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SUMMARY

The aim of this project was to determine what the capabilities of Fluent are. This software
deals with Computational Fluid Dynamics and we have simulated flows past an airfoil under inviscid
and viscous conditions.

First of all, the numerical results for the inviscid case were compared to those provided by the
theoretical Karman-Trefftz transformation. A program based on this theory was written and allowed
us to obtain the properties of the flow. In addition, it calculated the dimensions that the CFD domain
should have in order to limit the error introduced by these limited boundaries. As a result, the impact
of the domain on the final values was limited to an acceptable error. Thus, by respecting this criterion,
the numerical and theoretical results’ comparative study was made more accurate. Indeed, any
deviation could then only be attributed to the software’s limitations. We were able to focus our
attention on the influence of Fluent’s parameters to determine what would be the best set up in this
situation. As an outcome, by applying the best suited parameters we obtained very close results and
the Karman-Trefftz transformation was proved to be a useful comparative tool.

Secondly, the viscous simulations gave us the evolution of the lift coefficient with respect to
the flow’s incidence. In this case the flow becomes highly turbulent at high angles of attack and the
flow separates. The numerical results’ accuracy depends on the ability of the assigned turbulent model
to reproduce these turbulent effects and therefore to measure the correct amount of separation. We
decided to solve the flow surrounding the NACA 4412 airfoil and to compare the results to the
experimental values obtained by R. M. Pinkerton. Based on the lift curve, we could determine which
of the turbulence models is best suited for this type of application. Indeed, the models were as reliable
as long as the flow remained attached which corresponds to small incidences. However, at higher
angles the ka-SST turbulence model was able to correctly evaluate the separation region. To
conclude, we made a comparative study between the pressure distributions provided by the ka-SST
model and the tests. The distributions appeared to be very similar for most of the incidence range.
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ABSTRACT

This study’s primary objective was to determine what are the capabilities and limitations
encountered by the CFD software Fluent while solving the flow past an airfoil. To do so, the project is
composed of two separate parts. Indeed, we wish to investigate Fluent’s potential under inviscid and
viscous conditions so that the range of possible flows is covered. For both cases, we need a valuable
reference from which the results are considered as being very reliable. The objective is to determine
the best suited Fluent simulation parameters to use in order to optimize the numerical results. As a
reference for the inviscid part, we wrote a program that calculates the flow properties around an
airfoil, based on the theoretical Karman-Trefftz transformation. We may also recuperate the
appropriate size of the CFD domain to avoid that these boundaries have a significant effect on the
CFD results. The pressure distributions along the airfoil’s surface were compared and the results
appeared to be practically identical. As for the viscous calculations, the lift coefficients of two
different turbulence models were compared to past experimental results obtained while conducting
wind tunnel tests for the NACA 4412 airfoil. The aim was to determine which of the turbulence
models was the most capable of predicting the correct amount of separation. The kaw-SST model was
very efficient and the pressure coefficients along the surface were quite similar to the experimental
distributions.

Key words: capabilities, limitations, airfoil, inviscid, viscous, turbulence, pressure, distribution,



RESUME

Le principal objectif de cette étude est de déterminer quels sont les capacités et limitations du
logiciel de CFD Fluent, lors de la résolution de I’écoulement autour d’un profil d’aile. Pour cette
évaluation, nous avons divisé I’étude en deux parties indépendante. En effet, nous souhaitons
connaitre les capitées de Fluent a résoudre un écoulement visqueux mais également non visqueux.
Pour cela, nous avons besoin d’une référence fournissant des résultats précis auquel nous pouvons
comparer les résultats numériques. Le but est de déterminer quel est la meilleure configuration des
paramétres de simulation qui nous permet de nous rapprocher au mieux de ces résultats de référence.
Pour les calcules non visqueux, nous avons écris un programme qui repose sur la transformation de
Karman-Trefftz et qui nous fournis les propriétés de I’écoulement. Il est également possible d’obtenir
les dimensions optimisées du domaine CFD. Ainsi, 1’erreur relative introduite par ces frontiéres
devient négligeable. La comparaison des répartitions de pressions le long du profil est trés
satisfaisante puisque les courbes sont pratiquement identiques. En ce qui concerne les calculs
visqueux, nous avons compare deux modeles de turbulence aux résultats expérimentaux obtenu par
R. M. Pinkerton lors d’essais en soufflerie. Le modele ka-SST fut le plus performant puisque les
prédictions de séparation se sont avérées précises.

Mots clés: capacités, limitations, profil, visqueux, Karman-Trefftz, erreur, répartition, pression




INTRODUCTION

The main objective of this study is to thoroughly investigate the capabilities of the CFD
software Fluent and outline the limitations it encounters for an airfoil in particular situations. We wish
to make this study as broad as possible and therefore we will make both inviscid and viscous
numerical calculations. Indeed, in reality viscous forces play a major role on the flow properties
especially close to a body’s surface. They do not only affect the body’s close surroundings but also
what is further away from it. Phenomena such as separation regions, vortices, turbulent boundary
layers...etc, are all caused, in their own way, by the presence of viscosity and affect the performance
of an airfoil. Although an inviscid calculation is unrealistic, it can be used in many ways. The major
interest offered by the inviscid assumption is that the calculations are considerably simplified. The
modified equations manipulated by Fluent are much more straight forward and faster to solve.
Inviscid results may be used in many ways. For example, the influence of the boundary layer on the
external flow can be taken into account by considering the potential flow past the displacement body,
which is the original body plus a predetermined solid layer of thickness. Both situations are equivalent
but performing the inviscid calculation allows us to save important computational effort.

In the first part of the project we focused our attention on the inviscid capabilities of the CFD
solver. Yet, we still need reliable results to refer ourselves to and compare the numerical results with.
The best possible reference for this case can only be based on theoretical grounds. Such a method has
been developed in the past and is known as the Karman-Treffiz transformation. The airfoil shape is
initially defined by a few characteristics that are used during the transformation process. For us to be
able to use this theory we will write a program that applies the transformation and provides the user
with the flow properties. We will also use the Karman Trefftz transformation to determine the size
that the CFD domain should have to insure that the pressure coefficient contains a relative error
predefined as acceptable. Consequently, we will then be able to investigate the effect of Fluent’s
inviscid parameters on the results. The objective is to get as close as possible to the Karman Trefftz
results, considered as the exact values of the inviscid flow surrounding an airfoil.

In the second part, the viscous effects are not neglected and the real flow is solved. This time
there is no need for us to refer to theory since experimental results are the closest and most accurate
values we may found to the flight conditions. The flow surrounding the NACA 4412 airfoil is solved,
over a range of angle of attacks. Unlike the inviscid simulations, the flow is much more complex since
it will appear to be highly turbulent. Therefore, Fluent’s performance now depends almost entirely on
its capacity to reproduce these turbulent effects. The key parameter to the simulations’ success is the
turbulent model, thus we will compare the performance of the ko-SST and ke-Realizable turbulence
models. Our aim is to determine which is best suited to airfoil applications. The pressure coefficient
distributions along the airfoil’s surface are critical values to airfoil design. Consequently, they are
chosen as the main comparative data between the models and the experimental results.



I. KARMAN-TREFFTZ AIRFOILS

1) Presentation

a) Exact solutions for potential flows around airfoils

The Karman-Treffiz airfoils are very useful since they provide an exact solution via a
complex transformation of the potential flow around an airfoil. The first successful airfoil theory was
developed by Mr. Joukowski. We will exploit the theory of complex variables by representing a two
dimension potential flow using an analytical function of a complex variable. It has been shown that an
airfoil is obtained by applying a conformal transformation to a circular cylinder. The mapping of the
complex potential flow around the cylinder will then, after transformation from the { complex plane to
the real z plane, induce a corresponding flow around an airfoil. A cylinder is analytically composed of
several simple cases. Indeed, it is an association of a uniform flow at incidence o and of a doublet of
strength p. A doublet is a useful flow obtained by letting the distance between the two sources of a
source-sink pair tend to zero. The streamlines of a doublet flow are a family of circles all tangent to
the origin. Therefore, a circular cylinder results from these two as follow:

uniform flow

Doublet Streamlines

The resulting flow is non-circulatory and irrotational with no vorticity, so the local angular rate of
rotation given to the flow is zero. Consequently, to provide a theoretical model for the flow around an
airfoil, we are missing the generation of lift since ‘spinning’ is needed to generate the pressure
difference between the top and bottom surfaces of a wing. It is introduced by superposing a to the
doublet that is placed in a uniform flow. The lift will be directly proportional to the circulation but its
value can be assigned arbitrarily, leading to an infinite number of solutions. This leads us to consider
the fundamental Kutta condition. '

b) Kutta condition

Up to now, we have not fixed the value of circulation; therefore, there will be an infinite
number of lifting flows. The Kutta condition will choose a specific flow which is the closest to the
‘real’ viscous flow. In order to give a physical explanation of this phenomenon, we need to introduce
the role played by the viscosity of a real fluid. Without any circulation, the two stagnation points
(V' =0) are located on the upper surface and lower surface.

This results in a physical incomprehension if we consider the path followed by a particle. It starts by
travelling on the lower surface of the profile, and then makes a U turn at the trailing edge to join the
upper side. The fluid must accelerate around the edge which actually requires infinite velocity which
is very unlikely in a viscous fluid. It eventually leaves the profile at the second separation point;
figure 1 illustrates what is occurring. This is when viscosity intervenes; it will damp the sharp velocity
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gradient created at the trailing edge and cause the flow to separate. A flow behaving this way is totally
unrealistic. The introduction of circulation in the theory is therefore fundamental. At a particular
value, the rear stagnation point is positioned exactly at the trailing edge. It is only under this condition
that the flow will leave the upper and lower surfaces smoothly as shown on figure 2. When satisfied,
the Kutta condition ensures that the vorticity generated at the trailing edge is zero. Thus, we will be
able to determine the lift distribution around the airfoil.

no circulation _T /_—\
Figure 1: No circulation imposed z Figure 2: Kutta condition satisfied

¢) Karman-Trefftz transformation

Up to now, we have established that a cylinder to which we add circulation will, after
mapping, result in the desired airfoil. Let us now have a closer look at the mapping process.

In Joukowski’s method, the transformation is expressed as follow: &=z+b%/z. This operation

transforms a centred circle of radius ‘a’ into a flat plate of length ‘454°. The resulting shape is therefore
1D for the moment. In order to get closer to the desired airfoil shape, we first seek to obtain a 2D
shape after transformation. To obtain an ellipse, we have to impose a>b in order to generate

thickness. However, the ellipse does not have the main geometrical characteristic of an airfoil, clearly
distinct leading and trailing edges. In addition, the possibility of introducing camber is also
fundamental so that non symmetrical airfoils may be created. For the moment the profile is incapable
of generating any lift when the flow has no incidence since the lower and upper surfaces are identical.
The most fundamental aspect of the transformation is that the intersections of the cylinder with the x
axis will always correspond to the leading and trailing edges of the airfoil. The following geometrical
explanations are based on this fact.

By shifting the cylinder upwards, camber is created. Indeed,

according to the principle we just stated, the portion of cylinder 1.
above the x axis will correspond to the upper surface of the airfoil
after mapping. As for the lower surface of the profile, it corresponds _ >

to the cylinder part under the x axis. This operation has resulted in a
longer and a smaller portion. Consequently, the translation upwards
creates an asymmetry known as camber. Cambered plate

We observe that when we applied 4 > b, the increase in ‘a’ does not only allow us to control the

thickness but also the shape of the airfoil edges. Initially, for the flat w2

plate case, the circle intersected twice with the x axis at +b, creating 2. %
infinitely sharp edges. The outcome is identical after 1., the camber L - TN
operation. When the radius becomes larger than b, and contains +b, & d e
roundness is introduced. Based on these two observations it becomes U

obvious that for the leading edge the cylinder needs to include +b

. . Leading and trailing edges
and that for the trailing edge it will go through —5 .



As mentioned earlier on, the Joukowski transformation was the first theoretical solution introduced.
Unfortunately, it suffered from a major drawback. It does not apply to airfoils of arbitrary shapes.
Indeed, the geometrical profile obtained by the mapping process provides us with a trailing edge at a
zero including angle. It is known as a cusped trailing edge. This configuration is unrealistic since in
reality all the airfoils present a finite angle. Indeed, such airfoils would be impossible to manufacture.
The Karman-Trefftz method includes an additional parameter T which represents the trailing edge
included angle. The transformation is modified and takes into account the new airfoil characteristic,
its expression is the following:

3 (z+b)m+(z—b)m s b F
é_zm(z+b)m—(z—b)m with: m=2 A

2) Computational domain

a) Prediction of the domain size

When CFD calculations are undertook, the dimensions of the CFD domain are of major
importance. We will be imposing boundary conditions on those edges, corresponding to the free-
stream conditions. Consequently, if they are not carefully defined so that the distances between the
airfoil and the boundaries are incorrect, it will affect the results irreversibly. The flow field’s outer
boundary, on which the uniform flow conditions are given, needs to be at a minimum distance from
the airfoil. If the domain is not sufficiently far from the geometry, the results obtained from the
simulation contain errors.

Obtimized C ;
However, this problem can be overcome with the help of plimized CFD- domaln q

analytical airfoils. The Karman-Trefftz and Joukowsky ~

airfoils that we just introduced give us a way of relating E ' &

the lift coefficient of the airfoil to the size of the CFD 1 Y_up

domain. The exact nature of this relation will become clear X_up \E X_down

once the practical procedure begins, that is thanks to the —[< " 2ay==================moooos >
programming that is presented later on. However, we EY down

know that the free-stream conditions are theoretically at an <

infinite distance from the airfoil. Evidently, while the
geometrical characteristics of the simulation are to be defined, the outer boundaries have to be fixed at
a finite distance from the profile. We could be positioning them very far from it in order to approach
real conditions but at a great cost. The computational effort would be unnecessarily high since time
and memory would be wasted. A distance too large is not desired but on the other hand if it is too
small the calculated coefficients will contain errors. This leads us to choose a reasonable error of free
stream velocity for which the coefficients’ error is acceptable and results in an optimized CFD domain
as represented on the schema. Let us now determine the impact of the free-stream velocity error on
the lift and pressure coefficients, Cp and Cj, respectively:

D :Static pressure

D, : freestream pressure

pP—Dp L .
" 2p, 7.2 L 2p 1.} ere:q p, : freestream density

V., : freestream velocity
\L :lift force




The first step is to fix the accepted relative error of free-stream velocity £ AV, /V, , resulting in the

minimum distances (Xup, Xaown, Yups Ydown)- As a consequence, the error on the lift coefficient
becomes:

-2
C,tAC, = L. = 2L2 1+ 4% =C, 1428%
PV EAV,)  pY, v, |4

© 0

ACL A Vno

v,

o

By doing an approximation of first degree we obtain: =9

L

As for the error on the pressure coefficient we apply the same method and approximations:

-2 '
2(p-p, 20p- AV, AV,
Cp+AC, = (p—p.) V-l 9] PP =C,[ 122252 1.,

P (Vo £AV,) y 14 4

©
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The results are the same so if the relative error of the free stream velocity is equal to 0.001 then the
relative error of the pressure and lift coefficients is 0.002. As we will see in the more detailed
description supplied by the presentation of the Matlab programs, we have based our calculations on
the accepted value of the pressure coefficient’s relative error. It has been fixed to:

AC,

=0.005

P

b) Karman-Trefftz calculations

Karman-Trefftz airfoils are designated by six numbers. By groups of two numbers, they refer
to the camber ratio, the thickness ratio and the maximum camber point in this very order. For
instance, if the studied airfoil is called KT 001540, it corresponds to y = 0% (camber ratio), © = 15%
(thickness ratio) and a maximum camber point located at Xpax/c =40% of the airfoil’s chord. However,
all the formulas we will be manipulating for the determination of the airfoil coordinates, velocities...
refer to three geometrical parameters rather than y, T and Xma/c. As we can see on the schema

representing the cylinder they are equal to distances ( f g,b) v

iy

- re
,:/ a /\\
/v
C. /
( I A A .
5\ .4/) f O I7 X

Therefore, we need to find a way of relating the two descriptions, so that we can name the airfoil
correctly but also conduct all the necessary calculations by using the geometrical parameters which
are F, G and m. F and G are non-dimensional parameters related to the thickness and the camber of
the airfoil respectively, and defined as: | G=g/b & F=f /bl




The thickness ratio of a Karman-Treffiz airfoil depends mostly on parameter F, and the camber ratio
depends on G. Parameter m affects the trailing edge and also the position of the maximum camber
point. An iterative method has been developed by M.A. Yukselen and M.Z. Erim (‘A general iterative
method to design Karman-Treffiz and Joukowski airfoils’, see references). It allows us to obtain the
values of F, G and m for a Karman-Treffiz airfoil for a certain thickness, camber ratio and trailing
edge angle (or maximum thickness point position). Tabulated results are available and have been used
for our calculations.

We will now give a more detailed description of the mathematical expressions we had to manipulate
to obtain the pressure distribution of the domain. Indeed, the analytical Karman-Treffiz
transformation had two major interests.

First of all, the determination of the CFD domain dimensions which will be useful for all the inviscid
numerical simulations. To do so, we need to be able to calculate the pressure coefficient Cp at any
point within the domain. As we introduced previously, the boundaries are fixed so that Cp sy along
each of the four lines composing the rectangular domain has a tolerated relative error approximately
equal to 0.005.

