Introduction to Scientific & Engineering Computing

BIL 106E (Fortran) Week 9
Control Over I/O

(Formats, I/O Editing, I/O Statements)

Dr. Turgut Yılmaz

Istanbul Technical University

Faculty of Mechanical Engineering

Gümüşsuyu, Istanbul, Turkey

Room: 244

e-mail: turgut.yilmaz@itu.edu.tr
www.mkn.itu.edu.tr/~yilmaztur
9. CONTROL OVER INPUT AND OUTPUT
The input and output facilities of any programming language are extremely important, because they establish communication between the user and the program is carried out.

The list-directed input and output statements, which are used up to now, provide the capability for straightforward input from the keyboard and output to the display or printer. These statements allow the user very little control over the source or the layout of the input data or over the destination or layout of the printed results.

This chapter introduces the more general input and output features of F, by means of which the programmer may specify exactly how the data will be presented and interpreted, from which of the available input units it is to be read, exactly how the results are to be sent.
9.1 Format and edit descriptors

Up to this point all the input and output has been carried out using list-directed read and print statements. They are restricted in their ability to define both the format of the information, especially, its source or destination.
An input statement must contain three distinct types of information:

i. where the data is to be found

ii. where it is to be stored in the computer’s memory

iii. how it is to be interpreted

[image: image1.png]External media

Computer’s memory

Input

Output

Keyboard

Disk file

Convert to internal form

Display
Printer

Disk file

Convert to external form

I —

character

The key element in both input and output process is the editing of information in one form presentation in another form. The input and output statements have taken the forms up to now.

read *, input_list

print *, output_list
But each of these statements also has an alternative form:

read chr_expr, input_list

print chr_expr, output_list
where chr_expr is a character expression.

In both forms the item following the statement (read or print) is a format specifier which provides a link to the information necessary for the required editing to be carried out as part of the input or output process. This information is called a format and consists of a list of edit descriptors enclosed in parentheses.

(ed_des1, ed_des2, ...)
In the list-directed form the asterisk indicated that the format to be used is a list-directed format which will be created by the processor to meet the perceived needs of the particular input or output list.

In the new form, the format is called an embedded format because it appears as part of the read or print statement.

read “(edit_descriptor_list)”, input_list
It is also possible to store such a format in a character variable, and then include the name of the variable, which is the simplest form character expression, in the read or printstatement:

print print_format, output_list

where print_format is a character variable containing the format.
9.2 Input editing

The first and simplest edit descriptor is used for inputting whole numbers, which are to be stored in an integer variable, and takes the form
iw

This indicates that the next w characters are to be read and interpreted as an integer. Thus if one wished to read the line

123456789

as a single integer to be stored in the integer variable n it could be written

read “i9”, n

If one wished to read the same line as three separate integers (123, 456, 789) then it would be written
read “i3, i3, i3”, n1, n2, n3

where n1, n2 and n3 are integer variables. This format interacts with the rest of the read statement in the following way:
· First the read statement recognises that it requires an integer to store in n1; the format indicates that the first item to be read is an integer occupying the first three character positions (i3). The characters “123” are therefore read and converted to the internal form of the integer 123 before being stored in n1.

· The read statement then requires another integer and the format indicates that this is to come the next three character positions (i3). The characters “456” are therefore read and converted to the internal form of the integer 456 before being stored in n2.

· Finally, the process is repeated a third time, causing the characters “789” to be read, converted, and stored in n3 as integer 789.

· The read statement is satisfied, since data has been read for all of the variables in its input list, and so input of this line of data is completed.
[image: image2.png]Descriptor

Meaning

1w

Read the next w characters as an integer

Read the next w characters as a real number with 4 digits after the

decimal place if no decimal point is present

Read the next w characters as characters

Read sufficient characters to fill the input list item. stored as characters

Tn Read the next w characters as the representation of a logical value
to Next character (o be read is al position .
tl Next character to be read is n characters before (£ 1) of

after (tr) the current position

The full list of edit descriptors is:

