Aspect Detectors determine the angles of the Sun by 
determining which of the light – sensitive cells in the sensor is the most strongly 
illuminated. The accuracy of this sensor is limited by the angular diameter of the Sun, 
which is approximately 0.5 degrees, as seen from the Earth.  
 
 Vector Sun sensors generally have fields of view of ±60 degrees. Therefore if the 
spacecraft is not inertially stabilized at one throughout the mission, it will be necessary to 
use more than one sensor head to ensure that the Sun is always visible in one head. 
 
Earth Sensor: 
 

The Earth, radius R, subtends the angle 2 arcsin(1/(1+h/R)), at a satellite at a height 
h. At 500 km it is about 135°, falling to 17.5° at geostationary altitude. Sensing the 
direction of the local vertical entails bisecting the directions to the horizons at the ends of a 
diameter of its disc. And horizon sensors provide the mean of doing this… 
 
Star Sensor: 
 

Star sensors are the most accurate reference sources in common use for measuring 
attitude. Accuracies of 1 arc second or better may be obtained. But the large number of 
stars means that sophisticated techniques are needed in instrument and its associated 



computer in order to identify any particular star in its field of view (FOV). The sensors are 
heavy, power-hungry, and expensive, although considerable improvements of these 
characteristics are taking place. 

 
Star sensors may be classified as bellow: 

• Star Scanners for mounting on a rotation base. They have one or more fan-shaped 
fields of view, which scan the heavens. The characteristics of stars passing through 
the fields of view can be compared with a star directory in order to determine the 
attitude of the spacecraft. 

• Star Trackers for mounting on a three-axis-stabilized base. The field pf view is 
sufficient to include several stars, and their detector/controller enables them to 
select, locate and track one or more of these accurately. Each star has a different 
vector direction, and so the spacecraft’ s orientation about the sensor’ s axis may be 
determined. 

• Star Mappers for mounting on a three-axis-stabilized base. They are basically 
similar to the tracker, but operate sequentially on the stars in their of view, locating 
and recording the position of one, and then moving on to the next. 

 
Radio frequency beacons: 
 

Direction-finding techniques may be used to detect the direction of an RF source, 
with an accuracy of other 1 arc minute. There are several techniques by which this can be 
done. 
 

For instant, Ulysses, rotating at a nominal 5 rpm, carries an antenna, which axis is 
offset from spin axis. The intensity of the signal, which it receives from ground station, is 
thereby modulated at the spin frequency. The actual spin rate and its phase, and the angle 
between the spin axis and the ground station direction, can then be derived respectively 
from the frequency and the phase and the dept of modulation. 
 
Magnetometers: 

 
The magnetometer is a robust instrument but with accuracy, which is limited to 

about 0.5°. It measures the direction and possibility the strength of the local magnetic field. 
But the field is not well mapped and has abnormalities, which make the sensor of limited 
use for attitude sensing. It is used in conjunction with magnetic torquers as described in 
section 10.4.2 
 
 
10.5.4 Inertial Sensor 
 
 Gyroscopes form the basis of the inertial sensing systems for attitude. The 
conventional, wheel, type of gyro has a rotor mounted in a single gimbal in an 
environment, which is very carefully controlled. In the rate– and rate–integrating types the 
gimbal is torqued so that it follows the motion of the spacecraft. The torque is then a 
measure of the angular rate about the instrument’ s sensitive axis. 



 
 A set of three orthogonal rate-gyros will measure the components ( zyx ωωω ,, ) of 
the spacecraft’ s angular velocity; a fourth at a skew angle is normally carried to avoid a 
single–point failure. The output of a rate–integrating gyro (RIG) is the integral of the 
angular velocity component, such as ∫ dtxω etc. Only when the direction of a RIG axis 

remains fixed in space does its output represent the angular displacement about the axis. 
 
 Gyroscopes based upon the laser principle are later developments. In these the laser 
cavity is bent round the instrument’ s sensitive axis so that the path length of the light rays 
is lengthened or shortened when the instrument rotates. The beating of two frequencies 
resulting from beams in opposite directions gives a measure of instrument’ s angular rate. A 
set of ring laser qyro (RLG) for use on Ariane 4 has triangular cavities formed by mirrors at 
the apex of the triangle. 
 

Fibre optic gyros (FOG), using fibre optic coils to guide the beams round the 
sensitive axis, with a bias stability of order 0.1 to 10 degree/h, can be expected to be in use 
in launch situations of the feature. 

 
 
10.6 ACS COMPUTATION 
 
10.6.1 The Computer 
 

 The development of digital computers for use in spacecraft has proceeded 
rapidly, and is still doing so. They must perform reliably in the radiation environment of 
space, and a number of space-qualified ones now exist. Further development is providing 
more power and speed, and capability of being programmed in higher-level languages. 
These on-board computers (OBCs) link with ground-control computers, which will 
normally host their software development tools (see Chapter 15). The availability of 
powerful computers means that spacecraft will be given greater autonomy, and many of the 
sophisticated control techniques, which find applications in ground-based systems may be 
used on spacecraft. 
 
 Robustness is a requirement for ACS and other on-board systems. For example the 
ACS must potentially operate with large flexible structures such as solar arrays, which 
natural frequencies cannot be established accurately before lunch. Fixed algorithms will 
tolerate only limited variation from their expected value. The ability to reprogram the OBC 
from Ground Control permits any necessary adjustment of the control algorithms to be 
made following calibration of the spacecraft’ s parameters after launch. For full autonomy 
or immediate response to any changes, which occur such as hardware failures, adaptive 
control techniques may be used. 
 
 Computer power will also benefit the attitude measurement subsystem. The mixing 
of sensor outputs to achieve maximum accuracy via the Kalman type of filter requires 



computer modeling. In addition they can provide the substantial data backup, which is 
needed when star mappers and scanners are used. 
 
 
10.6.2 A simple Control Example 
 
 Control of the rotation of a rigid body about one axis can be achieved with a simple 
PID algorithm (proportional, integral, differential). This is the basis of many systems and is 
used in following example. It is important that cross coupling between the motions about 
the three axes is not sever, and any large reorientation may be implemented sequentially to 
avoid them. 
 
 The following example illustrates the type of motion, which may be expected when 
a simple three-term PID controller is used to control the roll attitude of a spacecraft. 
 
 When no moment bias is represent the roll error φ  will respond to roll torque xT  as 
follows [3] 
 
  xxx TI =φ��         (10.6.1) 
 
A PID controller generates a demanded torque signal based upon measured values of roll 
error and roll rate, as in  
 
  ( )mdmimpxD KdtKKT φφφ �∫ −−−=      (10.6.2) 

 
This can be made to represent a stable system by appropriate choice of the constants 

pK , iK , dK  due allowance being made for any delay in implementing the torque. The 
presence of any flexure mode, fuel movement, etc., will also impose constraints on the 
choice of these constants. 
 
 Pointing errors will result as a consequence of zero errors from the roll–error sensor 
and drift in the integration. Process, but constant disturbance torques and a constant error 
from the roll-rate sensor will be automatically compensated. 
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