Secondly, we are particularly interested in the pressure distribution along the airfoil’s surface. The
aim is to compare the analytical distribution to the numerical solution. The Karman Treffiz
transformation deals with a potential flow so an inviscid model is applied in Fluent to solve the flow.
In both parts, the objective is identical and that is calculating the pressure coefficients.

- Karman-Trefftz transformation — coordinates

To determine the airfoil coordinates, the calculation is straight forward. First the cylinder is defined,
and if we refer to the previous schema, the geometrical relation giving the distance 7’ can be found.
The points are defined in a complex plane so that we deduce the coordinate of each point along the
translated cylinder. Finally, the airfoil coordinates are directly deduced by applying the Karman-
Trefftz transformation from the z plane to the £ plane:

R=Gsinf—-Fcosf+ 1+2F+(Gsin49—Fcos9)2 with:R="1/,
z=b.(Rcos0+i.Rsin0)

(z+b)" +(z-b)"

(z+b)"—(z-b)"

E=mb

As for the calculation that results in the CFD domain, lines along which Cp will need to be calculated
are defined in the airfoil £ plane. However, for the following steps leading to the pressure values, we

need to have the corresponding coordinates in the z plane.

An inverse Karman-Treffiz transformation is applied to the series of points & (xg, yg) defining the

straight lines:

1/m

(&+mb)"™ +(&—mb)
(& +mb)"™ —(£-mb)"




-  Determination of the velocity field

To calculate the velocity field surrounding the airfoil, we will first need to calculate the velocities in
the z plane ¥, determined by using the angle 6; shown on the scheme.

Figure 3: Cylinder used for the Karman-Trefftz transformation

We obtain the velocities along the airfoil and along the domain lines, by dividing the velocity V, by

the derivate of the coordinates & by z.

01=0—a,ad,m-asin(\ﬁz+Gz)/((1+F)2+GZ)xsin(9+atan(%))) > V,=2(sin6, +sin(a,, +5))

z—bzm—l 2
-t) = Vf:ldﬁ\

% =4m*b* 5 z
[(z+5) ~(z-b)"] A
- Pressure coefficients

The calculation is straight forward since we now have all the necessary variables to deduce the
pressure coefficient at any point within the CFD domain: Cp=l (ng )
=1- a

¢) Matlab programs
All the Matlab scripts can be found in Appendix A_1/

- Main function: ‘maintest.m’

As we just explained, we will be creating several m-files, each one of them serving a particular
purpose. One way to run the program is in a chronological order where the first function calls the
second and so on... This formulation is not very flexible and requires that each function contains the
correct syntax to run all the necessary m-files. In a situation where some general parameters are
needed all along, it lengthens the program since they will have to be defined for each function.
Instead of using this unpractical method, the program is executed from the main program which
performs the compilation. It is a script as well and contains a series of commands, which results in
running all the functions in the right order. This way, it is much easier to share information in between
the functions. All the variables which are calculated in one of the compiled functions and are needed
later are defined as an output of the script so that they become global variables. Consequently, those
parameters are stored by the main program. Whenever they are needed by another function, they are
available from the main program and the function just needs to define them as inputs. The previous
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problem we mentioned is solved since the general parameters can be defined only once, in the main
program, and positioned as inputs whenever they are needed by a function.

Let us now describe the contents of the different scripts starting by the main program. The compiled
functions within the main program are only briefly introduced here. The purpose is to state the major
steps and specify the input & outputs.

DATA INPUTS: the general parameters which define the Karman-Trefftz airfoil are contained in a
“txt’ file, so the first command executed in the main program results in reading the file and acquire
the information. However in this first part of the script, a choice is made on whether the incidence or
the lift is imposed. One of the two parts, 1) or 2), is activated and the other commented.

1) Deducing the lift from the incidence

e The correct data input is read accordingly. The main parameters recuperated by the program

are the following:
Karman—Treffiz parameters : F,G,m

Number of points: N
Incidence in degrees : AlfaD

o ‘Ktreffm’ is compiled. The Karman-Trefftz transformation is applied, and transforms the
cylinder into the desired Karman-Trefftz airfoil.

2) Deducing the incidence from the lifi

e The lift coefficient replaces the incidence so that we have as inputs:
Karman — Trefftz parameters : F,G,m '
Number of points : N
Lif tcoefficient : Cl

e ‘incidence.m’ calculates the incidence of the airfoil, necessary for the Karman-Treffiz
method.
o ‘Ktreffm’ is executed as in the previous case and the transformation is applied.

3) Common part: CFD domain dimensions

e ‘coeffm’is compiled and all the aerodynamic coefficients are calculated.
e  ‘domain.m’is compiled and will determine the numerical boundaries.

4) Figures

Figure I: Representation of the cylinder in the z plane. The circle has been shifted upwards and left
according to the analytical airfoil parameters (F',G, m).

Figure 2: Karman-Treffiz airfoil in the { plane.
Figure 3: Pressure distribution along the airfoil surface.

Figure 4: Velocity distribution along the airfoil surface.




5) Text file output

e  ‘results.txt’ contains the airfoil coordinates, lift and pitching moment coefficient.

6) GAMBIT journal

e In the following part of our study, we will compare the matlab results of the analytical
method to numerical inviscid calculations. For the airfoil geometry we create in Gambit to be
sufficiently accurate, a large number of points are required. This program is used, and in
particular the ‘ktreffm’ function which calculates the airfoil coordinates. In order to obtain a
smoothly shaped profile we will define 500 points. To facilitate the task, we avoid having to
enter all the vertices manually by creating a gambit ‘.jou’ file. By running the journal in
Gambit, all the points are created automatically. To facilitate the procedure, an output text file
is written in this part of ‘maintest.m’, while respecting the syntax imposed by a Gambit
journal, it contains all the points along the airfoil surface.

7) Export of the pressure coefficient distribution along the airfoil

e  When the comparison between analytical and numerical will take place in the inviscid part of
the report, it is the pressure coefficient along the airfoil that interests us. Consequently, the
analytical data will be needed, which leads us to create a ‘dat’ file containing all the useful
information. The file is named according to the angle of attack of the flow.

- Karman-Trefftz transformation: ‘ktreff.m’

function[z,U_z,x1_zeta,x zeta,y_zeta,U_zeta,zeta, beta,b,XLE,Cu,Cp] =
ktreff (AlfaD,F,G,m,Chord,N1)

INPUTS: Karman-Ttrefftz characteristic parameters (F, G and m), the chord (Chord), the number of
points (N1) and the incidence in degrees (AlfaD). To summarize, all the information of the program’s
input file plus the chord.

First the useful variables are calculated such as the flow incidence in radians, the distance b needed to
calculate the leading edge distance...etc. This script corresponds to the main core of the program.
Most of it is contained in ‘ktreffm’ and the analytical method is conducted.

— The angle 0 of each point in the z plane is determined according to the total number of points.
— The cylinder coordinates (z plane) are calculated all around the cylinder, based on 6 and R.
— Thanks to the Karman-Trefftz transformation we obtain the airfoil coordinates ({ plane).

— The velocities along the airfoil V, are calculated, which depend on V,, determined with the
circulation.

— By using the velocity values, we deduce the pressure coefficient all along the airfoil surface.

QUTPUTS: The cylinder and the airfoil coordinates + components (x, §, X, X1, Y¢), the velocities
along the airfoil (V¢, V), the square of those airfoil velocities and the pressure coefficients (C, and
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C,). The leading edge distance (Xig) , the distance b and the angle P are also placed as outputs of the
function.

- Calculation of the incidence: ‘incidence.m’

r function [AlfaD,Gamma] = incidence (CL,F,G,m,Chord)

INPUTS: All the general parameters of the KT airfoil and of the flow contained in the program input
file (F, G, m and Cy), plus the chord (Chord).

The aim of this script is to calculate the angle between the profile and the flow. The information we
need is contained in the given lift coefficient. Indeed, a relation links the lift coefficient to the
circulation and another links the circulation to the incidence, which can then be deduced. The
formulas are the following and are used directly in the program:

. . r
We know that the circulation is equal to:  |T =47 Absin(az +f) = o =sin" (m) ol -

The incidence can be calculated by replacing the circulation once expressed according to the lift

coefficient: C, = 2% = = Cyxe

QUTPUTS: The circulation (Gamma) is placed as an output of the script since it represents one of
the airfoil’s characteristics, as well as its angle of attack to the flow, in degrees (AlfaD).

- Aerodynamic coefficients: ‘coeffim’

r function [Gamma,CL] = coeff (AlfaD,F,G,m,Chord,beta,b,XLE)

INPUTS: The incidence of the flow (AlfaD) is needed to calculate the coefficients, which also
depend on the general characteristics of the Karman-Trefftz profile (F, G, m) and its chord (Chord).
Some of the variables (b, Xy, B) calculated in the function ‘ktreffm’ to carry out the transformation
are also required to calculate the circulation (implicating C.). Indeed, in /) the incidence was among
the initial inputs and therefore ‘incidence.m’ was never compiled so the circulation was not
calculated. This script is part of the common part of the program so it has to function in both
situations.

The primary objective of the script is to determine the lift coefficient because we will need it in the
following part of the study, when the effect of camber and thickness on the numerical boundaries is to
be determined. The geometrical characteristics can be plotted as functions of the lift coefficient. In
any case, the incidence is known so the previous formulas appearing in the ‘incidence.m’ script are
used directly. First the circulation is calculated and then the lift coefficient is deduced thanks to the
second relation linking both variables. The second part of the function is optional, and can be
activated if the user is interested in the pitching moments. We have all the necessary information to
calculate it at the leading edge and quarter chord. To access the pitching moment values they have to
be added to the outputs.
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QUTPUTS: The circulation (Gamma) and the lift coefﬁcient (CyL) are needed as outputs.

- Computational boundaries: ‘domain.m’

li function[IX,JY,Cp max] = domain (m,b,AlfaD, F,G,N1, Gamma)

INPUTS: All the general parameters contained in the input file read at the very beginning of the main
program ‘maintest.m’ are needed. Therefore, all the airfoil characteristics (F, G and m), the angle of
attack (AlfaD) and the number of points (N1) are all recuperated by defining them as inputs of the
script. The distance b is required to perform the inverse transform and the circulation (Gamma) is
used to calculate the velocities in the z plane. ‘

Let us now describe how the function is able to determine the locations of the 4 numerical boundaries.
First of all, each line is considered one at a time. For instance, if the front vertical line is to be
determined, its length is firstly defined. We usually fixed it around 100 so that the entire region
influenced by the airfoil is surely considered. Then its initial position along the X axis is entered. The
rest of the script functions automatically. It is based on a loop that repeats itself as long as a certain
condition is not satisfied. Within the loop, a series of equally spaced points along the line are
converted to the z plane thanks to the inverse Karman-Trefftz transformation. Then the velocities V¢
are calculated to finally deduce all the pressure coefficients along the line. We are searching for the
position where the maximum Cp value does not exceed the accepted relative error of 0.005. However,
this condition cannot be exactly respected so the tolerated values are contained in a small interval

around 0.005 equal to [0.0047;0.0053]. If Cp is smaller than 0.0047, the result is too accurate and

we need to be more economic. As a result the boundary is shifted slightly closer to the profile. In the
opposite situation where C,, >0.0053, the relative error is larger than accepted, so the line is shifted

further away from the airfoil. These tests are conducted until the condition satisfied. The procedure is
repeated for the four lines surrounding the rectangular domain. All the numerical data provided by the
Matlab program based on the Karman-Trefftz transformation has been placed in Appendix A_2/.

OUTPUTS: In case we need to access the Cp_max along the limit, it is defined as an output. The two
defining parameters of the line, its length (JY) and its position along the axis (IX) are exported to the
main program.

3) Post processing of the results

We have investigated what would be the impact of the thickness and camber ratios of an
airfoil on the resulting numerical domain’s dimensions. In order to observe their effect independently,
one of the two geometrical parameters is held constant while the other increases. Thanks to the
information provided by the iterative method, we could have the geometrical characteristics for each
combination of the following thickness and camber ratios:
7=[0%;:5%;10%;15%] &  &=[5%;10%;15% ;20%]

These airfoils to which we applied the Karman-Trefftz transformation regrouped thin to thicker

shapes, from symmetrical to more cambered profiles. We began by observed the evolution of each of
the four distances as functions of the flow incidence. However, a better indicator of the airfoil
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behaviour is to plot those distances with respect to the lift coefficient. This significant aerodynamic
characteristic can be related to the domain. It shows us to what extent the airfoil impacts on its
surroundings, according to the lift it provides.

a) CFD domain as a function of the flow incidence

It appeared that the general trend of each of the four dimensions was the same. Consequently,
only the results of the distance between the airfoil and the upstream boundary are shown here. All the
other results can be found in appendix B. In order to determine the general effect of the two ratios on
Xup, let us observe the following curves: ;

Effect of thickness ratio (constant camber: y= 0%) Effect of thick s ratio ( camber: y = §%)
50 45
sais 46 =
10 —t5 o 55 5
| 36 =2
g:zo N HExE% 5 = i -Z-g’w.) 5%
«» ‘3=10% 26 =
»20 /”M » il 5=10%
g 5=16% 1
W $8=20% 0= 15%
L 5 5=20%
0+ + &
0 § 10 15 20 -10 -5 0 g . 10 15
Incidence {°) Incidence (°)
Figure 4: y=0% and 6 € (5%,10%,15%,20%) Figure 5: y=5% and & € (5%,10%,15%,20%)
Effect of camber ratio (¢onstant thickness: 8 =5%) Effect of camber ratlo (3 = 10%)
WERBE PRS- -, Co e bt
48 - g o
- v 4 A
gn =n. i “y=N% %- 'Aa'n . /'/
e e P Y * z5 ey=0%
il A y=b% Ay ¥=5%
3 r"" /:‘;‘ / ‘Vi'm% ."v il:—( ; »4“ V'"J%
— —f ry=15% . i i [l e -~ y=15%
-20 -0 0 10 20 0 10 0 0
Incidence(°) incidonce ()
Figure 6: 6=5% and y € (0%,5%,10%,15%) Figure 7: 6=10% and y € (0%,5%,10%,15%)

- Effect of thickness variation

The first two figures each report the evolution of four identically cambered airfoils; their camber
ratios are respectively equal to 0% and 5%. Both figures illustrate X,,, as a function of the incidence
for four different airfoils:

y=0% — (KT 000540, KT 001040; KT 001540; KT 002040)

y=5% — (KT 050540; KT 051040, KT 051540, KT 052040)
When the camber ratio further increases, the behaviour remains the same so we limit our observations
to these two schemas. As we can see on figure 4, when the airfoil becomes thicker, the curve’s slope
increases. This still stands for figure 5, but the camber is different and affects the results.

- Effect of camber
Figures 6 & 7 give us a slight idea about the consequences of an increasingly cambered airfoil.

Indeed, an increment in camber translates the curve to the left, leading to a larger X,, for the same
angle of attack. The camber ratio evolves within a wider range going from a symmetrical airfoil case
(0%), to a maximum value of 15%. From this information, we can deduce that the camber of the
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airfoil gives us the horizontal positioning of the curve. The following plot represents the evolution of

the constant coefficient ‘c’ of the curves, which equations are of this form: X, (@)=a A +b-ate

X,p(0=0) as a function of the camber ratio 26 e - |
60 b Slope 'd' of c{y)
_ E ——5=10% P I R e L ——
?a; 40 - §=15% ‘
2 i e = 2050 s S il 551 S——
< 20 — 24 |
° | !
!
0 ; i
Zl B T B e S
clv)=dy+e thicknessratio &
cambar ratioy (V) Y 5 10 15 20
Figure 8: Evolution of the constant ¢ = X,;(a=0) Figure 9: Evolution of the slope d = Xup(a=0)

As we can see, the intersection between the y axis and the curves, corresponding to the ‘c’ coefficient,
mainly depends on the camber ratio. Considering these two variables as proportional is a good
approximation since a linear curve fits well to the data we have collected. The thickness of the airfoil
has a minor influence, which still needs to be considered if we want to be accurate in the evaluation of
the appropriate X,, distance. Indeed, the slope of the straight lines relating v and ¢ depends on the

thickness 8. The curves ¢ = f(y) are approximately straight lines of equation: c(y)=dy+e

The second effect of the camber variation is related to the 1% coefficient of the curves X, =f(@)- It

appears that the thickness is not the only influencing parameter since the values also increases with y.

Coefficient'a’' Vs. camber ratio
0.07 e e
- 0065 |- 0.06 . —
@ 006 - —o—b=5% |Intercept g:a(v=0)l X
S 0.055 = .
£ ] i § = 1000
S L 0.05 o
§ oo i | >
o 0045 -
v§; 0.04 R R 004 b —
0.035 ¥ .
0.03 |- ; ‘ -
o S 10 15 003 i e b
. cmmaberratio: | a(y)=fy+g | > 10 rcknessrand® a8
Figure 10: Evolution of ‘@’ as a function of y Figure 11: Evolution of intercept ‘g’ as a function of §

Thus, we have plotted the evolution of ‘a’ as a function of the camber ratio for example. Several
thickness ratios are represented on figure 10 just above. This figure illustrates the combined
influences of the thickness and camber ratios. The curves of a = f(y) are linear fitted, so that we
have a(y) = fy + g. The gradients (f values) are almost equal, but the value a(y = 0) = g, increases
with §, the straight lines are being progressively shifted upwards. Therefore, on figure 11 is
represented the evolution of the intercept coefficient of the straight lines a(y)=fy+g, as a
function of 5.

