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Abstract: GPUs employ simple coherence mechanisms and require explicit use of costly synchronization operations for
data integrity. Local-scoped synchronization can be utilized to lower the performance penalty of synchronization when
sharing is within a subgroup of threads. Unfortunately, in asymmetric sharing (which is an important dynamic sharing
pattern), it is necessary to use global-scoped synchronization due to possible accesses by remote sharers. Remote Scope
Promotion (RSP) was introduced to take advantage of local-scoped synchronization at regular accesses while using scope
promotion at occasional remote accesses. First implementation of RSP makes use of a simple approach that performs
costly cache operations on all L1 data caches when implementing scope promotion, and therefore, it performs poorly on
large scale GPU systems. We present nRSP which utilizes a static naming mechanism to identify regularly accessing agent
in asymmetric sharing and avoids applying costly coherence actions on every L1 data cache when implementing scope
promotion. We evaluate nRSP using timing detailed Gem5-APU simulator modeling a GPU system with 128 Compute
Units and show that nRSP lowers remote synchronization overhead greatly and improves performance considerably. On
average, nRSP provides around 28% speedup on a 128 Compute Unit GPU device.

Key words: Asymmetric synchronization, GPUs, remote scope promotion, work-stealing

1. Introduction
GPU devices lack sufficient support for efficient synchronization operations. They favor simple cache coherence
protocols. Data integrity is maintained with heavyweight synchronization operations. As a result, many general-
purpose GPU (GPGPU) applications with fine-grained synchronization suffer from significant performance
overhead. Scoped synchronization [1] was proposed to alleviate the synchronization overhead. For example;
synchronization overhead can be greatly reduced when the synchronization within a subgroup of agents using
local-scoped synchronization. Unfortunately, scoped synchronization is only helpful when the participating
agents are known statically.

An important dynamic sharing pattern exists in work-stealing [2] and cannot benefit from scoped syn-
chronization. In work-stealing, each thread owns a task queue. When a thread is out of task, it attempts to
steal task from another thread’s task queue. Due to possible accesses from remote-agents (i.e. the stealing
threads), all threads must synchronize specifying global-scope when accessing to any task queue (either local or
a remote task queue). This dynamic sharing model is called asymmetric sharing.

1Despite the most accesses are local, due to possible rare accesses from remote-agents, lightweight local-
scoped synchronization cannot be used in asymmetric sharing.
∗Correspondence: yilmazerayse@itu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1In the perspective of a task queue, we will refer to the thread that owns the queue and performs regular accesses as local-owner.
Other occasionally accessing threads (performing the stealing) will be referred as remote-agents.
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Recently, Orr et al. [3] introduced remote scope promotion (RSP) to provide support for asymmetric
sharing on GPUs. In RSP, remote-agents must synchronize using global-scope for their occasional accesses, while
local-owner can utilize local-scoped synchronization. RSP performs scope promotion from local to global scope
at the time of remote synchronization. This enables retaining the consistency of shared data. Unfortunately,
the initial implementation of RSP [3] utilizes a broadcast approach that performs flushing and invalidating every
L1 data cache to perform promotion of synchronizing local-scoped synchronization operations. Flushing and
invalidating local caches excessively increases the synchronization overhead greatly, disrupts the locality in local
caches, and diminishes the scalability.

We introduce a novel mechanism, nRSP, to implement RSP’s remote synchronization operations. nRSP
uses a static naming mechanism to locate the local-owner in asymmetric sharing, avoids flushing and invalidating
every L1 data cache, and executes the costly cache operations only on the participating local caches when
performing scope promotion. Use of a static naming approach reduces the complexity that is added to cache
coherence protocol and avoids any hardware area overhead. We evaluate our design using timing detailed Gem5-
APU2 simulator modeling 64 and 128 Compute Unit GPU systems and show that nRSP can scale on big GPU
devices.

2. Related work
There are several studies focusing on GPU coherence. TC-Weak [4] presented a cache coherence protocol which
used physical time-stamp. Both RCC [5] and G-TSC [6] presented cache coherence protocols that were based
on logical time-stamp. GPU DeNovo [7] was presented as a coherence protocol that was extended DeNovo [8]
for GPUs. While it is feasible to provide support for asymmetric sharing with coherent local caches in GPU
memory system, any of these studies do not benefit from scopes. Besides cache coherence on GPUs, there
are studies focusing on GPU transactional memory (TM) [9–14] and GPU synchronization [15, 16]. Any of
TM studies did not acknowledge scopes. While Hardware TMs bring increase in hardware cost, Software TMs
suffer from high performance penalties. HQL introduced hierarchically managed hardware locks. [15] and [16]
proposed software based locking mechanisms for efficient interthread communication. Scopes and asymmetric
synchronization are not considered in any of these GPU synchronization work.

Simple and Fast Biased Locks [17] and Quickly Reacquirable Locks [18] are two studies focusing on
asymmetric synchronization on CPUs. Unfortunately these two work are built around complex synchronization
support that CPUs offer. GPU caches lack sufficient synchronization support. It is not possible to expand these
work onto GPUs without great challenges.

There are three studies that are most related to our work. RSP [3] work presented RSP semantics and first
implementation of them. First implementation of RSP semantics [3] has shown to not scale for large scale GPUs
[19, 20]. Later, sRSP [20] presented a new implementation for RSP’s remote synchronization operations with
a dynamic naming approach that applies cache-flush and cache-invalidation operations selectively and avoids
flushing and invalidating all local caches. With selective cache-flush and cache-invalidation operations, sRSP
scales better. However, sRSP makes use of a hardware structure to track local release operations for dynamic
naming implementation which increases area overhead and the complexity of cache coherence protocol. While
providing around the same amount of performance benefits compared to sRSP, nRSP do not cause any area
overhead with lower protocol complexity by making use of a static naming approach.