The next data edit descriptor is the f edit descriptor, which is used for reading real values, and takes a slightly more complicated form than that used for integers:
fw.d
If the data is typed with a decimal point in the appropriate position then the edit descriptor causes the next w characters to be read and converted into a real number. The value of d is irrelevant (although it must be included in the format).
On the other hand if the w columns which are to be read as a real number do not contain any decimal point then the value of d indicated where one may be assumed to have been omitted, by specifying that the number has d decimal places. Then by assuming input record are 123456789, the statement
read “f9.4”, real_num

will cause the first nine characters to be read as a real number with four decimal places. The variable real_num will have the number 12345.6789 in it. In a similar way
read “f3.1, f2.2, f3.0, t16, f4.2”, r1, r2, r3, r4

will cause the value 12.3 to be stored in r1, 0.45 in r2, 678.0 in r3 and 34.56 in r4. Since t16 edit descriptor (t1n) specifies a relative tab – that is a move of 6 characters position to the left. The current position is in 8 after execution of the f3.0 then t16 moves the point reading to 3. The figure drawn below summarises the result of

reading these two lines of data.
[image: image3.png]h

Data. 12345678
rl contains 12.3 0.23
12 contains 0.45 0.5
13 contains 678.0 6.8
r4 contains 34.56 3.56

There is one further point to be made about the format of real data. The exponential format is allowed for numbers being input by a read statement. In this case, the exponent may take one of three forms
· a signed integer constant

· e (or E) followed by an optionally signed constant

· d (or D) followed by an optionally signed constant

In the latter two cases the letter (e, E, d or D) may be followed by one or more spaces. The interpretation is identical, regardless of which letter is used.
Thus a real data value may be written in a great many different ways; for example, some of the ways in which the number 361.764 may occur in data are shown in the figure below.

[image: image4.png]

The third major data edit descriptor is the a edit descriptor, which is used to control the editing of character data. It takes one of the form
aw

a

During input, the edit descriptor aw refers to the next w characters (just as iw and fw.d refer to w characters). However, a character variable has a defined length and string, which is to be stored in it must be made to have the same length. If one assumes that the length of the input list item is len then the following rules apply
· If w is less than len then extra blank characters will be added at the end so as to extend the length of the input character string to len. This is similar to the situation with assignment.

· If w is greater than len , the rightmost len characters of the input character string will be stored in the input list item.

Thus, if the three variables ch1, ch2 and ch3 are declared by the following statements:

character (len=10) :: ch1

character (len=6) :: ch2

character (len=15) :: ch3
then the following two statements will have the identical effect:

read “a10, a6, a15”, ch1, ch2, ch3

read “a, a, a”, ch1, ch2, ch3
Since the form without a field width requires the read statement to provide exactly the same number of characters as the length of the variable into which they are to be stored.

The remaining data edit descriptor is used with logical data, and takes the form

Lw
where it is used an upper-case L to avoid the potential confusion with the digit l that can be caused to human readers by using the lower-case form.
This edit descriptor processes the next w characters to derive either as true value, a false value or an error. Thus any of the following are acceptable as representing true:
t

true

.T

.true.

truthful
while the following will be interpreted as false.

F

False

.f

.true.

futile
If the first non-blank character is not t or f, or their upper-case equivalents, then an error will occur. But the input of logical value s is not a very common occurrence, when it is required it is usually in order to read a set of responses to queries.
9.3 Output editing

The edit descriptors used for outputs are essentially the same as those used for input, although there are some additional ones that are only available for output and the interpretation of the others is slightly different.
[image: image5.png]Descriptor

Meaning

1w

Output an integer in the next w character positions

Output a real number in the next w _character positions with 4 decimal

places

Output a character string in the next w character positions

Output a character string. starting

leading or trailing blanks

at the next character position, with o

Output_w— I blanks. followed by T or to represent a logical value

Output the next item starting at character c.