As for the coefficient ‘6’ of Xup (@)=a- a*+b-a+c , its prediction appears to be more complicated
than the two other ones. On the next page is the evolution of the coefficient with respect to the camber
ratio.
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To simplify the procedure, the evaluation of this coefficient is done graphically instead of
analytically. For example, if 6=12% then it is contained within [10%;15%]so we draw on the graph an

average curve using the two surrounding ones. Then we deduce the coefficient ‘b’ directly according
to the value of the camber ratio y.

Coefficient'b' /

ey §=8%

—u—§=10%
b=15%

i §=20%

coefficient 'b’

camber ratioy

Figure 12: Evolution of ‘b’ as a function of y

We have exploited all of the curves X, = f(«), and are able to outline a method allowing use to

impose the correct dimensions to the CFD domain. These distances insure a relative error on the
pressure coefficient of about 0.005. First of all we summarize the different equations:

X,=f@ — Xup=aoa’+ba+c  (b=_graphically)

{a=f(y) > ay)=fr+g {c=f(5) > c(8)=dS+e
f=7.35x10—4 e=0.57

We can describe the different steps of the method as follow:

1. Coefficient ‘a’: a(y)=f.y+g

- fisapproximated: f =7.35x107"

- weusethegraphg6): & = g
from a(y)=fy+g — y=>a

Coefficient ‘b’: b obtained graphically from the graph b(y)

Ll

Coefficient ‘c’: c(y)=d.y +e

e is approximated: e = (.57
- weusethegraphd(§): & = d

- fromc(y)=dy+e = y=>c

Finally, | Xup = a.o’ +ba+c by replacing (a,b,c) = Xup/a
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These calculations were all based on the curve X, (a) asan example. The same method applies to the
three other distances, all the necessary data is in Appendix B_1/. Once all four calculations are
finished, the numerical domain may be defined.

b) CFD domain as a function of the lift coefficient

The following curves are used if it is the relation between the CFD domain and the
aerodynamic characteristics of the airfoil which is to be determined. This time, the curves will be
exploited directly without any further analysis. The previous method was developed so that the
numerical calculations could be done with precise values for the domain. Indeed, the software Fluent
requires the user to specify the angle of attack while initialising the flow. At the contrary, the lift
coefficient is obtained after the simulation is run. Practically speaking, it is the relation between (X,p,
Xaown> Yups Ydown) and the incidence a that is the most likely to be useful that is why we tried to
develop a reliable method. Here, we are only interested in the general behaviour of the distances with
respect to Cg.

The results have been plotted and the four curves can be found in Appendix B_2/. As an example, we
rely in this paragraph on Y, (Cy).

- Effect of thickness

The thickness ratio of the airfoil has very little influence. To illustrate this comment, one of the
boundary distances is represented as follow:

Effect of thickness ratio (constant camber: y = 0%)

70
60
50

o |

Y_up

40 —

20
10

*0=56%
+6=10%
b=15%

6= 20%

10 ols 115 25
Lift coefficient CL

Figure 13: Effect of 8 on Yy, (C))

The camber ratio remains constant but the thickness changes. However, as we can see the four curves
are practically identical and the effect of thickness can be neglected. The same phenomenon is
observed for the three other distances. Y,,(Cr) does not depend on 6.

- Effect of camber

Unlike the thickness ratio, the camber ratio influences the behaviour of the boundaries as a function of
the lift coefficient. This is only applicable for the horizontal distances since Y, and Y4own behaviours
remain constant despite the thickness variations (ref. Appendix B_2/). The following figure represents
Xup(CL):
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Effect of camber ratio (constant thickness: & = 5%)
50

40

A
» // oy =0%

g v =%
320 ///7 = 10%

©y=18%

1£ 2

Lift coefficient CL

Figure 14: Effect of y on X,,p(C,)

For a constant lift coefficient, the boundary X, increases with 6. Moreover, it is the rate of increase
that becomes greater. The same behaviour is observed for Xgown..

Firstly, a greater camber will allow the airfoil to produce more lift for the same angle of attack.
Secondly, an airfoil with a higher lift coefficient has as greater impact on its surroundings.

What we can deduce from these observations is that the gain in aerodynamic performance obtained by
an increase in camber, has nevertheless an additional impact. Indeed, the surrounding area
experiences larger pressure differences which can affect the aerodynamic behaviour of other close
parts of an aircraft for instance. This side effect is exacerbated as the lift increases.
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II. INVISCID CALCULATIONS

Before undertaking the numerical calculations around an airfoil, the flow past a circular
cylinder was solved. All this preliminary study can be referred to in Appendix C. Both cases are
inviscid calculations and can be closely related. Indeed, the airfoil’s geometrical characteristics are
not so distant from the cylinder’s. They both present curved edges that lead to numerical difficulties.
The problems encountered for the cylinder are very lightly to occur in our future airfoil study.
Consequently, we investigated the effect of a diversity of numerical parameters that have to be
specified in order to initiate the simulation. Thanks to this approach, we could improve the results
considerably by solving the numerical inconsistencies. ' Indeed, some of the flow features we were
observing were not supposed to appear in non viscous flows. In part II, the inviscid airfoil simulations
largely benefitted from the previous sphere calculations. We will often refer to them and take as
granted the conclusions of Appendix C.

1) Mesh generation

a) Geometry

The geometry was obtained by using a ‘journal file’ with Gambit, the software we use for
generating the geometry and mesh that is then exported to Fluent. To have a smooth enough geometry
many points had to be entered manually. To avoid this lengthy task, the Journal file allows us to
create the shape automatically just by important the .zx¢ file to the program. All the points’ coordinates
are obtained with the Matlab program we presented in part I in order to calculate the analytical
profile. This way, when the comparison between analytical and numerical data will take place, both
geometries are identical. The roundness of the leading and trailing edges is ensured firstly by a large
number of points (500), and secondly by the usage of the cosinus mapping function implemented in
the Matlab program. Indeed, the analytical airfoil is obtained as we know by applying the Karman-
Trefftz transformation to a cylinder, resulting in the desired airfoil. Therefore, the cylinder is created
by carrying out a cosinus mapping. Despite the regularly spaced points of the circle, once projected to
the x-axis, non-uniformly spaced points are generated on the airfoil. This operation is very useful
since a higher concentration of points is obtained in the leading and trailing edge regions so that they
are more precisely defined. We chose the airfoil ‘KT 00 15 40’ as an example of the Karman-Treffiz
type of airfoil. As a reminder, let us specify the significance of each number. On the left hand side are
the corresponding parameters we used as inputs in Matlab to define the geometry:

Thickness parameter : F =0.05279 [ KT 00 15 40 }> Xo/C = 0%
Camber parameter : G=0.0 Karman-Trefftz e\
Roundness factor : m=1.87614 type of airfoil A/ / \
Number of points: N =500

0% CAMBER 15% THICKNESS

KT 00 1540
3
xlc
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One of the critical issues to consider during the generation of the geometry was the number of points
to use. At first, the airfoil was defined with 100 points, which was very insufficient. Indeed, although
they are linked to each other by curves, when N is small the curves get closer to straight lines. The
flow then encounters ups and downs in pressure, due to the unsmooth geometry, causing the pressure
distributions to oscillate. These oscillations become increasingly important with the mesh’s density
since the more nodes the greater ups and downs captured by the mesh. 500 points appeared to be
satisfactory; it allows the oscillatory phenomenon to disappear, and the curve’s smoothness becomes
grid independent.

b) Domain

- Structured grid

For the meshing of a simple airfoil with no additional bodies (flaps...) a structured grid appears to
be the best meshing technique to adopt. They present considerable advantages over other grid
methods by giving to the user a high degree of control. We may decide on how the control points and
edges are distributed which gives us total freedom while positioning the mesh. In addition,
quadrilateral elements are very efficient at filling space and can support higher degrees of skewness
and stretching before the results are affected. This allows us to create a high concentration of points
within the regions of strong gradients and expand out with a less dense packing of points away from
these areas. We will however need to insure good quality meshing for the cells contained in the
critical areas. In addition to the advantages a structured grid offers, it typically requires the lowest
amount of memory for a given mesh size due to its simple topological description. It also executes
faster since structured block flow solvers are optimized for the structured layout of the grid. Finally,
the post processing of the results is simplified since the logical grid planes are an excellent reference
for examining the flow and plotting the results.

- C-mesh

A classical C grid is used to mesh the area surrounding the geometry and is a particularly good
body-fitted grid for an airfoil. We have chosen to use a structured grid so as we were emphasizing
previously, we need to focus on the meshing of the high gradients region located around the airfoil. A
grid based on a C-mesh method is a good start.

Let us recall the work we previously achieved while post processing the analytical airfoil calculations.
Indeed, the analytical Karman-Trefftz theory was used as a tool to optimize the future CFD study of
these airfoils. While determining the optimum computational domain by calculating the pressure
coefficients along each side of it, we finally obtained all the distances of the rectangular domain. This

is the illustration of the different dimensions we got: R = (X_up, Y_up, Y_down)sx
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Unfortunately, the computational effort related to the domain dimensions cannot be utilised at its most
since the quality of the mesh is also a fundamental aspect to consider. The use of a rectangular domain
is also excluded due to the important skewness factor (evaluator of the cell’s deformation) it would
produce; a body-fitted grid is required. The C mesh is definitely the best solution. To conserve the
original shape of this meshing technique, we will need once again to make a concession on our
previous efforts to reduce the domain’s size. The radial part of the mesh is defined by a unique radius,
represented by the maximum value of (X _up, Y _up, Y_down). The second dimension

is X _down , downstream of the flow.

¢) Grid effect

- Procedure

For the grid dependency study, we will investigate the influence of the ‘KT 00 15 40’ airfoil on
the incoming flow for an incidence of 5°. The first data we collected during the analytical work gave
us the domain’s dimensions as a function of both the lift coefficient (C/) and the incidence (c). Just
for this preliminary study, we decide not to simulate a flow with zero incidence to make the impact of
grid variation on the solution more noticeable. The grid domain dimensions are easily calculated
thanks to their equations as functions of &. We used the method developed in part I.

R=21.25
For this airfoil, the characteristic lengths of the computational domain are: |¥=5" = { X down=99

The aim is to determine the optimum mesh, for which the solution is ‘grid independent’. Several grids
have been generated and the inviscid simulations were run under identical conditions. The objective is
to compare the pressure coefficient Cp calculated by Fluent in between the grids. As the mesh density
increases, the values of Cp should stabilize. The objective is to decide which grid is dense enough for
the solution to be sufficiently accurate. Indeed, as discussed when we undertook this procedure for the
sphere, all depends on the error we are prepared to tolerate. '

Now, let us first of all describe how the meshing of the airfoil was defined. The most important step
of the mesh generation consists in deciding how the nodes should be distributed. The quality of the
mesh entirely depends on the physical understanding of the flow. To highlight the critical areas of the
mesh, let us describe one of the Cp curves we obtained.

- Typical Cp distribution

We have decided to base the grid dependency study on the distribution of pressure coefficient
along the airfoil. According to the expected evolution of C,, it allows us to compare the meshes and
comment on their consistency. Finally, the aim is to reach grid independency and conclude on which
mesh to use.

First of all, let us explain the shape and evolution of C, along the two airfoil surfaces. This
preliminary analyse will be useful for the choice of the final mesh. As a result of the calculation, we
obtain a typical pressure distribution throughout the airfoil’s surface as follow:

We often refer to the distribution of pressure over the airfoil to study its aerodynamic performance.
This distribution is non-dimensionalized by the free stream dynamic pressure so that it is finally
P-
obtain the pressure coefficient: C, =———==
1/2 pV,

classical behaviour of the flow surrounding the airfoil. The positive values of C, (upper curve)

. From our simulations, we obtain as expected a
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correspond to the lower surface and vice versa. C, starts at about 1 at the stagnation point which is
located close to the leading edge on the lower surface since @ = 5°. At this point, the flow separates,
part of it heads towards the upper surface while the rest goes downwards.
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Figure 15: Typical Cp distribution

— Upper surface: The lower curve represents the evolution of the upper surface flow, from the
stagnation point on. The important drop of pressure from 1 to the lowest value of Cp corresponds to
the strong acceleration experienced by the flow going over the curved nose of the airfoil. This sudden
rise leads to the highest speeds towards the leading edge; consequently the flow of the upper surface
then slowly decelerates. This region is known as the pressure recovery region.

— Pressure recovery: The pressure will increase from its minimum up to the trailing edge coefficient.
The flow therefore encounters adverse pressure gradients, which might cause boundary layer
separation. However, we will not come across this situation since the calculation model is inviscid.

— Lower surface: We may notice that on quite a large portion of the graph, the lower surface C,’s
become negative, meaning that some suction (downwards force) is present.

Finally the flow recovers a positive value of C, near the trailing edge where the upper and lower flows
rejoin. The Kutta condition is satisfied since the rear stagnation point is located exactly at the trailing
edge. This ensures that the vorticity generated at the trailing edge is zero.

Consequently, the flow around an airfoil will contain regions of strong pressure gradients. The grid
we generate needs to take this into consideration; the nodes are then distributed accordingly. Only
then will we be able to reach grid independency since the computational effort is limited. Indeed, if
the grid does not match the flow gradients, the calculation will diverge without ever reaching a grid
independent state.
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- Simulation parameters

We have applied the following settings to the four different meshes:

o Solver: Segregated / Implicit — Refer to the cylinder calculations
V,=1m.s™

a=344 ms™

that the flow is incompressible, consequently the energy equation is unnecessary.

o Energy equation: Off — { = M, < 0.3, that is low enough to assume

o Material: Air — incompressible => constant density: p =1.225 kg/m’
e Operating conditions: 101 325 Pa — Atmospheric conditions

e Boundary co.nditions: s o XV cos(cx) X =0.9962
- Velocity inlet — B Y =V, xsin(a) Y =0.8716

- Pressure outlet — Gauge pressure:0 Pa
e Discretization scheme:

- Pressure / Velocity coupling: ‘SIMPLE’
- Pressure interpolation: ‘PRESTO!’

Just as for the cylinder simulation preceding the airfoil study, the default interpolation scheme is not
suitable for curved geometries. We are expecting a constant velocity profile at the airfoil boundary
since the calculation is inviscid, however towards the leading edge the flow is slowed down at the
wall, due to undesired friction effects:
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Figure 16: Standard interpolation Figure 17: PRESTO! interpolation

As we can see, the PRESTO! pressure interpolation solves the problem since the velocity distribution
along the surface is back to a velocity profile characterizing a potential flow, where V, , =V,

- Order of accuracy: ‘Second order Upwind scheme’

In order to determine whether using a second order upwind scheme is necessary or not we have
compared the pressure distribution of a 1 and a 2™ order scheme. The following plot represents the
evolution of the pressure coefficient along the airfoil’s surface. Only the order of accuracy differs
between the two curves of figure 18, the mesh and all the other parameters are identical. They evolve
similarly along the profile but it appears that the 1% order scheme underestimates C, all along the
profile. The biggest differences are observed near the leading edge where the highest pressures are
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exerted (ref. Zoom *). The variation reaches 14% in that region; therefore the 1* order approximation is
less accurate and we will use a 2™ order upwind scheme.

Effectof the order of accuracy 15 Auq 2007 _ title
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Figure 18: Comparison of the 1* and 2" order upwind schemes

- Relaxation factor

We have opted for the segregated solver and consequently each equation which needs to be
solved is associated with an under relaxation factor. This parameter is used to control the update of
the computed variables, at every iteration. Its expression is the following: b, = +0 ( b~ ¢ozd)

By reducing the under-relaxation factor, we are slowing down the rate at which the solution changes
during the iteration. If we refer ourselves to the formula, the difference between the solutions at the
old and new time steps is less taken into account. In this way, the fluctuations between the time steps
are limited and the simulation is more lightly to converge. In this study, the simulations are not

encountering any convergence difficulties.
Pressure: 0.3

Therefore it is unnecessary to modify the under-relaxation factors since it would | Density : 1
only be a waste of memory. The default values are not modified and are equal to: Body forces: 1

Residuals Momentum : 0.7

At each time step, an average error is calculated for each equation to be solved.

This error is referred as the ‘residual’. The smaller the value, the closer we are from obtaining a
converged solution. For a 2D incompressible inviscid flow problem, there are three differential
equations to be solved. This means we need to [“hums

continuity
x-velocily

monitor three residuals for convergence: momentum, [ :::4

x-velocity and y-velocity. ot L

We implement within fluent the residuals’ order of

magnitude for which the iterations are stopped and 1005 1\\\

the calculation considered as converged. For all the :’: \\,{___’__ -
equations, we change the default value from 107 to 000 4 h

10”. However the momentum equation never reaches M m @ e %o 1 tmo o 1o tow 2w

Netations

such a level of accuracy, and the residuals stabilize at
a constant value below 10° which is small enough. Figure 19: Scaled residuals / Converged calculation
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All the simulations had similar convergence paths to the one represented on figure 4. At this stage, all
three equations are solved and the variables have converged. Most importantly the pressure
distribution along the airfoil is totally stabilized.

