Introduction to Scientific & Engineering Computing

BIL 106E (Fortran) Week 3
Data Handling
(Data Types, Variables, Constants, Character, Assignments, I/O)

Dr. Turgut Yılmaz

Istanbul Technical University

Faculty of Mechanical Engineering

Gümüşsuyu, Istanbul, Turkey

Room: 244

e-mail: turgut.yilmaz@itu.edu.tr
www.mkn.itu.edu.tr/~yilmaztur
3. DATA HANDLING
This week is devoted to the discussion of integer, real type of numbers, character strings, named constants, arithmetic expressions & assignments and list directed I/O of numeric data in F language.
3.1 The Two Fundamental Types of Numbers

There are two fundamental types of numbers in both mathematics and programming, which may have either a fractional part or not. These are, in F, known as integers and real numbers.

123 integer

12.3 real

0.123e+2 floating point (Exponential) representation of real
The floating point form is typically used for very small or very large numbers and its rule

me exp

Where me is called the mantissa and exp is the exponent. The exponent must be an integer.

3.2 Real and integer variables

The integer variables are declared by a statement as;

integer :: a, b, c

An integer, which is a whole number, held exactly in the computer’s memory, and has a (relatively) limited range (between about -2×109 and +2×109 on a typical 32-bit computer).

In a similar way, real variables are declared as;

real :: x, y, z

A real number which, is stored as a floating-point number, is held an approximation with a fixed number of significant digits and has a very large range (between about –1038 and +1038 to 7 or 8 significant digits on the same 32-bit computer).

3.3 Arithmetic Expressions and Assignments

There are two ways in which a variable can be given a value during the execution of a program – by assignment or by a read statement.

Generally, giving a value to a variable is through an assignment statement, which is

name = expression

Where name is the name of a variable, and the expression is arithmetic or other, which will be evaluated by the computer to calculate the value to be assigned to the variable name.

The statement,

a = b + c

takes the value currently stored in b, adds to it the value currently stored in c and stores the resulting value in a.

If a, b and c are all real variables and the values in b and c were 2.80 and 3.72 before the statement obeyed, then the value assigned to a would be 6.52 or a very close approximation to 6.52.

Similarly if a, b and c are all integer variable and the values in b and c were 17 and 391before the statement obeyed, then the value assigned to a would be 408, which is an exact answer.

If the variable a is integer, the result of the expression is truncated to an integer by throwing away the fractional part. Thus, if the values in b and c were 2.80 and 3.72 before the statement was obeyed, then the value of the expression would be 6.52, which then would be truncated to 6 before being assigned to a.
In the reverse case, where the value of the expression is integer but the variable to be assigned the value is real. There is less of a problem since the integer results can easily be converted to its real equivalent without any loss of accuracy. If b were real, while c were integer, the integer value is converted to its real equivalent before the calculation is carried out.

NOTE! Conversion is only for the purpose of calculating the expression, the integer value stored in c remains unchanged.

As in mathematics, an arithmetic expression is created by use of the five primary arithmetic operations – addition, subtraction, multiplication, division and exponentiation.

[image: image1.png]Operator

ning
addition
subtraction
multiplication
division

exponentiation

Arithmetic operators and meanings in F

There are some priorities to operator, as does mathematics, namely that exponentiation is carried out first, followed by multiplication and division, followed by addition and subtraction.

Arithmetic operator priorities

[image: image2.png]Operator
and
+and -

high

medium

low

[image: image3.png]e dre . .
a=b+c*de-**g/h +i%+ k a=b+ex— - +ix j+k (formularepresentation)

For example in the expression

The evaluation proceeds as follows,

1) Calculate f**g and save it in
temp_1

2) Calculate c*d
“

temp_2
3) Calculate temp_2/e “

temp_3
4) Calculate temp_1/h “

temp_4
5) Calculate i*j

and save it in
temp_5
6) Calculate b+temp_3

 “

temp_6
7) Calculate temp_6-temp_4
 “

temp_7
8) Calculate temp_7+temp_5
 “

temp_8
9) Calculate temp_8+k
and store it in
 a
The temporary variables, which are not accessible to the programmer, temp_1, , temp_8 will not actually be used on the computer. But the principle is correct, namely each calculation step consists of one operator having two operands.
In a mixed-mode expression (mixed with integer and real numbers), the integer value is converted to real. The importance of this can be seen by considering the evaluation of the statement.

a=b*c/d

Where b is real variable whose value is 100.0, while c and d are integers having the values 9 and 10 respectively. Following the priority rules, the value of b*c is first evaluated with the value of c being first converted to the real value 9.0 to give an intermediate result of 900.0. Then the value of d is converted to its real equivalent before the division is carried out to give a result to be assigned to a of 90.0.

Now consider the expression

a =c/d*b

written in a different, but mathematically equivalent form.

When first operation is carried out both the operands are integer and so the sub-expression c/d is evaluated as an integer operation.

Since integers can have no fractional parts the mathematical result (0.9) is truncated to give an intermediate result of zero.

This is then converted to its real equivalent (0.0) before being multiplied the real value of b, but it is already too late, and the results that will be assigned to a is also zero and this phenomenon known as integer division.

The long expressions may become difficult to read and the order of evaluation is often important. In such case, the use of parentheses can alter the order of evaluation.

Thus the statement
w=x*(z-y)

will result in the evaluation of the sub-expression z-y first, with the result being multiplied by x to obtain the value to be assigned to w.