Output the next item starting 1 character positions before (=1) or

after (tr) the current position

The edit descriptors for output
The i edit descriptor (iw) causes an integer to be output in such a way as to utilise the next w character positions. These w positions will consist of one or more spaces (if necessary), followed by the value of the number. Thus the statements
tom = 23

dick = 715

harry = -12

print “(i5, i5, i5)”, tom, dick, harry
will produce the following line of output where the symbol (represents a space

(((23((715((-12

The f edit descriptor operates in a similar way, and fw.d indicates that a real number is to be output occupying w characters, of which the last d are to follow the decimal point. Note that the real value to be output is rounded (nor truncated) to d places of decimals before it is sent to the relevant output device. Rounding is carried out in the usual arithmetic way. Thus the statements
x = 3.14159

y = -275.3024

z = 12.9999

print “(f10.3, f10.3, f10.3)”, x, y ,z
will produce the following line of output:

((((3.142((-275.302((((13.000
Because the edit descriptors each specify only three places of decimals, the value of x is printed as 3.142 (rounded up), the value of y as

-75.302 (rounded down), and the value of zas 13.000 (rounded up).
It is important to realise that, for all numeric edit descriptors, if the number does not require the full field width w it will be preceded by one or more spaces across the page and the printing of tables becomes relatively easy. An example of this technique is shown in the following program.
[image: image6.png]program tabular_output

ameter thir

end program tabular output

The output format used here specifies that three items to be printed x , x1/2 , x1/3 are all to use an edit descriptor of f15.4. The three numbers are therefore spread evenly across the page, with the next three directly below them, and so on. The results produced by this program can be seen in the following figure.

[image: image7.png]e B RN RN

The a edit descriptor works in a similar fashion for output as it does for input, and aw will cause characters to be output to the next w character positions of the output record. As was the case for input, it needs to be establish exactly what happens if the length of the output list item is not exactly w. The rules that apply here are similar to that of for input:

· If w is greater than len then the character string will be right-justified within the output field, and will be preceded by one or more blanks. This is similar to what happens with the i and f edit descriptors.

· If w is less than len then the leftmost w characters will be output.

If a character string is output to a field larger than its length then it will have spaces added at the beginning of data.
Finally, there is the L edit descriptor for use in outputting a representation of logical values. This is perfectly straightforward, and the descriptor Lw will cause w-1 blanks to be output, followed by the letter T or the letter F to indicate true or false.

There is one further point that should be made at this point. A number, called a repeat count, may be placed before the i, f, a or L edit descriptors to indicate how many times they are to be repeated. Thus the formats

(i5, i5, i5, f6.2, f6.2, f6.2) => (3i5, 3f6.2)

have identical meaning.

A repeat count may be used in formats for both input and output to cause repetition of an edit descriptor which is used in conjunction with an input and output list item. Bu it can not be used to repeat the other edit descriptors such as t, t1 and tr.
9.4 Read, write and print statements

A more general for of Read statement,

read(cilist) input_list

where cilist is a control information list consisting of one or more items, known as specifiers, separated by commas. There must always be a unit specifier in the control information list, which takes the form:
unit = unit
where unit is the input device (or unit in F parlance) from which input is to be taken unit may also be the name of an internal file. It either takes the form of a scalar integer expression whose value is zero or positive, or it may be an asterisk to indicate that the default input unit is to be used. Normally some units will be preconnected and will be

automatically available to all programs.
The default input will usually be preconnected as unit 1 or unit 5. (This is purely for historical reasons, since IBM, and several other manufacturers, used unit 5 for the card

reader and unit 6 for the printer in their early Fortran systems). So it may be written

unit = 5

or

unit = *

to identify the default input unit.

Normally the input will need to be converted from some external form such as the characters sent by a keyboard, to an internal form suitable for storing in the computer’s memory. To carry out this conversion it needs a format, and this is identified by a format specifier, which takes one of the forms
fmt = ch_expr

in an analogous fashion to the format specification discussed earlier in this section. These statements are identical in their effect to the earlier list-directed input statements.
read(unit=*, fmt=*) a, b, c <==> read *, a, b, c

The remaining specifier is concerned with monitoring the outcome of the reading process, and takes the form
iostat = io_status
where io_status is an integer variable. At the conclusion of the execution of the read statement io_status will set to a value which the program can use to determine whether any errors occurred during the input process. There are four possibilities:
· The variable is set to zero to indicate that no errors occurred.