- Quality of the mesh

After this brief analyse of the pressure evolution along the profile, we can deduce which are the
regions requiring particular attention. Within these areas, the node distribution is important but also
the quality of the mesh. Otherwise, strong gradients and distorted cells will cause the calculation to
diverge. '

— Leading edge: the stagnation point is located somewhere around the leading edge according to the
flow incidence. A strong concentration of nodes is essential to collect precisely the information. To do
so, we imposed a one sided length ratio from one node to the other, forcing them to become closer and
closer as we approach the leading edge.

— Trailing edge: The pressure recovery region we mentioned previously endures changes in pressure
but gradually. We optimize the mesh on this portion by decreasing the number of nodes. However as
we approach the rear of the airfoil, a higher concentration is required to capture the sudden changes
occurring towards the trailing edge. This is also done by imposing a length ratio.

This distribution is applied symmetrically to the upper and lower surfaces; let us now emphasize the
importance of a good quality meshing. Indeed, in the critical regions, it is essential that the
quadrilateral cells remain as square as possible. We tried to respect the following criterions as we
were increasing mesh density. Here are a few illustrations of what we obtained:
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2) Grid effect conclusions and results

a) Final grid
We created three different grids, presenting an increasing number of nodes. The general
repartition of the nodes, the growth rate factor of 1.1 from the airfoil to the outer boundaries is
conserved. Lastly, the first height, concerning the wall adjacent cell does not require particular

attention. This is due to the inviscid properties of the flow that implies V,, =V,. We
fixed As,,, =0.01.

init
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Figure 20: Mesh effect via the pressure coefficient distribution

On figure 20 there a three pressure coefficient distributions, each corresponding to a different mesh.
From M1 to M3, the number of nodes increases. The coarser mesh M1 (=16 000 nodes) is not dense
enough since a denser mesh M2 (=17800 nodes) has an important effect on the results. The mesh M1
was underestimating all of the Cp values. However, the differences between M2 and M3 are negligible
despite the 6500 additional nodes. We conclude that mesh independency has been reached and that
mesh M2 is dense enough to accurately capture all the existing gradients.

b) Effect of the CFD domain dimensions

In this paragraph, the aim is to confirm that the numerical domain’s dimensions have a

noticeable effect on the lift coefficient for instance. The following table [ Dimension Lift
lists the values of C;, we obtained with Fluent for a series of domain sizes. L (chord) | coefficient
The domain surrounding the airfoil was chosen to be circular. In part I of 5 1.1533
our study, the Karman-Trefftz transformation gave us all the distances the 10 1.169
domain should have to insure that the relative error on the lift coefficient 15 1.1809
does not exceed 0.005. For all of the airfoils, the longest distance was 25 1.2076
always the upper vertical one, Y,,. Therefore we are only focusing on this 35 1.2076

distance which is why the domain is a circle. The theoretical results are all listed in Appendix A_2/, so
we refer to those of the Karman-Trefftz airfoil KT 00 15 40 and more specifically the Y., values. The
CFD calculations were run at & = 5°. Let us now comment on the tabulated results. The values of C,
are increasing with the distance L, so we deduce that the error is reducing and C,, getting closer and
closer to a stable value. Indeed, from L = 25 on, C;, does not depend anymore on the domain’s size.
We may say that the results are ‘size independent’. As for the theoretical Karman-Trefftz value, we
got: ¢=~5° = Y . ~20. We have no numerical data for Y, equal to 20 so we cannot know

how close the two results are from each other. However, both numerical and theoretical are in good
agreement.
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¢) Comparison of pressure distributions

The numerical and analytical results are compared in this section. We obtained the pressure
coefficient along the airfoil for several incidences: 0°,5°,10° , which are represented on the three

following plots:
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Figure 21: Cp at 0 degrees incidence
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Figure 22: Cp at 5 degrees incidence
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Cp distribution / alfa= 10" | 26 Sep 2007 |
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Figure 23: Cp at 10 degrees incidence

The numerical and analytical results appear to be almost the same. For the lower surface the
difference is very small and the two curves are practically identical. This is the case for the three
incidences. However, the pressure upon the upper surface differs a bit. The numerical simulation is
slightly underestimating the values compared to the Karman-Trefftz results:

One of the major differences between the curves is the value of Cp towards the trailing edge. It is
ideally equal to 1 since it is a stagnation point (velocity is zero). The Karman-Trefftz transformation,
while respecting the Kutta condition automatically sets Cp to 1. However, for the numerical
calculation, we would need an infinite number of points to reach it. As the number of nodes increases,
we get closer and closer to the correct result. The same observation can be made concerning the peek
at the front of the airfoil. The analytical results have a much larger peek at this point, which is caused
by the drop in pressure due to the accelerating flow; once again it all depends on the number of points
used for the CFD calculations. As this number increases, the numerical peak gets closer to the
analytical value. However, the rest of the pressure distribution is grid independent long before we get
close to Cp = 1 at the trailing edge. The distribution remains identical except for the value at the
stagnation points. Therefore, a finer mesh seems unnecessary. For all three incidences, the mesh was
fixed at ‘grid-independence’ without taking into account the stagnation point values.
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d) Lift coefficient as a function of the incidence

Lift coefficient as a function of the incidence
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Figure 24: Evolution of C, with respect to a

The lift coefficient is an important aerodynamic characteristic for an airfoil and is often related to the
angle of attack of the flow. The resulting curve, which for a non viscous flow is a straight line since
the flow stays fully attached to the surface, is the characterising trend of a specific airfoil. Thus, we
decided to conclude this inviscid part of the project by comparing the theoretical and numerical linear
fits. The results of figure 24 appear to be satisfying since both lines are close to identical; the slopes
are equal to 0.12 and 0.122 respectively which represents a relative error of only 1.6%.
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III. VISCOUS CALCULATIONS

1) Introduction

Up to now the calculations and simulations we have made were using the potential flow theory.
The effect of viscosity was excluded from the problem’s formulation. The velocity field all around the
airfoil’s surface was calculated analytically by applying the Karman-Treffiz transformation; we
consequently deduced the related pressure distribution. As for the numerical simulations, an inviscid
model was used, allowing us to obtain the entire flow field within the computational domain after the
Euler system of equations solved. It is shown that inviscid calculations do not accurately describe the
observed pressure distribution over an airfoil section. Indeed, the viscous forces are not taken into
account while their contribution is fundamental.

At low angles of attack, the potential flow theory is extremely
accurate and provides precise estimates of lift and pressure.
However, as the incidence increases, the results begin to deviate ~ ~

more and more up to a point where the lift coefficient suddenly Cl from Expt.
drops. Indeed at high angles, the airfoil stalls as the flow
separates, which cannot occur in the inviscid model, so that the ]
potential flow curve of C;, as a function of the incidence continues

y Cl, from AE3003

to increase linearly. Indeed, the friction effects are neglected, and Angle of Attack
therefore the velocities at the surface are equal to those of the free Figure 25: C, versus angle of attack
stream.

In reality, when fluid particles come close to [Us,
the surface their velocity slows down due to the |—»
viscous friction. Viscosity is a physical | .
property that affects stresses of a fluid due to —+

F——

fluid motion. In the case of a viscous fluid
flowing past a body, it adheres to the body |-— - b
surface and frictional forces retard a thin layer .
of fluid adjacent to the surface. The velocity
then becomes a function of the distance from
the surface and it is only at a certain distance that it is equal to the free-stream velocity. The distance
(8) required by the fluid to reach 99% of U, is known as the boundary layer thickness.

Figure 26: Boundary layer thickness &

As a result, the velocity inside the boundary layer is

less than the velocity at its outer edge. The existence P

of this velocity deficit is a necessary condition for p:
separation. At the outer edge of the boundary layer P £ Sl pieasuts
viscous forces are negligible, and there is an exact me
balance between inertia and pressure gradient, as o & s

expressed by the Bernoulli equation. In the case of an
airfoil, the curvature of the top surface caused by the
angle of attack forces the flow to first accelerate fe
around the leading edge and then decelerate. While * s
the pressure increases as the particle moves bustume
downstream, it is accompanied by a decrease in
velocity. The inertia of the particles near the wall

Figure 27: Reversed flow in the presence of an adverse
pressure gradient
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may not be sufficient to overtake the pressure forces, causing the velocity vector to change direction.
This velocity deficit indicates separation. Figure27 illustrates the different stages leading to
separation. As we can see, the process can only be initiated by a sufficiently strong adverse pressure
gradient. On the schema, it first increases up to an inflection point known as the separation point. The
wall shear stress is exactly zero. As the unfavourable pressure gradient increases, the velocity gradient
at the wall decreases and may become negative indicating the occurrence of reversed flow. The
laminar or turbulent boundary layer has detached from the surface, resulting in a region of
recirculating flow.

Now that the calculations we will run consider viscous flows, the separation problem will most
certainly occur since the angle of attack will vary in between [—12°;+24°]. The objective is to
develop a correct numerical prediction of the flow. Indeed, the viscous forces dramatically affect the
drag coefficient of the airfoil so that an accurate description is essential. For closed 2D geometries,
the potential flow was predicting zero drag at all angles of attack. However, any airfoil produces drag.
Between the solid and fluid, the solid slows down the fluid flowing down over it, and shear stress
develops, thus raising the skin friction drag. This value is proportional to the viscosity times the
velocity gradient.

Our study is limited to the capabilities of Fluent in correctly predicting the ‘real’ flow. Fluent
provides a wide range of modelling capabilities, for laminar and turbulent flow problems. The airfoil
we will be studying is the 4-digit NACA 4412. This thoroughly tested airfoil provides us with a lot of
experimental data. After deciding which turbulent model to use we will compare the resulting
pressure distributions along the airfoil with the experimental results. Pressure distributions over an
airfoil section directly provide the knowledge of the air force distribution along the chord that is
required for some purposes. Depending on the flow conditions, in particular over a wide range of
incidences, the aim is to understand why a particular model should be favoured with respect to the
other.

2)  NACA 4-digit airfoil

a) Presentation

Before the National Advisory Committee for Aeronautics (NACA) developed the NACA airfoil
series, airfoil design was rather arbitrary. There was nothing to guide the designer except past
experience with known shapes and experimentation with modifications to those shapes. These
methods began to change when it was noticed that many similarities exist between the most successful
airfoils. The two primary variables that affect those shapes are the slope of the airfoil’s mean camber
line and the thickness distribution above and below that line.
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Figure 28: NACA airfoil geometrical construction

A series of equations incorporating these variables was presented and could be used to generate an
entire family of related airfoil shapes. Despite the more sophisticated designs, those two basic
geometrical values remained at the heart of all NACA airfoil series. The early NACA airfoil series
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was generated using analytical equations that describe the curvature (camber) of the mean line, as
well as the section’s thickness distribution along the length of the airfoil. The NACA 4-digit series
was the first family of airfoils using this approach. Let us specify what each digit represents for these
airfoils:

— 1* digit: Maximum camber in percentage of the chord
— 2™ digit: Position of the maximum camber in tenths of chord

— 3" and 4" digit: Maximum thickness of the airfoil in percentage of chord

b) NACA 4412

- Scale effect

The results of experimental pressure measurements of the NACA 4412 airfoil can be found in
various publications. It directed our choice to study this particular airfoil and we will refer to the data
collected by ‘Robert M.Pinkerton’ in the variable density wind tunnel of the National Advisory
Committee for Aeronautics (NACA). All the experimental results were found in his report published
in 1937: ‘Calculated and measured pressure distributions over the mid-span section of the NACA
4412 airfoil’.

The new NACA variable density wind tunnel was very innovative back then and we will briefly
explain what its purpose was. The aim was to eliminate the scale effect, inevitable when wind tunnel
testing at a reduced scale is undertook. It introduces major errors which affect the accuracy of the
results. The leading feature of this new design concerns the working fluid since the air under normal
conditions is replaced by highly compressed air. But why do experimentalists think that they can learn
what will occur on a large scale by observing what occurs on a small scale? For the boundaries of the
flow to be close to identical, a constant ratio has to be conserved in between the characteristic
quantities of the two arrangements. Thus, this principle needs to be applied not only to the model’s
dimensions but to the flow properties as well. If the flow is not exactly similar but only
approximately, the information becomes unreliable. A ‘scale effect’ exists and must not be
underestimated. The first assumption was to assume that none of the physical properties of the fluids
has any influence on the shape of the flow pattern or on the fluid forces, despite the density of the
fluids. Therefore, the mass force of the particles is the only force and needs to be equalized. Indeed,
for a viscous flow, it is arranged so that the pressure forces and viscous forces are in equilibrium with
the mass force. To obtain the criterion for the similarity of flows, two of the three forces need to be
changed by an identical ratio (mass and viscosity forces), in order to maintain equilibrium. The mass

forces are changed in the ratio 2%,’," and the viscous forces with #Vhy . Hence the condition for an
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The equality of the two Reynolds numbers ensures the dynamic similarity of the flows.

It is only if in addition the two bodies are geometrically similar that the scale effect is perfect. To
conclude, solving the scale effect problem is the main difference between this wind tunnel and the
others and therefore eliminates the most serious source of error. Usually, the model dimensions are
much smaller than the original of course, which requires either a large increase in velocity for V' x/ to
remain constant or the diminution of 4/ p. In the first case, the velocity increase generates excessive
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air forces on the model accompanied by a pressure difference leading to greater compressible effects
than desired. In the second case, the choice of another fluid is the only possibility but it needs to be
denser than air and have a smaller dynamic viscosity than air. However no such fluid exists. To
conclude, a classical wind tunnel operating with air under standard conditions is unable to fully satisfy
the scale effect conditions. It is only by changing the density of the air that similarity is obtained.

- NACA wind tunnel

In this paragraph, a brief description of the wind tunnel and the methods of operation are given. The
next figure illustrates the NACA variable density wind tunnel.
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Figure 29: Sectional elevation of variable density wind tunnel

It consists in an experimental section (E), 1.52 meters in diameter, where the entrance and exit cones
are housed in a 4.57 meters diameter steel tank, of 10.52 meters long. The balance is located in the
dead air space between the walls of the experimental section and the outer case. The air is circulated
by a two blade propeller. In an ordinary atmospheric wind tunnel, variations in dynamic pressure are
possible by changing the air velocity. Here, it is done by changing the density of the air so that any
velocity variation is unnecessary. The air is compressed in two or three stages according to the final
pressure of the tank. For pressures up to about 7 atmospheres, a two stage primary compressor is used.
For higher pressures, an additional booster compressor is required.

During the data acquisition, pressures were simultaneously measured at 54 orifices, 2.03*10™* meters
in diameter, over the mid-span section of the NACA 4412 airfoil, for 17 angles of attack within the
range [-20%+30°] . The model used was a standard duralumin airfoil composed of the NACA 4412

section, a rectangular span of 0.762 meters and a chord of 0.127 meters. One of the mid-span sections
was replaced by a brass section in which the orifices were located. They were placed in 2 rows and
drilled perpendicularly into the airfoil as follow:
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Figure 30: Distribution of pressure orifices along the NACA 4412
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A large number of orifices were positioned towards the leading edge in order to evaluate correctly the
pressure distribution in that region of strong fluctuations. Brass tubes were fitted to the holes and
brought out of the model to the dead air space. In that area, they were connected to a photo-recording
multiple-tube manometer. The reference pressure was measured by a pitot head. The way of
determining the pressure data is direct and simultaneous, achieved by recording of the liquid’s height
in the manometer tubes.

¢) Creation of the geometry and CFD domain
- Geometry ;

The experimental data concerning the geometry’s coordinates was insufficient. Only 20 points
were reported, which once linked would produce a rough contour. It is essential for us to generate a
smooth geometry so that the pressure distribution is unaffected by any approximations or abrupt
curves. Consequently we calculated the coordinate distribution with a simple Matlab program (ref.

Annexe D. ) Thickness t
L.E. Radius Slope

The coordinates are based on the mean camber line and ___I___J_- T
the thickness distribution of the profile. As we can see on ] - I 1\ “““““““““ ~
the schema, the mean camber line is drawn half way 4= amm (
between the upper and lower surfaces. The ratio g Ma) curvature
thickness to chord and the maximum camber are needed. :

Leading edge chord = ¢ Tralling edge
Here is how the coordinates are expressed: Figure 31: Geometrical properties of an airfoil

2,

ym/c=(;lc’—0;;x(x/c)—(x/c)2, st [ : max. camber ( position — xf")
Vs /c=Tl_fxTx[(l—zx,)Jrzx1 x(x/c)=(xle)f' ], (x/c)>xl with: {x, =xf/chord

t : thickness [ chord
Lok _ 5¢x(0.29690x"2 —0.12600x —0.35 160x* +0.28430x° —0.1015x")
c

We applied the following formulas to calculate the coordinates of the upper and lower surfaces. We
did not neglect the angle 6 shown on figure 28 as it was sufficiently affecting the geometry to impact

on the results: = ; -
{xupper =x- ylhick .sin& yupper = YVeamb + ylhick -COS 9}

xlower =x+ ythick -Sin 0 ylower = ycamb - ylhick -COs 6
- CFD domain '

The boundaries of the CFD domain have to be carefully defined because if there are too close it may
affect the results. The inviscid study we undertook previously provided supporting evidence to this
fact. For the domain to have a negligible impact, the distances had to be at least equal to the values
calculated by the Karman-Treffiz theory. For values under these limits, the numerical calculations
showed that the smaller the distances the larger the error on the flow variables.