On the other hand, the other thing that can be done in purely cosmetic and involves the use of spaces to make expressions more readable.

For example,

a = b + c*d/e – (f**g)/h + i*j + k

the spaces are for purely for the human reader and are ignored by the F compiler.

Consider the following examples,

p = -q

x = +y
The meaning of unary operators is obvious and the result is identical to the two operator cases if a zero were placed before the second operator.

Literal Constants

The variable that its value could not be changed then, is defined as a constant. In F, constants may be used by writing their values-literal constants. Constants may also have names like variables as will be seen later in this lecture. These constants may be real or integer, decimal or exponential form.

123 - Integer constant

1.23 - Real constant

1.e-6 - Exponential constant
The exponential form is typically used for very small or very large numbers and its rule

me exp

Where me is called the mantissa and exp is the exponent. The mantissa may be written either with or without a decimal point, whereas the exponent must be an integer. Thus the value 0.000001, or 10-6, may be written in any of the following ways

1e-6

100e-8

0.1e-5
 and so on.

3.4 List-Directed Input And Output Of Numeric Data

We have already met the list-directed input/output (I/O) statements, which were read and print in week 2. They both have an almost identical syntax.

read *, var_1,var_2,.....

print *, item_1,item2,.....

The read statement may only contain variable names, whereas print statement may also contain constants or expressions.

These lists of names or other items are referred to as input-list or output-list, respectively. The asterisk following the read or print indicates that

list-directed formatting is to take place.
The statement

read *, real_var, int_var

will, therefore read two values from the default input.

A value that is input to a real variable may contain a decimal point, or the decimal point may be omitted.

A value that is to be input to an integer variable must not contain a decimal point and, the occurrence of one will cause an error.

The list value separators:

In list directed input, termination of each data (variable or constant) is very important. The separators are;

comma, space, slash (/) or end of line (return key).

Any number of consecutive blanks are permitted between the separators.

Two consecutive comma means null value is read, ie. content remains the same, not set to zero.

/ means no more data item is read and the read statement is ended. If there are remaining items on the list null values are input.

3.5 Handling Character Data

A character variable is declared in a very similar manner to that used for integer and real numbers. But the major difference is the specification of number of characters to be stored. The declaration statement is,

character (len=length) :: name1, name2

This declares one or more character variables, each of which has a length of length.

The fact that character variable always hold a specified number of characters leads to a number of potential problem when carrying out assignment or input. In the following program, the three variables string_1, string_2 and string_3 are stored.

program character_example

character(len=3) :: string_1

character(len=4) :: string_2,string_3

string_1="End"

string_2=string_1

string_3="Final"

print *, string_1,string_2,string_3

end program character_example
In the above example three character variables were declared, two of length 4, and one (string_1) of length 3.

The first assignment statement assigns the character constant “End” to string_1. It is easily seen that the value to be assigned has a length of 3 and so it exactly occupies the three storage units.

The next assignment statement is, however, has a length of 3 and contains the three characters “End”. A character string has a shorter length than the length of the variable to which is to be assigned then it is extended to the right with blank (space) characters until it has the correct length. Therefore the contents of “string_1” will have a single blank

character added after the letter “d”.

The third assignment statement poses the opposite problem. Here, the character constant to be assigned has a length of 5, whereas the variable, “string_3”, only has a length of 4. In this case the string is truncated from the right to the correct length, which is 4, before assignment.

At the end of this program, the three variables string_1, string_2 and string_3 contains the character strings “End”, “End “, and “Fina”, respectively. So the result of the program after execution is

EndEnd Fina

The combination of two or more strings to form a third is known as the concatenation procedure, and this is carried out by the concatenation operator, which is the only operator provided in F for use with character strings, consisting of two consecutive slashes.

char=”Fred”//” and “//”Wilma”

The composite string will have a length of equal to the same of the lengths of the two or more strings, which were concatenated to form it.

F, however, provides another capability, identification of substrings.

alpha(5:7) , beta(:4), gamma(:6)

5 to 7 (inclusive) of alpha, starting with the fourth character of beta to the end, first 6 characters of gamma.

program substring

charcter(len=8) :: ch

ch=”alphabet”

ch(4:)=”ine”

.

.

The final content of ch will be “Alpine ”

The F character set is given on page 56 of Ellis’s book.

(Letters of English Alphabet, upper and lower cases, digits from 0 to 9, space (blank) and = + - * / , . (: ! (% (; < > ? $)

3.6 Named Constants

The constants, which are no need to be altered, are called named constants. They are used by the parameter attribute in a declaration statement.

type, parameter :: name1=constant_expression_1, ...

Where the expression “constant_expression_1” may be any expression consisting solely of literal constants, named constants that have already been declared, and operators. For example

real, parameter :: pi=3.1415927, pi_by_2=pi/2.0

In the statement “pi” is defined to be a constant and “pi_by_2” is defined by means of a constant expression involving in “pi”. Since the statement is processed from the left to right this is acceptable as “pi” has already been defined it is used in the definition of “pi_by_2”. If the two constants were listed in the opposite order, there would be an error. The use of named constant is purely to make the program easier to read and to avoid errors in typing long constants. For example the statement

area=3.1415927*r*r

can be written by using the named constant of “pi”

area=pi*r*r.

1
10
Dr. T. YILMAZ BIL106E