· The variable is set to a processor-dependent positive value to indicate that an error has occurred.

· The variable is set to a processor-dependent negative value to indicate that a condition known as an end-of-file condition has occurred.

· The variable is set to a processor-dependent negative value to indicate that a condition known as an end-of-record condition has occurred.

For this chapter the iostat is simply used to determine whether or not the reading of data was carried out successfully by testing the value of the variable in an if or case construct:

[image: image8.png]

Output is essentially the reverse of input, the facilities are also essentially the same. The most obvious difference is that for input the word read is used in all cases, but for output; the print statement for list-directed output for user-formatted output to the default output unit, the write statement is almost identical to that used for input:
write(cilist) output_list

Exactly the same specifiers are available, as was the case for the read statement, although it is impossible to encounter an end-of-file condition or an end-of-record condition during output. The only other difference is the obvious one that an asterisk as a unit identifier refers to the default output unit. The default output unit is 6 and therefore the following statements are equivalent:
write(unit=6, fmt=*) d, e, f

write(unit=*, fmt=*) d, e, f

print *, d, e, f
9.5 More powerful formats
In this section, considerably complex input and output formats will be described. Probably the most important of these concerns are multi-record formats, and the repetition of formats.
In the following statements, 12 real numbers into an array arr, of size 12, typed 4 to a line are to be read and it could be written
read “(4f12.3)”,arr(1:4)

read “(4f12.3)”,arr(5:8)

read “(4f12.3)”,arr(9:12)
However the following statements are identical

read “(4f12.3)”,arr <==> read “(4f12.3)”,arr(1:12)

After the read statement has used the format to input four real numbers (which are placed in the first four elements of arr) it finds that the input list is not yet exhausted, and that another real number is required.
Whenever a format is fully used up and there still items in the input (or output) list awaiting processing, the format will be repeated. The rules governing the point from which it will be repeated are straightforward:
· If there are no nested parentheses then the format is repeated from the beginning

· If the format contains any nested parenthesis then it is repeated from immediately after the left parentheses corresponding to the rightmost nested parenthesis

· If the left parenthesis defined above is preceded by a repeat count then the format is repeated including the repeat count.

The repetition of a format can be extremely useful; however, in many cases it is also desirable to be able to define a format, which processes two or more separate lines, or (more accurately) records. This is achieved by the / edit descriptor, which must be separated from any preceding or succeeding descriptor by a comma, and which indicates

the end of the current record.

On input, a / causes the rest of the current record to be ignored and the next input item to be the first item of the next record. On output, a / terminates the current record and starts a new one. Thus the statement
read “(3f8.2,/,3i6)”,a, b, c, p, q, r

will read three real numbers from the first record and three integers from the second.

Multiple consecutive / descriptors cause input records to be skipped or null (blank) records to be output.

Thus the statement
read “(3f8.2,/,/,3i6)”,a, b, c, p, q, r

will cause three real numbers to be read from the first record and three integers from the third. The second record will be skipped and not read. Because a sequence of / edit descriptors separated by commas is rather ugly it is permitted to precede a / edit descriptor by a repeat count, in the same way as with a, f, i and l edit descriptors. Thus an alternative to the previous statement is
read “(3f8.2,2/,3i6)”,a, b, c, p, q, r

Multiple / descriptors are particularly useful on output which will produce the output shown in the following figure, if a and b have the values 12.25 and 23.50 respectively.

[image: image9.png]

And the program list that generates the output is

Finally it should be pointed out that the combination of a / edit descriptor and a repeated format can provide very powerful degree of flexibility.

program multi_record_example

real :: a,b

a = 12.25

b = 23.50

write(unit=6,&

fmt="(t10,a,3/,a,f6.2,a,f6.2,a,f7.2,2/,a,f10.3)")&

"Multi-record example",&

" The sum of ",a," and",b," is", a+b,&

" Their product is",a*b

end program multi_record_example

1
15
Dr. T. YILMAZ BIL106E