For this viscous study, the Karman-Trefftz calculations can be directly applied. Although they were
obtained for inviscid conditions, the influence of the circulation is identical. Viscosity only affects the
CFD domain close to the airfoil, so that the velocity contours are very different. However, what
influences the domain further away from the airfoil is the circulation and the CFD boundaries depend
entirely on this amount. Consequently, all the results we obtained in part I can be applied directly for
any viscous study. In part III, the objective is to evaluate the reliability of two different turbulence
models. We chose to refer ourselves to past numerical computations in order to fix unique CFD
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boundaries. Indeed, if we rely on the Karman-Trefftz results, the domain would have to be modified
for every incidence. Therefore, based on very reliable sources that have proved to be valid for many
numerical studies, this simplification can only affect our Velocity contours around an airfoil at high
CFD results in a negligible way. These sources are Rschisnees
numerous of course and it quickly appeared that the outlet
had to be at a largest distance from the airfoil than the
inlet. Indeed, if the flow separates the impact is much
greater downstream. The velocity contours on the right
were obtained from one of our simulations and illustrates
a typical contour pattern for « larger than 20 degrees.
Our references indicated that the following distances are
sufficiently far not to affect the results:

20

10

y

3

Obsf--=-======----1
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Figure 32: Domain dimensions

These have to be carefully respected. We will apply a pressure far field boundary conditions to the
entire outer domain. If the boundaries are too close to the airfoil, the free stream conditions we define
as parameters of the BC do not apply yet, in reality they do but further away. This approximation
would introduce a certain error and lead to inaccurate results.

3) Grid generation around the airfoil

a) Presentation of Gridgen

For the generation of the mesh surrounding the NACA 4412 airfoil, we decided to use the
software Gridgen instead of Gambit.
Since 1984, Gridgen has been used to create three dimensional grids for complex geometries in a
production environment. The software origins are in the demanding US aerospace industry where it
has a great reputation. It is known for creating high quality grids which is vital for reliable
simulations. Due to the enhanced quality of the mesh, it leads to more accurate solutions and faster
convergence. Now days, the software is used worldwide in aerospace, automotive, power generation,
chemical process and many other industries for which CFD is an integral part of the design process.
This part of our study includes viscous effects so the quality of the mesh especially close to the airfoil
surface becomes increasingly important. Indeed for the inviscid study, the potential flow did not
require to refine the mesh in that region. Mesh quality is where CFD has the largest impact on
solution accuracy, so particular attention was given to it from the start of our simulations, first by the
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choice of the meshing software. Just as Gambit does, Gridgen provides several diagnostic tools to
ensure that mesh quality criteria is met. Cell size, cell-to-cell size variation, aspect ratio, Jacobian,
skewness, smoothness...etc, all of these can be visualized graphically. However, the very interesting
feature that Gridgen possesses but not Gambit is that these quality diagnostics are integrated in the
meshing process so quality may be monitored as the mesh is being generated.

b)  Extrusion process
The major difference between both softwares is the way the mesh is generated. In Gambit, the
~ domain boundaries first had to be defined, thus creating a closed face, and finally the empty space
| would be filled by the mesh. On the other hand, Gridgen never requires outer boundaries to be created
0 since the mesh is extruded directly from the airfoil surface.

Figure 33: Gridgen'’s extrusion tool Figure 34: Final CFD domain after extrusion

| As we can see on figure 33, to define the single edge we started by the downstream edge linked to the
| & trailing edge of the airfoil, selected the upper and lower surfaces of the profile and again the downstream
| edge. For the extrusion process, the first height of the mesh, the growth rate and the number of steps
have to be specified.

¢) Elliptic solver
The quality of structured grids can be significantly improved by applying Gridgen’s elliptic
PDE methods. As we can see on the two figures below, the elliptic solver modifies the mesh so that
overall, it is much more orthogonal to the surface from which the extrusion originates. Figures 35 &
36 are focusing on the upper surface of the aircraft.

After 2
iterations

—>

Figure 35: Initial mesh just after extrusion Figure 36: Resulting mesh after the elliptic solver
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It is a critical region since at higher angles of attack the flow will separate and this area will be the
most challenging to solve due to the high turbulence levels. Initially, some of the cells were quite
distorted and of bad quality as we observe on figure 35. Running the solver for a couple of iterations
allowed the mesh to globally straighten up and the resulting mesh is of much better quality. We will
understand later the importance of well capturing the flow variables in the separation region. Indeed,
the aerodynamic characteristics we wish to obtain are highly dependent on the amount of separation.

d) Growth rate

Concerning the growth rate we applied, the best mesh was obtained by combining several
values. Once again, our major concern is the region where separation is most likely to occur. Figure
36 just above was used to highlight the elliptic solver’s advantages but in reality the cells are too
large.

Indeed, at higher angles of attack the flow contains very small gradients and they are not captured
accurately. We have run several simulations for separated flows with such a grid and the results were
not satisfactory. This important deviation from the experimental results was corrected by refining the
region. To do so, the usual growth rate of 1.1 particularly adapted to aircraft applications, was not
applied so soon in the extrusion. The process was divided as follow:

Number of extrusion steps Growth rate
Near to wall region until a reasonable cell is obtained 30 o1
This last cell was slowly increase throughout the separation region 50 1,02
Average growth rate to link separation and far regions 10 1,06
The rest of the space is filled with the usual growth rate 40 o1

As we can see on figure 37, the mesh we obtain from these multiple growth rates is much finer than
the grid of figure 36. This operation was necessary because we will be using the same mesh all across
the incidence range. It is a loss of memory and time for the incidences where the flow remains
attached but is necessary these higher angles of attack.

Figure 37: Refinement of the separation region
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4) Turbulence modeling

a) Introduction

Almost all fluid flow which we encounter in daily life is turbulent. The flow around bluff

bodies such as cars, aeroplanes, buildings...etc, are turbulent. The flow within combustion engines, in
both piston and gas turbine engines as well as combustors, is highly turbulent. Air movements in
rooms are also turbulent, at least along the walls where wall-jets are formed. Thus, while computing
the fluid flow, it will almost always appear to be turbulent. In our study, we will be analysing the flow
past an airfoil. Of course, turbulence is also very likely to occur. The flow over the bulk of the wings
and fuselage is usually turbulent in the boundary layer region where the velocity of the airflow
changes to match the velocity of the aircraft. There can be complicated leading edge effects, where
turbulence usually manifests . itself. Turbulence flow over the wings will be subjected to variable
pressure gradient and ultimately the turbulence will change character at the trailing edge as the flow
changes from the attached boundary layers to a free wake. Downstream of the aircraft the turbulent
trailing vortices decay only very slowly, which determines the minimum aircraft spacing required for
safe flight. Turbulence is also responsible for a significant proportion of the sound produced by an
aircraft.
So what is the nature of turbulence? It can first of all be considered as a broadband existing over a
wide range of spatial and temporal scales. Turbulence is not at all a bad thing for many applications.
For instance, it is helpful in most combustion engines since it efficiently mixes the fuel and the
oxidiser. It is also much better able to resist boundary layer separation and wing stall in aircraft
applications. However, it comes with a high friction drag penalty.

In turbulent flows, the variables are usually divided in two. U represents the time-averaged part and is
independent of time for a steady mean flow, whereas w is the fluctuating part. Therefore, the variables

are expressed as follow: U = U+u _
Turbulent flows have a certain number of characteristics that we can briefly describe.

First of all, turbulent flows are ‘irregular’, random and chaotic. The flow consists in a
spectrum of different scales known as eddy sizes. The largest eddies are of the order of the flow’s
geometry, for instance the boundary layer thickness with length scale / and velocity scale U . The

scales extract kinetic energy from the mean flow. The large scales interact with slightly smaller scales
to which the kinetic energy is lost. It is through this cascade process that kinetic energy is transferred
from the larger scales to the smaller scales. The smallest scales where dissipation occurs are called
Kolmogorov scales: The friction forces become larger and most of the kinetic energy transferred from
the larger scales is finally dissipated into internal energy. The characteristic scales of these small
eddies are the velocity scale v, the length scale / and the time scale 7. Since the kinetic energy is

destroyed by the viscous forces, we naturally suppose that viscosity plays a part in determining these

scales. Also we know that the amount of energy to be dissipated is &. Therefore, we assume that

these scales are determined by both viscosity vand dissipation £. The amounts v,/ and 7 are

expressed  according to  viscosity and  dissipation thanks to a  dimensional
= Va gb

analysis: :

[m/s]=[m"/s][m"/s’]

The “diffusivity’ of turbulent flows increases. Consequently, the spreading rate of boundary
layers, jets, etc. increases as the flow becomes turbulent. As we observe the two velocity profiles on
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the right, we see that for a laminar boundary
layer, the flow takes place in layers. |Y| Laminar y| . Turbulent
Exchanges of mass or momentum only occur / : (
between adjacent layers on a microscopic 5
scale. On the other hand a turbulent boundary
layer is marked by mixing across the layers, RNy Lo
now occurring at a macroscopic scale. '
Consequently, it has a steep gradient of : U a
velocity at the wall. If the flow experiences .
adverse pressure gradient at the wall it will cause the flow to slow down. In the case of a turbulent
boundary layer, separation is delayed since the velocities are higher at the wall. The velocity
distribution takes longer to reach the inflection point, that characterizes the transition to separation.
Turbulent flow occurs at ‘4igh Reynolds numbers’. For example the transition to turbulent

I\t
t
e
»h

\\

flows in pipes occurs when Re,, = 2300, and in boundary layers at Re, =100000 .

Turbulent flow is always ‘three-dimensional’. However, simplification to two-dimensions can
be very helpful for the understanding of certain problems, but does remove some important physical
mechanisms. It is usually recognized as significantly different from the full turbulence problem.

Turbulent flows also have a ‘dissipative’ aspect as we briefly introduced while presenting the
large and smaller scales. It causes the kinetic energy to transfer from the large eddies to the small
eddies. This process of transferred energy from the largest turbulent scales to the smallest is called
cascade process.

Finally, even though turbulent flow is composed of small scales as well, they are much larger
than the molecular scale and we can treat the flow as ‘continuum’.

b) Turbulence models

- Introduction

It is necessary to decompose the instantaneous variables into a mean value and a fluctuating
value. For example, the pressures and velocities are rewritten as: U, = U, +u,

P=F+p

Indeed, this decomposition is useful because while measuring the flow, we are interested in the mean
values of these variables and not their time history. For numerical resolutions, if the flow was always
to be considered as time dependant, which is always the case since turbulent flows are unsteady by
nature, it will require a very fine resolution in time. Therefore, when experimental and numerical
results are compared, it is the mean values of pressure, temperature..., etc. that we compare. For
instance, the pressure probes’ computerized system is automatically averaging the values in time, just
like the steady numerical simulation is doing. To solve the flow, the continuity equation and the
Navier-Stokes equation are considered:

op
Z 4 (pU), =0 1
er (PU); ®

opU. 2
L+ (PUU,), =P +uU,; + Uy =58,U0), @)

As far as the notation are concerned, i’ and ‘j’ indices refer to the term’s derivative with respect to
x; and x; respectfully. The next step is to replace the decomposed variables into equation (7) and (2).
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We make the assumption that the flow is incompressible, meaning that density does not depend on
pressure. We obtain the time averaged continuity and Navier-Stockes equations:

op =
—=+(pU,;),=0 3
o (PU,), 3

Bl . Sy e o el mm e
LA (pUU ), ==Pat oy +Usi=pug)); (@)

The dilatation term of equation (2) was neglected due to incompressible effects and an additional
stress term ﬂ appears in (4) due to turbulence, created by the fluctuating velocities existing within

the flow. This term called the Reynolds stress tensor is unknown and needs to be determined to close
the equation system. Indeed we have ten unknowns (3 velocity components, 6 stresses and the
pressure) for only four equations (continuity equation and the 3 components of the Navier-Stockes
equation). This is known as the closure problem. To close the equation system, several levels of
approximations can be used, thus generating different types of turbulent models. In our future
numerical simulations we will only compare two turbulence models but let us briefly present the
existing possibilities.

Zero equation models: For these models an assumption is needed to relate the Reynolds stresses to
the velocity gradients via the turbulent viscosity. This relation is called the Boussinesq assumption
and allows us to replace the Reynolds stress tensor by the product of the turbulent viscosity times the
velocity gradients. The turbulent viscosity is often referred to as eddy viscosity and leads to eddy
viscosity models. The particularity of these models is that they do not require the solution of any
additional equation and are calculated directly from the flow variables.

These models are very useful for simple flow geometries or initial phases of a computation but are too
simple for general situations. They are not able to account properly for convection and diffusion of
turbulent energy.

One equation models: For these models, a transport equation is solved for a turbulent quantity which
is usually the turbulent kinetic energy. The equation for the turbulent kinetic energy & =1/ 2@ is

derived from the Navier Stockes equation after making several simplifications which assume that the
viscosity is steady, incompressible and constant. A second turbulent quantity is obtained and usually it
is the unknown turbulent length scale that is needed. The length that is chosen usually depends on the
situation. As for the turbulent viscosity it is again calculated thanks to the Boussinesq assumption.

Two equation models: For this type of model, two transport equations are solved which describe the
transport of two scalars, usually the turbulent kinetic energy & and its dissipation €. The eddy viscosity
is obtained from k and &. Finally, the Reynolds stress tensor is again obtained by assuming a certain
assumption relating the tensor to the velocity gradients and the eddy viscosity.

Reynolds stress models: Up to now, eddy-viscosity based models have been dominating in the
context of industrial flow computations. However, the requested degree of accuracy and the flow
complexity are both becoming increasingly challenging. For example situations where separation is
combined with flow control in highly curved surfaces need more complex models. Standard eddy-
viscosity models usually under predict separation tendency. Indeed, the Boussinesq assumption
appears to be rather crude. For Reynolds stress models, the aim is to remove the linear Boussinesq
hypothesis, and replace it with a more general anisotropy relation. Up to then, the production model of
the eddy-viscosity based models was insensitive to system rotation. This new and more precise
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assumption allows the Reynolds stress models to get much closer to the flow physics occurring in
reality. The method to close the set of equations is similar. One transport equation is derived and the
Reynolds stress tensor and another is necessary for determining the length scale of the turbulence.

The order in which we have listed these different types of turbulence models has its importance since
they are becoming more and more complex and expensive in terms of computational time. After
taking these considerations into account, we decided to compare two of the two equation models, the
k-¢ Realizable Model and the k-@ SST Model. They are by far the most popular turbulence models
utilized now days because they offer a good balance between complexity and accuracy.

- The k-g Model

For the k-¢ model, as its name indicates, the two transport equations are solved for £ the turbulent
3

kinetic energy and ¢ its dissipation. The turbulent length scale obtained is equal to: ] = k—
€

2

As for the turbulent viscosity, it is related to k£ and ¢ as follow: v, =c¢ p k—
£

The unknown constants are determined thanks to simple flows where the equations can be simplified.
They are then determined by using experimental data.

The k-¢ Realizable model is very similar to the standard k-& model but has an additional constant C,
and a modified € equation. The main advantage of this Realizable version is that it works much better
that the classical formulation in regions which experience strong accelerations and decelerations. It is
particularly adapted to our case since we will be studying a high Reynolds flow, going through an
important deceleration at the leading edge and acceleration in the region around the suction side
where the pressure is at its minimum. The model is a high-Re model so it has problems in correctly
treating the flow close to the wall. Indeed, a low-Re number model is needed to complement the
model for solving the boundary layer if a grid with resolved boundary layers is used.

- The k-0 Model

Just like for the k-g& model, the turbulent kinetic energy £ is solved. However, instead of using the
dissipation € to determine the turbulent length scale, a specific dissipation term o, proportional to the
ratio of k over ¢, is used. This modification in the dissipation term avoids the k- model to encounter
problems when k£ — 0. Indeed, the k-¢ model develops large numerical problems in this situation

within the € equation, which do not occur for the @ equation. However, the model appears to be too
sensitive to inlet free-stream turbulence properties.

The SST k-o turbulence model was implemented by F. R. Menter in 1993. It is now days becoming
very popular. The model is a combination of the k-¢ and k-o models we just presented. The k-o
formulation is used in the inner parts of the boundary layer so that it can be used directly all the way
down to the wall. This extends the model capabilities to low-Re (wall) applications. The SST model
switches to the k-¢ model behaviour in the free-stream. Therefore, it does not inherit of the k-m
disadvantage of being too sensitive to the free-stream. To conclude, it seems like the SST model
combines the best of two worlds but it does present a major drawback. It needs to calculate the
distance from the wall. For an unsteady simulation, the calculation becomes extremely expensive
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since the height is determined at each time step. The problem is even worse for unstructured grids
because the value varies not only in time but spatially as well. However, we will be making steady
calculations on a structured grid; therefore we will not be penalized by this negative aspect. In
addition, the model is known to behave extremely well in regions of adverse pressure gradients and
separating flow.

¢) Wall treatment

The numerical approach we use close to the wall is of major importance because large
gradients in temperature and velocity occur in that regioh. Consequently, walls are the main source of
turbulence. Near them, the flow is fully turbulent; while further away the turbulence is increasingly
intermittent. The boundary layer can be divided into three layers:

- The viscous sublayer: at the wall the turbulent fluctuations have to disappear completely so
that the no slip boundary condition is satisfied. Therefore, in a region very close to the wall
called the viscous sublayer, the fluctuations are assumed to be very small and the time
averaged flow must approximately respect this:

- ~ L
VM ~0 , after integration: u=v CLd 0]
afy2

We will need a variable depending on the velocity gradient and the viscosity that, it is called

the friction velocity and is defined as follow: 4 = V(%J

We can now define a dimensionless velocity u" and a distance normal to the wall y* according
to the key variables affecting the close to the wall flow behaviour. Finally, the mean velocity

. . . u U
expressed in (1) is rewritten: u=— and y'= e, = u =y
uf

v
This approximation can be applied with good accuracy as longas y* <8.

In the viscous sublayer, molecular viscosity makes the flow behave close to laminar.

- The buffer layer: Prandtl showed that in this inner region known as the buffer region,
viscosity and friction velocity are still at the same scale than the turbulence. Indeed, the wall
is still quite close and therefore the size of the turbulent eddies is limited. Consequently, a
direct relation between the two dimensionless variables still exists. Just like previously for the
viscous sublayer, a law could be determined experimentally, and appears to be a good fit to
this delimited region:
x :von Karman constant

uw=f0") o u =lln y +b 0.26 > y* >30, < b:additive constant
K
d :boundary layer thickness

The exact values of the constants are still being debated, in particular for high-Re
applications, the most common values are: xk =0.41 and b=5.2

Within the buffer layer, the laminar and turbulent properties of the flow are both important.
The following figure represents the behaviour of u” as a function of y*, according to the three
layers:
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Figure 38: Decomposition of the boundary layer into three layers

- The outer layer: the outer region of the boundary layer has an edge velocity equal to U. An
outer law for this region has also been developed and corresponds to this relation:

u-U

= g(%)' The outer layer is fully turbulent and the turbulent properties play the major

role.

They are two approaches to solving the near wall problem:
1. Wall function approach, the flow is not solved but given by a function called wall function.
2. Enhanced wall treatment approach, the mesh is very fine and the flow solved everywhere.

turbulent core
’ turbulent core

buffer & busfes &
iblayes sublayes
| Wall Function Approach I l Near-Wall Model ApproachJ

1/ WALL FUNCTIONS

The wall functions are semi-empirical functions. Laws at the wall are used for mean velocities and
scalars whereas formulae are more appropriated for evaluating the turbulent quantities. The link
between the near-wall-cell solution variables and the respective quantities at the wall are respected.

In the Fluent software, two different wall functions exist.

The standard wall function utilizes a linear law for the mean velocity close to the wall, which then
becomes logarithmic further away. As for the turbulence, in agreement with our description of the k-¢
model, the standard wall function solves the k equation in the entire domain.

The Non-equilibrium wall function is particularly recommended for complex flows, where important
pressure gradients, rapid changes...etc, occur. Indeed, the log-law used to determine the mean velocity
is sensitized to pressure gradient effects. A two layer base allows for computation of turbulent kinetic
energy in wall adjacent cells, so that viscous and turbulent layers may be treated correctly.
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However, the wall function approach is rather limited. It will not be able to accurately solve the flow
in many cases. For instance, flows with near-wall effects like a highly laminar flow, flows near
rotating bodies implying the presence of strong body forces.... More importantly, we will be studying
the flow past an airfoil for a large variation of incidences. Therefore, there will be strong pressure
changes, in particular on the suction side of the profile where the variations will most probably not be
accurately detected if the simulation is a wall function is implemented. Let us now present the second
alternative which is to carry out an Enhanced wall treatment.

2/ ENHANCED WALL TREATMENT i

In order to correctly resolve the viscous layer, the turbulence models need to be modified. An
enhanced wall treatment will be computationally more costly since it is accompanied by a
considerable refinement of the mesh. The mesh needs to be much closer to the wall so that the
modified turbulent model is implanted right into the viscous sub-layer of the boundary layer.

k-¢ model

The enhanced wall treatment option is enabled. For a fine mesh which will be our case, a two layer
approach is applied. The near wall region is solved all the way to the viscous sub-layer. Within the
viscosity affected region a one model equation of Wolfstein is solved whereas in the region slightly
further from the wall which is turbulent, the k-¢ model is applied.

k-0 SST

This model is available for both low and high Reynolds number models. The k equation has the same
wall boundary conditions for the k- model than for the k-¢ model when the enhanced wall treatment
option is activated. For a coarse mesh a wall function approach is used, for which a logarithmic law of
the wall is applied. In this case, the transitional flow option is not active. We want the boundary layer
to be solved much more precisely; therefore the transitional flow option will be enabled. As a result,
the wall shear stress is obtained from the laminar stress-strain relationship. The corresponding mesh
guidelines for this option are to considerably refine the boundary layer mesh. These requirements are
identical than for the k-¢ model, since the first cell has to be contained in the viscous sub-layer, that is:

|Zt the wall adjacent cell — y* =1

However, a higher y+ is acceptable as long as it is well inside the viscous sub-layer: y* <5
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5) Results

a) Simulation parameters

We have decided to use the pressure far-field boundary condition proposed by Fluent. It

models a free stream condition at infinity, for which we need to specify the free stream Mach number
and static conditions. Therefore, as a preliminary stage before any simulation can be run, we have to
calculate the far stream conditions corresponding to the experimental conditions.
We should specify that the pressure far-field boundary condition is only applicable when the density
is calculated by using an ideal-gas law. Consequently, our calculation is based on two relations. First
of all, the ideal-gas law that is governing the flow during the simulation. Secondly, the dynamic
similarity criterion insures that the numerical and experimental conditions are equivalent.

e Idealgas: PV =nRT

After manipulating the equation of state, we get a relation that depends on the pressure and density of
the free stream such as:

P=pRT, R; : Gas constant of a specific gas
R . =286.9J/kg.K

We can deduce the density of the free-stream flow that is needed while manipulating the dynamic
similarity. We choose to apply international standard atmospheric conditions, the result is:

T, =288.15K
N } = p,=1.225063 kg/m’

P, =101325 Pa

e Dynamic similarity: ~Re,, =Re,, , Re,,, =3100000

From the expression of the Reynolds number, we directly deduce the free-stream velocity that we will

U Re,,
have to impose: Re,, =222 =y =—"2f — y _4487675 m/s
H PC
However, the calculations are not totally finished since it is the free stream Mach number that is

required, the final step is to deduce its value from the free-stream velocity and the speed of sound:

M=K , Where: a=\[yRT =  M=0.131927
a

To summarize, the values to enter in the pressure far-field panel: [P =101325 Pa X sogoicit,_glow

T = 288.15 K Yaamponent_ﬂﬂw
M =0.131927

=cosx

=sina

Finally, we obtain Re  after initialising the flow and checking the reference values given after

num

computing from the pressure far-field boundary conditions. We are satisfied by the resuit

since Re, =3072362 , which represents a relative error of only 0.9% compared to the

num

experimental conditions.
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FLUENT PARAMETERS

Model:

- Solver: Coupled, implicit, Node-Based

- Energy: activated (obligatory with pressure far-field boundary conditions)

- Viscous: k-¢ realizable or k- SST
Material:

- Air: p — Ideal gas (forced by the pressure far-field BC) & p=1.7894*10° kg/m.s
Operating conditions:

- Operating pressure: 101325 Pa

Pressure far-field BC:

- Gauge Pressure: 0 Pa - X component of the flow direction: cos (ai)

- Mach number : 0.131927 - 'Y component of the flow direction: sin (ar)
- Temperature: 288.15 K

Solve: —  Control solution

- Flow: 2™ order upwind
- Turbulent kinetic energy: 1* order upwind
- Turbulent dissipation rate: 1* order upwind

b) Boundary layer

At the very beginning, we undertook a coarse calculation at a neutral angle of attack. The aim
was not only to get a broad view of the problem but mainly to get an order of magnitude of the Skin
Friction Coefficient. Consequently, we deduce an estimated value for the wall shear stress. The idea is
to finally determine what should roughly be the height of the first node close to the wall, in order to
respect the meshing requirement of y* ~1. Wall shear stress and skin friction coefficients are related
by:

t,, Wall shear stress (Pa)
C, Skin friction coefficient
p Fluid density

w

U, Free— stream velocity (m.s™")
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The velocity to be considered is the relative velocity between the airfoil and the free-stream passing
around the body, and that is: U, =44.87675 m/s . The following expression provides us with the
relationship between the skin friction coefficient and the friction velocity. This last parameter is the

missing link between the dimensionless wall distance y* and the distance to the wall from the adjacent
cell, y. y" and y are related as follow:

i o u. Frictionvelocity (m.s™)
p v Local kinematic viscosity
Uy " s "
y ==y y" Dimensionless Wall distance
1%

y Distance to the nearest wall

We have to bear in mind that the calculation is node-based and therefore the calculation is done in the
middle of each cell so the height of the first cell is actually 2y.

A value of y* ~1 is the uttermost to be considered, the 90000 1

first step is to recuperate the value of C; from the coarse 800283 1 2

calculation. Iis distribution along the profile’s surface is ey e

represented by the plot on the right. Evidently, the front 60003 1

of the airfoil generates important friction since the flow sin ™" *

is dramatically slowed down at the leading edge which Cofmﬂg}m e { ¢ .

explains the important peak. For our calculation, we take e I

that highest value so as not to overestimate the first Wed 0 .

height: mal .
Cf =8.5X10_3 DM-O.Q 0 01 02 03 04 05 06 07 08 09 1
r,, =10.47 yal = y~4.99x107 Posltion (m)
u, = 2.92344

We rounded this value up to: y =5x107° and imposed the distance to the first wall adjacent cell. The
following plot represents the y* distribution along the airfoil’s upper and lower surfaces for the

highest incidence of 24°. Just as expected, the

1.60e+00
values of y* are in the correct interval since they .
1.40e+00
are surrounding the desired value of 1. As a direct :
. N 1.20e+00 -
consequence of the high values of C, in that ;
1.006+00 |
region, the peak is maintained and »* reaches 1.43. H
) Wall 800001
However, all the values are contained such as Yplus .
6.00e-01 |
y* e [0;1.43], which is more than acceptable ° J
. . . 4000 e e
since the first cell always remains in the viscous o ;/g_,
» A T [ )
sublayer (y* < 5). To conclude, we can validate the 0..°'°"‘ wstIng
ChOice Of ﬁrSt height SO that: um-ﬂl 0 01 02 03 04 0.'5 UYS 07 08 09 1
Yy 1st _height = 5 x 10_6 Position (m)
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¢) Evolution of the lift coefficient

The final aim is to compare the pressure distributions obtained numerically to those measured
during the experimental tests. However, we still need to determine which of the turbulence models is
the most capable of capturing the different features of the flow. Moreover, the most challenging range
for a model’s reliability is at high angles of attack. The adverse pressure gradients become
increasingly high and cause the flow to separate. A circular flow develops and the separation bubble is
a very high turbulent region. In order to compare the k-¢ realizable and k-@ SST model abilities, we
have calculated the lift coefficients of each model for a series of angles of attack going from -12 to 24
degrees. The following figure also contains the experimental results obtained by Pinkerton, which are
our reference in this study.

Comparison of the Lift coefficients
SRS SRS S - e ‘T e
& "
o + ¢
s ~—+—Pinkerton
% 0.5 o e e S S mmaey kw_SST
o | A1 ke rea
E »
-15 10 D [0} 5 10 15 20 2b 30
1‘ 05— S T
v
t _ 1‘0 . A . -
angle of attack a (degrees)

Figure 39: Numerical and experimental lift coefficients with respect to a

From the curves represented on figure 39, we can make several observations. First of all, the
two models ke-realizable and kew-SST are very accurate for the prediction of C, , as long as the flow
remains attached. Indeed, that range of angles of attack is characterized by the linear portion of the
curves and it approximately corresponds to o € [—-12;15] degrees. The two predictions are
practically identical and none of the models can be favoured.

The second portion of the curve is deviating from the previous linear tendency, separation
occurs at different incidences according to the turbulence model. At an incidence of about 12 degrees,
a trailing edge stall occurs very early for the kw-SST model. Indeed, if we observe the evolution of the

experimental C; data, the curve remains linear well after 10°. At the contrary the kw-SST curve

seems to foresee separation and slowly deviates. This gets noticeable on the Cy, curve at around 15-18
degrees, but by analysing the data we have for smaller incidences, the velocity vectors indicate that
the process has already started.
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A reversed flow appears at the

very tip of the airfoil
U= Rl TR / ” ¢
> e -/ ./"‘
E “_‘.v 112 |\ L LU LB R .,/
: L]
Slightly upstreams Point of Slightly downstream
Attached flow separation Reversed Flow

Figure 40: Velocity vectors for the kw SST model at a = 12°

As for the ke-realizable model, at 12 degrees it computes a fully attached flow with no sign of close
separation. As we just mentioned, these characteristics of the flow may not have a direct impact on the

C, values at 12 degrees since they are very close, 1.35 and 1.39 for the kw-SST and ke-realizable

respectfully. Nevertheless, we conclude that the kw-SST model anticipates separation which can be
considered as a slight drawback of this particular turbulence model since as a consequence

the C, curve will be in advance in the separation region, which leads to a small underestimation of

the values.

The incidence is gradually increasing and with it, the separation point moves upstream. At the
incidence of 20 degrees, all three C, curves are now declining, sign of a separated flow where the
boundary layer has detached from the airfoil surface. Let us again compare the flow close to the

airfoil surface for both models. As a relevant comparison, we draw a few path lines in that region to
highlight the importance of the separation bubbles.

ocity-magnitude:_0_10 20 30 40 50 60 70 80 90 100110120130

0.2 0.4 0.6 08
X

Figure 41: ke_realizable at o = 20 degrees Figure 42: kw SST model at a = 20 degrees

From figure 39 (C;/ ), up to now we have observed that the kw SST model was slightly anticipating
separation at about 12 degrees. Thus, the maximum lift coefficient is not as high as it should
be, C, ., sy #18° instead of 20° but the results’ accuracy remains very satisfying. Indeed, in the

entire separation region (18° — 24°) the SST curve follows the experimental one very well. At the

contrary, the ke_realizable model which gave an almost exact value of C, once in the separation

region the model is not capable of correctly evaluating the flow properties. Figure 39 (C./ a)
indicates that the lift coefficients are too high, from which we conclude that the model is
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underestimating the importance of separation and sirﬁply not capturing the turbulent effects. This
assumption is corroborated by the comparison of figures 41 and 42. The separation bubble of the ke-
realizable model is much smaller than the kw-SST model. This last model provides accurate results
since it is in close agreement with R. M Pinkerton’s data. Consequently, it is chosen for the rest of the
comparisons to the experimental information. We will now continue to evaluate the relevance of the
shear stress transport model (SST) from the pressure distribution data.

d) Pressure distributions

Being able to obtain accurate numerical predictions of the pressure distributions along the
surface of an airfoil is fundamental. It can be extremely useful for designing an airfoil for instance.
Indeed, the boundary layer equations can be solved without actually knowing the airfoil shape
provided the pressure distribution is given. As we know by now, a profile which results in early
separation is clearly undesired due to the associated loss in lift and increase in drag. Consequently, the

"designer first prescribes the desired pressure distribution and then calculates the boundary layer to
insure that there will be no separation. Indeed there are ways for him to check that no separation is
present in the flow. When the boundary layer approaches the separation point, it develops the so
called Goldstein singularity. In a very simplified way, it can be seen on the model of the boundary
layer equation by the absence of the viscous term.

He will solve the so called—inverse problem, to obtain the shape of the airfoil from the prescribed
pressure distribution. This inverse design principle is a widespread method but its reliability depends
on numerical accuracy.

In the experimental report of R. M Pinkerton, data has been collected for many incidences. We have
compared the kw-SST model’s results to those distributions.

From the previous lift coefficient values we may guess that the distributions will be similar. Indeed,

C, is directly related to the pressure coefficients that vary all along the airfoil’s surface by the

following relation: C, = IC o nkdA ‘A’ represents the wing surface area, ‘n’ the normal vector
pointing into the wing and ‘%’ the vertical unit vector, normal to the free-stream pressure.
This expression defines C, as being the integral of vertical pressure forces over the entire wetted

surface area of the wing. We deduce that the lift coefficient is directly related to the surface area
enclosed by the C, distribution. Therefore, since the C, values are relatively close to the

experimental data, we expect the same from the pressure distributions. We superposed the curves,
which can be found just after the following observations we made about them.

Pressure distributions where: o e [-12°;12°]

We may recall that all of these incidence are contained within the linear part of the C; versus

o curve. The flow is fully attached and the values of C, very close from the experimental data.

All the pressure distributions are quasi identical in shape to the experlmental ones. However we
notice that for every incidence, the domain is a bit shifted downwards due :
to an underestimation of all the pressure coefficients. This is the case for
every curve. It can be attributed to the geometry of the NACA 4412 airfoil
we created. In reality, the trailing edge of the airfoil has a certain thickness
since an infinitely fine airfoil is impossible to manufacture. While
generating the geometry, we had to close the domain somehow and a net

ending of the profile, with a vertical line, seemed unwise. Therefore, the

Trailing edge
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the trailing edge we created. This representation seems to generate slightly more circulation than
desired since the curves, lower than expected, would correspond to a slightly higher incidence.
Despite this slight error, we consider the results as relatively satisfying in this linear part of the
incidence range. Yet there can be improves and in future studies it would be interesting to consider
the effect of different trailing edge representations.

Pressure distributions at: o =16°,18°,20°

These three plots are contained in the separation region, after the onset of separation at C,, . The

pressure coefficients distributions are very good since’ almost equal to the test data. The previous
tendency of underestimating the C,, values is damped. This observation supports our assumption that

the trailing edge was modifying the amount of circulation. Indeed, once the flow separates all the
portion of the airfoil downstream of the separation point hardly contributes to the production of lift.
Consequently, the geometrical approximation we made at the trailing edge has little effect. From 16 to
20 degrees, the distribution gets closer and closer to the experimental one. To conclude, the kao-SST
model has proved to be very reliable in this critical range of incidences.

Pressure distribution at: o = 24°

The incidence of 24° is the highest we simulated and corresponds to a highly turbulent flow. The
flow separates very early from the airfoil’s surface, at about 25% of the chord. Figure 43 illustrates
the velocity field and several stream-traces that highlight the presence of an important separation
bubble.

velo gnitude: 0 10 20 30 40 50 60 70 80 90 100110120130

X

Figure 43: kw-SST model at a = 24 degrees

The pressure coefficients are perfectly matching the data for the lower surface but the results for the
upper surface are much less good than previously. This is particularly the case for C, e [0,0.3] of

the chord; probably due to the difference in the numerically predicted separation bubble and the real
one. They have different impacts on the upstream flow.

To conclude we may say that the kw-SST turbulence model was capable of correctly estimating the
amount of separation for most of the range of high incidences that follow the onset of separation.
Despite the 24 degrees distribution of pressure coefficients, the inverse design procedure could
realistically rely on numerical prediction obtained thanks to the kw-SST model. However, the trailing
edge effect caused by the thickness representation would need to be corrected. In addition, the
incidence from which the model is not reliable any more would need to be determined.
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Pressure distributions along the NACA 4412 airfoil
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Figure 44: Pressure distributions at - 8 degrees
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Figure 45: Pressure distributions at - 6 degrees
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Figure 46: Pressure distributions at - 4 degrees
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Figure 47: Pressure distributions at - 2 degrees
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Figure 48: Pressure distributions at 0 degrees
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Figure 49: Pressure distributions at 2 degrees
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Figure 50: Pressure distributions at 4 degrees
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Figure 51: Pressure distributions at 8 degrees
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Figure 52: Pressure distributions at 12 degrees
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Figure 53: Pressure distributions at 16 degrees
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Cp distribution / alfa = 18° | 15 Nov 2007
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Figure 54: Pressure distributions at 18 degrees
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Figure 55: Pressure distributions at 20 degrees
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Figure 56: Pressure distributions at 24 degrees
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CONCLUSION

The inviscid study resulted in the creation of a program, based on the Karman Trefftz theory that
can be useful while making inviscid computations. Indeed, the CFD domain’s boundaries introduce an
error on the numerical results. Therefore, the user is required to enter the relative error that he
considers as acceptable, which differs from one application to the other. As a result, the program
provides him with the corresponding distances according to which the CFD domain is defined. The
numerical simulations we conducted corroborated the program’s predictions. We fixed Cp’s relative
error to 5% so that the domain has a negligible influence. Then the simulation parameters such as the
discretization schema and the order of accuracy were modified in order to correspond to an airfoil
application. Finally, the pressure distributions along the surface were found to be very similar to the
theoretical expectations. We may deduce that the Karman Trefftz transformation is a valuable theory
since it can help us to define the CFD domain of any inviscid calculation around an airfoil. It is also a
very good reference to compare the exactitude of the numerical results.

From the viscous results we obtained, we may now draw conclusions relying on the data we
gathered and analysed throughout the numerical simulations. We had to make a choice as for which
turbulence model to use, based on the comparison between the numerical and experimental lift curves.
To conclude, the ko-SST model is evidently the best model for the prediction of the flow across a
whole range of incidences. Indeed, at high angles of attack, the amount of separation is close to the
experiments. As for the k-¢ realizable model, it is used in most of the turbulent flow calculations due
to its robustness, economy and reasonable accuracy. However, its performance has appeared to be
very poor for solving the flow around an airfoil at high incidence. Indeed, for non-equilibrium
boundary layers, it will tend to predict the onset of separation too late although not so badly in our
study, but above all it under-predicts the amount of separation. Separation is a critical component of
turbulent aerodynamic flows and cannot be neglected. It influences the overall performance of many
devices, such as aerodynamic bodies like wings for instance, but also diffusers, turbine blades...etc.
The aerodynamic performance is very affected but separation also has a strong influence on multi
phase phenomena or wall heat transfer for example. The ke-realizable model predicts reduced
separation that leads to an optimistic prediction of machine performance. The consequences can be
dangerous in many applications. If the prediction of wing stall on an airplane is not only inexact but
higher than in reality, it may be catastrophic.
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APPENDIX A

1. Karman-Trefftz transformation: Matlab programs

Main.m

o0

MAIN PROGRAM

%% INPUTS: Airfoil geometric and flow (incidence) characteristics
[F,G,m,name,N1,AlfaD] = textread('airfoil data.txt','$7f $7f $7f $1lc %*s %f %*s %f',1)

% Compute the Karman-Trefftz transformation function with complex
z,U_z,x1_zeta,x_zeta,y_ zeta,U_zeta,zeta,beta,b,XLE,Cu,Cp] = ktreff(AlfaD,F,G,m,Chord,N1)

2/ DEDUCING INCIDENCE FROM LIFT %%%33%%3%%%%3%%%2%9%%

% %% INPUTS: Airfoil geometric characteristics and 1lift coefficient

% [F,G,m,nane,N1,CL] = textread('airfoil data.txt','$7f 37f %7f %1llc %*s %f %*s %£f',1)

% ion of the flow incidence from the lift coefficient

% mmaj] = incidence(CL,F,G,m,Chord)

%

% the Karman-Trefftz transformation function with complex

% eta,y_zeta,U_zeta, zeta,beta,b,XLE,Cu,Cp] = ktreff(AlfaD,F,G,m,Chord,N1)
$%%%32%9%%%%%%%%% 3/ COMMON PART: CFD DOMAIN DIMENSIONS %%%%

%% Calculation of the cocefficients

[Gamma,CL] = coeff(AlfaD,F,G,m,Chord,beta,b,XLE)

%% Domain calculation
[IX,JY,f,Cp_max] = domain (XLE,m,b,AlfaD,F,G,beta,N1,Gamma)

4/ USEFULL FIGURES $%%%%

% %% CIRCLE REPRESENTATION

% hold con

$ grid on

% figure(l)

% title('cylinder to transform') R
¢ ploti{real{z),imeg(z), 'b"}

$ %, real line), im 2

% %% AIRFOIL REPRESENTATION

% daspect ([1 2 1]1)

% hold on

$ grid on

¢ figure({2)

% title('Karman-Trefftz airfoil')

% Xlabel('x"')

% Ylabel('y"'")

¥ plot( )y (N1-1)),'z")
$ hold of

% DISTRIBUTION ALONG THE AIRFOIL (Cu = 1 - Cp)
2 5 1)

%

% sure dist

% c')
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)
Y, Cul2s (N1=1)),"x")s

plot (%
hold o

Fh

%% VELOCITY DISTRIBUTION ALONG THE Al

'OIL

50 o

eclocity distribution')

o

&0

1 (N1-1)),'c");

o0 o

o0

. OUTPUT: Coordinates and velocities in bvth p"ano'

and aerodynamic coefficients EEeBe5%%%

o0

LIFT AND PITCHING MOMENT COEFFICIENT

opfv('I \s opl‘a\lTU\Analyfic airfoils\Matlab\resultl.tzt','w');
IDTl[H ([ld, "PZ TRANSFORMATTION\n\n\n')

A ! \n', F)

n';G)

5 oE\R", m)

%6.6f\n\n"',ALfaD)

o op

@ o of of

fprint f\
fpEANEE (£18

Coordinates and velocities\n\n\n')
Ye Uc X _zeta y_zeta Cul\n\n'

b

L (z(1:(N1-1)));imag{z(1:(N1-1)));U_=z(1:(N1-1));xl_=z
)) 1
[real(z(N1));imag(z(N1));U_z(N1);x1_zeta(Nl);y zeta(N1);U_zeta(N1)];

ca(ls (N1=1))sy _zetall: (N1~

OO O of o oP o oF

%
% '$6.6f %6.61T $6.6f $6.6fF %6.6f $6.6f\n',VECT);
% %6,6f 6f $6.6f %6.6f $6.6£\n\n\n', VECT last);
% n\n') ‘
% ip"*n* Gamma = %6.5f\n',Gamma)
fprint CL = %6,.5f\n',CL)

oo oe

fclose (fid)

- THE JOURNAL TO AUTOMATICALLY
%2 GENERATE THE AIRFOIL GEOMETRTY %%%%%
containing the airfoil coordinate

| fid = fopen('E:\sophia\ITU\Analytic airfoils\Matlab\coordinates.txt','w')

fprintf(fid, '/ Journal file for GAMBIT\n')
fprintf(£fid, '/ Identifier KT _00_15 40\n\n\n')

zcoord=0*ones (1,500);

VECT = [x_zeta;y_zeta;zcoord];

fprintf (fid, 'vertex create coordinates $6.6f %6.6f %$6.6f\n',VECT);
fclose (fid)

KXPORTATION OF THE PRESSURE COEFFICIENTS AND ATIRFOIL %%%2%%%%%
% COORDINATES FOR COMPARISONWITH FLUENT RESULTS %%%%%%%%%4%%%

fid = fopen('E:\sophia\ITU\Analytic airfoils\Fluent\airfoil\KT-00-15-
40\bon_500points\analytical datalalfa 10.dat','w")

: CPvect = [x_zeta;Cpl;
£ fprintf(fid, ' %6.6f %$6.6f\n',CPvect) ;
. fclose(fid)




Ktreff.m

00000
BT

200000050030
BBETOG GG O

2000

function[z,U_z,x1_zeta,x zeta,y_ zeta,U_ zeta,zeta,beta,b,XLE,Cu,Cp] =
ktreff (AlfaD,F,G,m,Chord,N1)

beta = atan(G / (1+F)):
b =Chord / (2 *m) * (1 - (F/ (1 + F)) ~ m);

£f=F/ b;
g=G/ b;
] - |XLE = m * b - Chord;
AlfaR = AlfaD * pi / 180.0;
n =Nl - 1;
% first define i=sqrt(-1) and parameters a(circle radius

i = complex(0.0,1.0);

a=>b *(1.0 + (f / b)) / cos(beta);
V inf =1

NN=n/2+ 1; % Aim: have the

and lower

ct same number of points on the uppe

Q
e}
[0}
IS
)
I
N
*
hel
i
~
=]
<~
.

$ Angle increment

s for ez

t loop cal ating the ch point

theta = -=(1i - 1) * dTeta; ¢ Ind

gonometric direction distribution of te

for k = 1:2 % Second loop considers the lower surface and then the upper

%% CALCULATICN OF AIRFOIL COORDI
} SinT = sin(theta); % SinT,

and ARG are terms used to simplify the exp

! CosT = cos(theta);
| ARG = -F * CosT + G * SinT;
R = ARG + sqrt(l + 2 * F + ARG *ARG);

ii = 1i;
if (k == 2)

ii = n -1+ 2;
end

z(ii) = b * complex(R * CosT,R * SinT);
zp = (z(ii) + b).” m;
zm = (z(ii) - b)."m;

zeta =m * b * (zp + zm)/(zp - zm); % Karman-Trefftz transformation

x1_zeta(ii) = real(zeta); % Airfoil coordinates
x_zeta(ii) = real(zeta) + XLE + 1;
y_zeta(ii) = imag(zeta);

2 *pb~2
(z(ii) = b) " m) ~ 2;
Mod_dzetadz = sqrt(real(dzetadz) ”~ 2 + imag(dzetadz) * 2); % Module of d: adz
thetal = theta - AlfaR - asin(sqrt((F ~ 2 + G ~ 2)/((1 + F) ~ 2 + G ~ 2)) * sin(theta
+ atan(G / F))):

U_z(ii) = 2 * (sin(thetal) + sin(AlfaR + beta)); %\ in plane

U_zeta(ii) = U_z(ii) / Mod_dzetadz; % Velocit on the ai in the zeta
plane

% Pressure cocefficient

Cu(ii) = U_zeta(ii) * U_zeta(ii):;

Cp(ii) = 1 - Cu(ii);

theta = - theta;

end

end
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incidence.m

200090000000
THEIBELTLH%

2269000
]

= incidence(CL, F,G,m, Chord)

b = Chord / (2 * m) * (1 - (F/ (1 +F)) ~m;

A2 = (L+F) ~2+G" 2; % rcle radius squared
A = sqrt(A2); % Circle radius

beta = atan(G / (1+F));

ned as a 'module’

Calculation of the airfoil incidence
Gamma = (CL * Chord) / 2:
AlfaR = asin(Gamma / (4*pi*A*b)) - beta;

AlfaD = AlfaR * (180 / pi); % Airfoil inc

in degre

2 2,60 0
5595%%%%%

function [Gamma,CL] = coeff(AlfaD,F,G,m,Chord,beta,b,XLE)

et

‘ull par
Cbb = Chord / b;

AlfaR = AlfaD * (pi / 180); incidenc
A2 = (L+F) ~2+G" 2; 3 lius squar
A = sqrt(A2); % (L'ule radius

as a 'module'

4 & p1 x A * b * sin(AlfaR + beta); ¢ Circulation
2d (ref Jouk pd)
CL = 2 * Gamma / Chord; % Lift coeffi

itta condition is

=
h

2 * pi * sin(2 * AlfaR); % Cl and C2 are terms used to

* sin(AlfaR + beta); N

% Pitching moment
Srd) 3 $ Pitching moment

.g edge ; 8
MO 5 z {LE) / Chord = 0.25);

oo

Pitching moment

domain's dimensions nec
fficient error is f

ermine the
p X

sary for a CFD
d. The maximum value of Cp

essure Cco
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function[IX,JY, f,Cp_max] = domain (XLE,m,b,AlfaD,F,G,beta,N1,Gamma)

AlfaR = AlfaD * pi / 180.0;

f=F/ b;

g=G/ b;

ci = complex(0,1);

V_inf = 1;

A2 = (L+F) ~2+G"* 2;
A = sqrt(A2);

mb m*b;

ml =1/ m;

IX = -80;
JY = 62;
NT = - 2 * IX + 1;

quest = 0;
while (quest ==0)

for i = 1:NT

5

3
Y
Zeta(i) = complex(X,Y)

of the domain limit (line), in the z plane

z1l = Zeta(i) + mb;
z2 = Zeta(i) - mb;
zz = (z1 / 22) ~ ml;

zD(i) = b * (1 + zz) / (1 - zz);

....... ong the limit

zl = zD(1i) + b;

z2 zD(i) - b;

zz = 2z1 " m - 22 " m;

dZetadz (i) = 4 * (mb) ~ 2 * ((zl1 * z2) ~ (m-1)) / (zz) ~ 2;
Mod_dZetadz (i) = abs(dZetadz(i)):

I

% Velocities in the z plane

zD1(i) = (zD(i) + F*b - ci * G*b) * exp(-ci * AlfaR);

w_zDl(i) = V_inf * (1 - A"2 * b”2/ zD1(i)”2) + (ci * Gamma) / (2 * pi * zD1(i)):
vzD(i) = abs(w_zD1(i));
VZeta(i) = VzD(i) / Mod_dZetadz(i);

= Vzeta (i) H
Cp_line(i) =1 - Cu(i)

end
% Calculation of the maximum error on the line
Cp_max = max(abs(Cp_line(:)));
if (abs(Cp_max) < 0.0047) % The result is too accurate and can be more economic
JY = JYy - 0.1;
else

if (abs(Cp_max) > 0.0053) & The error is too large compared to its permitted value
JY = JY + 0.1;
quest = 1;

else
quest = 1;

end

end
end
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APPENDIX B

1. CFD domain dimensions as a function of incidence

a) Xdown / o
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2. CFD domain dimensions as a function of t:he lift coefficient

a) Xup /Gy
Effect of thickness ratio (constant camber: y = 0%)
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d) Yaown/Cs

Effect of thickness ratio (constant camber: y = 0%)
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APPENDIX C

2D SPHERE

General specifications

Material: air
- Viscous model: Inviscid
- Boundary conditions

Inlet [ velocity inlet ] : V,, =1 m/s (0.=0°)
Outlet [ Pressure outlet ] : Py, =1 atm
Sphere < wall

X axis <> Symmetry

- Domain dimensions

The pressure coefficient is one the main parameters we are interested in. In any case, the
numerical study introduces a certain error which makes real conditions impossible to achieve. The
simulation takes place in a limited area as opposed to infinite boundaries of reality, which impacts on
the accuracy of the results. The pressure coefficient is expressed as follow:

2
Cp=l—[V£) = limCp — 0

Indeed, infinitely far from the sphere, the velocity is equal to the free stream velocity. In the
numerical case this is not achievable. However, a certain error on the pressure coefficient can be
tolerated, for which the results accuracy remains acceptable. We will now undertake the analytical
calculation that gives us the domain dimensions with respect to the error.

We consider the circle of radius ‘e’ inscribed in a complex plane (x, i), where: z = x + iy.

a’ a .
W*(Z)=Vw‘(l—?)=Vw(l_m) v
: A

2 2 2:
wt l—a—zxe"’” = l—a—zcos(2¢9)+ia—zsin(26‘)
r r

v
x

2
14 a’ at
Cp=1-|— = Cp=2—cos(20)——
P [Vm) P rz 0( ) r“

We know that the maximum value of the pressure coefficient is located at the stagnation point and the
minimum at the top of the circle:
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' a@ a2 1
CPu —> Max (cos20)=+1 = 20=0-60=0 CPo =25 - =5 -
rrroror
i a a 2 1
Cp,;,—> min(cos20)=-1 = 20=7z—>0=rx/2 Cpun =22 - =2 =
ror S

By using these expressions, we deduce approximately what is the ratio of » (the domain’s radius) over
a (the circle’s radius), for a given Cp error. The following results have been determined for
characteristic errors.

r Cp;llin Cpmax
10 -0.02 +0.02
20 -0.005 +0.005

In our study an error of 0.005 on the pressure coefficient is satisfying. The results remain sufficiently

accurate. Consequently, we must impose: % =20

1) Discretization scheme

- Discretization problem

For the airfoil study, the aim will be to compare the numerical results provided by Fluent with the

analytical calculation. These theoretical transformations do not take any viscous effects into account.
Therefore, the simulation was run under inviscid conditions.
In this ideal frictionless case, the flow around the sphere remains smooth and undisturbed by the
geometry. The pressure coefficient Cp is represented as a function of the sphere angle 6. Positive
values of Cp indicate high pressures while negative values indicate low pressures. As we can see on
the graph, the pressure is very high at the stagnation point and consequently initiating a drag force.
However, it is cancelled by the identical negative drag occurring at the back of the sphere. To
conclude, in these theoretical conditions, the sphere does not produce any drag at all.

Under these considerations, a major problem appeared in our first simulation. Despite the inviscid
model, the results appeared to underline a major contradiction with our previous conclusions. The
figure below represents the velocity vectors of the flow:

Discretization scheme
- Pressure : Standard

- Pressure & Velocity: SIMPLE
- Momentum : 1st Order Upwind

The resulting velocity distribution is very surprising since we were not expecting to have any
disturbances in the flow field. Flow separation is due to friction, which causes the streamlines to
reverse. The separation point is located on the second half of the sphere, resulting in the formation of a
separation bubble at the back. Another consequence of this is that the flow field surrounding the
sphere is no longer symmetrical. The region of separated flow is dominated by unsteady, recirculating
vortices that create a wake and consequent drag. Our first assumption is to consider that the
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discretization schema is not adapted to this case of study. Therefore, each of the inputs needs to be
investigated independently. Consequently, we will try to select the best fitted schema for our problem.

a) Choice of the Solver

The discretization scheme’s characteristics we need to enter in Fluent depend on the solver we
apply to the Euler system. There exist two different types: ‘Segregated’ or ‘coupled’. These two
approaches differ in the way the continuity, momentum, energy and species equations are solved.

- Coupled solver

The coupled solver solves the equations of continuity, momentum, energy and transport
simultaneously as a system of governing equations. The system can be written as a single vector as
follow:

P pv 0
pu pvur+pi a
g;IWdV +C§[F—G]-dA= IHdV with: W={ pv ¢, F= pvv+pf , G=y 7, r, H<> sourceterms
g ) pw pyvw+ p/€ Ta
pPE pvE+py TV, +q
p : density p: pressure
Where: < v:velocity T . viscous siress tensor
E :energy q : heat flux

We notice that there are 6 unknowns for only 5 equations. The equation relating the energy E and the
enthalpy H is necessary to close the system, so that we have: g- g _% where: H = h+|v|2 /2

The coupled set of governing equations is then discritized in time by using an explicit or an implicit
time marching solution, until a steady state solution is achieved.

- Segregated solver

According to the required order of accuracy, the ‘order of the upwind scheme’ needs to be
selected. This 1* parameter influences the approximation technique applied to calculate the quantities
across the cells.

The segregated solver solves the equations sequentially. First of all the momentum equation is
disretized. The aim is to solve the velocity field but the pressure field and mass fluxes at the face are
unknown. The pressure values are needed for this first resolution step, which leads us to adopt a
‘Pressure Interpolation Scheme’.

Finally, since the segregated solver does not solve the equations simultaneously, the pressure and
velocity fields have to be coupled so that their inter-dependency is taken into account during the
resolution. Therefore, the ‘pressure/velocity coupling’ is the last parameter to fix.

Both solvers are now applicable to a broad range of flows. Originally, the segregated solver was used
for incompressible and average compressible flows, and the coupled solver strongly favored for high
speed compressible flows. Now days, the coupled would be best suited if strong body forces intervene,
causing the flow to be highly coupled. In our study it is not the case, and taking into consideration that
a coupled implicit solver takes up more memory, we choose to use the segregated method.
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- Order of Upwind scheme

When 1* order upwind scheme is applied, the quantities at each cell face are held constant across
the face and equal to the cell average value of the upstream cell. This approximation greatly simplifies
the calculation.

However, if a higher order of accuracy is desired, a 2" order upwind scheme is needed. The cell

quantities are determined by using a multidimensional linear reconstruction approach. The value ¢, is
determined by using the cell centered value of the upstream cell and its gradient as follow:

& : Quantity at the upstream cell center
¢, =9+Vg- As V¢ :Gradient of this quantities upstream

As : displacement vector between both cells

The gradients are computed by using the divergence theorem. Its expression in discrete form is the
N faces ~

following: V¢ =% Z P, A.
S

The computational effort required in this case is greater than for the 1* order scheme so the choice as
for which to use has to be made by taking into account both the computational capacity and the desired
level of accuracy.

A simulation was run by using a 2" order upwind scheme; however this modification alone did not
affect the presence of separated flow. The following velocity vector field was obtained, on which the
separation bubble still appears:

- Pressure : Standard
- Pressure & Velocity: SIMPLE
- Momentum : 2™ Order Upwind

If we compare both results obtained up to now, the velocity field is nevertheless different with a higher
pressure appearing at the separation point and a modified velocity field downstream of the this point.
Considering that this parameter affects the result we decide to use a 2" order upwind scheme for all
the following simulations.

- Pressure Interpolation schemes

The default scheme ‘Standard’ in Fluent considers the momentum equation coefficients used to

interpolate the pressure values. This procedure is valid as long as the pressure variation between cell
centers is smooth. If the geometry produces jumps or large gradients between the control volumes it
produces a high gradient of pressure profile at the cell face. Consequently, the discrepancy increases
greatly and large overshoots/undershoots of cell velocity occur.
Another assumption made by the standard scheme could explain the incoherence of our result. Fluent
assumes that the normal pressure gradient at the wall is zero which is valid for boundary layers.
However it is not the case in the presence of curvature, characteristic of a spherical geometry. These
false pressure gradients at the wall lead to inaccurate velocity distributions along the wall.
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determine the staggered pressure across a staggered control volume. This interpolation
technique is recommended for flows in highly curved domain. This scheme seems particularly adapted
for a sphere and we run a new simulation using this pressure interpolation method.

- Pressure : PRESTO !
- Pressure & Velocity: SIMPLE
- Momentum : 1™ Order Upwind

The result is very satisfying. Indeed, the separation region has disappeared and the flow no longer
separates on the second half of the sphere. The velocity field corresponds to what we expect of an
inviscid model, which leads us to apply the PRESTO! interpolation method for the next simulations.

- Pressure / Velocity coupling

If we consider the Navier-Stockes set of equations, a linear dependence between pressure and
velocity exists, and vice versa. A specific treatment is required to formulate this pressure velocity
coupling. Several methods exist for a segregated solver.

The default method provided by Fluent is the SIMPLE algorithm. For relatively uncomplicated
problems, a converged solution can be obtained faster by using the SIMPLEC method. Indeed, the
pressure correction factor is usually set to 1, which speeds up the convergence. We tried the two
pressure/velocity coupling possibilities:

" ool 1e+01 R T e
Tt — = 1 e ey
3 [ Residuals | s [ Residuals |
16400 {——continuity 10400 o ——continuity |
{ x-velocily 1e01 4\ | x-velocily |
1e01 ——y-velocity { [-—y-velocity |
1e02 4 ™
te-0i2
1003
12.02
1608
1e-04 ni
1805
Te-00 3 1008
teU6 10.07
{ {
te07 1008 -
TP, T R A i R s e T 1l pT—— S A
a S0 100 150 200 230 300 %0 400 o 100 200 300 400 800 @00 700 806 D00 1000
Iterations fterations

Figure 1: SIMPLE coupling Figure 2: SIMPLEC coupling

After running several simulations for both algorithms, the residuals behaviour remained unchanged.
By comparing these two figures we observe that the velocity residuals decrease at the same rate. For
the SIMPLEC case, the continuity residual reaches a constant value larger than 10~ whereas it
continues to decrease for the SIMPLE coupling. The SIMPLEC coupling method does not accelerate
the convergence in our case consequently we will continue to use the SIMPLE coupling.

To conclude, this is the final solver and its discretization we have chosen to adopt:

78



Pressure - PRESTO
Segregated solver — |Pressure & velocity — SIMPLE

Momentum — 2™ order upwind

1) Grid effect

In order to determine what the most suitable grid is, we undertake a grid effect study. The number of
nodes is increased until the mesh has no more effect on the results. The mesh just at the limit is
optimum for our study since it is both accurate and economic.

Down below are three different meshes we used for the calculations, where the number of nodes goes
from weak to moderate and finally high. '

Number of nodes Mesh density
4131 Very weak (1)
9301 Weak (2)
16281 Moderate (3)
32481 High (4)
The parameter we choose for comparing these grids is the drag coefficient: Cp= 1/2/)%

In this 2D case, the sphere’s frontal surface is equal to unity. Air has been used as the working fluid
and therefore the density is known. The drag force D has been monitored by FLUENT and we easily
access its value corresponding to the integral of the forces in the X direction. Considering that the
viscous model is inviscid, the value of this coefficient is close to 0.

o 1225 kgim D ,=0.001008 = 1.645x107
V”;’ei s D ,=0.000645 = 1.053x107

) D ,=0.000597 = 9.747x10™
Sl D ,=0.000589 = 9.616x10™

We can conclude that the mesh (1) is not at all sufficient enough since the result is very far from the
correct value. Then it is a matter of how precise the results need to be according to the computational
effort available. We will from now on continue with mesh (3) which provides us with an accurate
result. Indeed, any further increase in mesh density hardly affects the result and can be considered as
useless for our study. We have reached a state where the calculation is grid independent. Therefore
the chosen mesh is composed of 16281 nodes.

Pressure outlet
Velocity inlet

Symmetry

79



1) Numerical results

a) Velocity field
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Figure 1: Contours of velocity magnitude

As predicted previously, very high pressures are located at 6 = 0° and 180° corresponding to stagnation

points. The velocity contours around those two regions are identical which confirms that hardly any drag is
generated by the body due to this cancellation.

As for the velocity behaviour across the chord, the sphere’s curvature causes the flow stream to accelerate on the

first half, up to 90°, and naturally decelerate downstream. The following plot illustrates the velocity’s evolution
along the chord.
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1) Symmetrical study

Previously we used the geometry’s symmetrical
property to naturally assume that its impact on the
‘ ~ surrounding flow would be symmetrical as well. We \
‘ will now illustrate this by applying an identical .
simulation to the whole circle. We keep the same mesh, :
repeated on the other half, as well as the previous
| parameters. Here is the grid we generated for this
o= study:

Velocity inlet - o  Pressure outlet

/

Gaid 2 39, 2007
FLUENT 6 2 {20 segregated. fany)

Velocity contours
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| Contours of Yelocity Magnitude (m/s) Jul 34, 2007
FLUENT 6.2 (2d, segregated)

The velocity distribution appears to be identical to the half sphere. In addition, the symmetrical
properties of the inviscid calculation applied to a sphere are confirmed, since there is no difference in
velocity contours between the top and bottom half of the geometry.
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APPENDIX D

Coord.m

of

£ 0.039995;
xf = 0.395;
t = 0.120035 / c ;

xl = (xf/c);

ine

% Cambe
if ((x(i)/c) <= x1)
yc(i) = ((£/c)*(1/(x172))* (2*x1*(x(1i)/c) - (x(i)/c)"2))*c;
dyc(i) = ((£/c)*(1/(x172))*(2*x1*(1/c) - 2*(x(i)/c)))*c;
else
yc(i) = ((£/c)*(1/(1-x1)"2)* ((1-2*x1)+2*x1* (x(i)/c)-(x(i)/c)"2))*c;
dyc(i) = ((£/c)*(1/(1-x1)"2)*(2*x1*(1/c)-2*(x(1i)/c)))*c;

end
$ Thi 38 distribution
yt (i) (5*%t*(0.29690*x(i)"~0.5 - 0.12600*x (i) - 0.35160*x(i)"2 + 0.28430*x(i)"3 -

0.10150*x(i)"4))*c;

% distributiocn

; atan(dyc(i)):

% Angula
teta(i)
% Upper and lower coordinates

y_upper (i) = yc(i) + yt(i)*cos(teta(i)):
y_lower(i) = yc(i) - yt(i)*cos(teta(i));
x_upper(i) = x(i) - yt(i)*sin(teta(i));
x_lower(i) = x(i) + yt(i)*sin(teta(i)):;

end

N _LE = 8;
for i = 1:N_LE
dx LE = 0.002 / (N_LE-1);
x_LE(i) = dx_LE * (i-1);
yc_LE(i) = ((£/c)*(1/(x172))*(2*x1*(x_LE(i)/c) - (x_LE(i)/c)"2))*c;
dyc LE(i) = ((£/c)*(1/(x172))*(2*x1*(1/c) - 2*(x_LE(i)/c)))*c;
yt_LE(i) = (5*t*(0.29690*x_LE(i)”~0.5 - 0.12600*x_LE(i) - 0.35160*x_LE(i)"2 +
0.28430*x_LE(i)"3 - 0.10150*x_LE(i)"4))*c;
teta_LE(i) = atan(dyc LE(i));
y_upper LE(i) = yc LE(i) + yt_LE(i)*cos(teta_LE(i));
y_lower LE(i) = yc LE(i) - yt_LE(i)*cos(teta LE(i));
x_upper LE(i) = x LE(i) - yt LE(i)*sin(teta_LE(i));
x_lower LE(i) = x_LE(i) + yt LE(i)*sin(teta_LE(i));
end

fid = fopen('E:\sophia\ITU\Viscous NACA 4412\FINAL\journals\NACA4412 LE upper.txt','w')

fprintf(£fid, '/ Journal file for GAMBIT\n')
fprintf(fid, '/ Identifier NACA 4412, leading edge upper\n\n\n')

zcoord_LE=0*ones(1,N_LE);

VECT = [x upper_ LE;y upper LE;zcoord_LE];

fprintf(£fid, 'vertex create coordinates $6.6f %6.6f %$6.6f\n',VECT);
fclose (fid)
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fid = fopen('E:\sophia\ITU\Viscous NACA 4412\FINAL\journals\MACA4412 LE lower.txt','w')
fprintf(fid, '/ Journal file for GAMBIT\n')
fprintf(fid, '/ Identifier NACA 4412, leading edge lower\n\n\n')

zcoord_LE=0*ones(1,N_LE);

VECT = [x_lower LE;y lower LE;zcoord_LE];

fprintf(£fid, 'vertex create coordinates %$6.6f %6.6f %6.6f\n',VECT) ;
fclose(fid)

il coordinates (500 points)used

%% GAMBIT journal file containing the air
fid = fopen('E:\sophia\ITU\Viscous NACA 4412\FINAL\journals\NACA4412 upper.txt',6'w')

fprintf(fid, '/ Journal file for GAMBIT\n')
fprintf(fid, '/ Identifier NACA 4412, upper surface\n\n\n')

zcoord=0*ones (1,N);

VECT = [x_upper;y_upper;zcoord];

fprintf (fid, 'vertex create coordinates %$6.6f $6.6£ $6.6£\n',VECT) ;
fclose (fid)

fid = fopen('E:\sophia\ITU\Viscous NACA 4412\FINAL\journals\NACR4412 lower.txt','w')

fprintf(fid, '/ Journal file for GAMBIT\n')
fprintf(fid, '/ Identifier NACA 4412, lower surface\n\n\n')

VECT = [x_lower;y_lower;zcoord];
fprintf(£fid, 'vertex create coordinates $6.6f
fclose (fid)

oe
[o)}
(=)}
]

%6.6f\n"',VECT) ;
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