2AMD. (2015). The AMD gem5 APU simulator: modeling heterogeneous systems in gem5 [online]. Website
http://www.m5sim.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2015_final.pptx [accessed 00 September 2021].
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hLRC [19] does not implement scopes and RSP semantics but provides support for asymmetric synchro-
nization. It requires registration of synchronization variables and dynamically tracks ownership of them. Similar
to sRSP, hLRC’s approach is dynamic. It has several shortcomings including increased protocol complexity and
being prone to deadlocks and hot spots.

nRSP follows a static approach for identifying affinity of synchronization variables to provide an efficient
and scalable implementation of RSP semantics.

3. GPU programming and execution model

In GPGPU programming, programmers divide an application into coarse-grained tasks to map onto CPU cores
and GPU devices. Tasks that are mapped onto CPU cores are called host threads and the ones that are mapped
onto GPU devices are called kernels. For each GPU kernel, fine-grained data parallelism must be extracted and
expressed explicitly. Multiple instances of a kernel run in parallel as GPU workitems. GPGPU programming
models provide an abstraction to hierarchically organize CPU and GPU threads. In this organization, all threads
from CPU and GPU form a system group. GPU threads (i.e. workitems) executing on the same GPU make up
a component group and are further batched into workgroups.3,4

A GPU device accommodates a set of Compute Units (CUs). A CU contains a set of processing elements
forming a Single Instruction Multiple Data (SIMD) unit. GPU threads from the same workgroup must run on
the same CU. During the execution of a kernel, GPU threads on a Compute Unit are batched into wavefronts
to run in synchronization on SIMD units. Each CU is equipped with a private L1 data cache. A common L2
cache is shared by all CUs on a GPU device.

4. Memory consistency on GPUs

Weak memory models are preferred on GPUs. OpenCL defines a consistency model which is based on acquire
and release memory ordering constraints.5 In this model, threads synchronize with acquire-release orderings
to preserve consistency of shared data. Typically, ordering constraint for a load operation is acquire and for a
store operation it is release. OpenCL extends these synchronization operations with scopes.

Acquire and release ordering semantics require hardware and software support. Ordering of memory
operations with respect to atomic operations with acquire-release orderings must be maintained.6 When two
threads synchronize using acquire and release orderings, hardware has to provide that most recent data (i.e.
the data supplied prior to the synchronizing atomic operation with release ordering) has to be delivered for a
read operation (i.e the read operation that is performed after the synchronizing atomic operation with acquire
ordering).

In this model, synchronization overhead could become very substantial with thousands of threads.
Scoped synchronization with acquire-release orderings are presented [1, 21] to allow narrowing the scope of
synchronization to a subgroup of agents. OpenCL specifies following synchronization scopes: workitem (wi),

3Our work makes use of OpenCL programming model and we utilize OpenCL terminology in this paper.
4The Khronos Group Inc. (2018). Khronos OpenCL registry [online]. Website https://www.khronos.org/registry/OpenCL/.

[accessed 00 January 2021].
5International organization for standardization. (2017). Working draft, Standard for programming language [online]. Website

http://www.open-std.org/jtc1/sc22/ wg21/docs/papers/2017/n4713.pdf [accessed 00 January 2021].
6(1) Any memory operations following an atomic operation with acquire ordering must not execute prior to that atomic operation

with acquire ordering. (2) Any memory operations before an atomic operation with release ordering must not execute after that
atomic operation with release ordering.

1760



YILMAZER-METİN/Turk J Elec Eng & Comp Sci

wavefront (wv), workgroup (wg), component (cmp), and system (sys) scopes. Each of these scopes corresponds
to a subgroup in hierarchical GPU execution model. In this paper, wg-scope is referred as local, cmp-scope is
referred as global, and sys-scope is referred as system level scopes.7 Besides limiting the extent of synchronization
to a subgroup of agents, scopes also enable exploiting locality in a hierarchical memory design.

4.1. GPU memory system and support for scoped acquire-release synchronization

Memory bandwidth plays a critical role in GPU performance and unfortunately, any of the mechanisms that
are applied on CPUs are not scalable on GPUs.

Therefore, GPUs favor simple cache coherence mechanisms. Typically, a simple caching mechanism with
write-combining or write-through is preferred. Write-combining marks modified bytes for each cache line using
a set of bit-flags. With write-combining, multiple writes could be combined before a cache line is evicted or
flushed and only the modified bytes are written back.

While leveraging simple caching mechanisms, GPUs require explicit use of synchronization operations
(i.e. atomic operations with scoped acquire-release orderings) for data consistency. It becomes quite expensive
when the larger scopes are used. There are two main reasons for this: (1) a lot more threads are affected from
the synchronization and (2) the synchronization level for a larger scope is at the lower levels of memory system
and costly cache operations must be performed on the more levels of the memory system.

Synchronization level in memory system for each scope varies. Depending on the synchronization level,
the implementation of a scoped synchronization differs. On a typical CPU+GPU heterogeneous system, the
synchronization levels are L1 cache, L2 cache and L3 cache/system memory for local, global and system-level
scopes, respectively. With a scoped atomic operation with release ordering, all locally performed modifications
must be propagated down to the selected scope’s synchronization level. For example, there is no need to
propagate any local modifications with a local release ordering. On the other hand, all local updates must be
propagated down to L2 cache from local caches for a global-scoped release ordering. Similarly, for a system-
level release ordering, all local updates from local and L2 caches must be propagated down to L3 cache/system
memory. Scoped atomic operations with acquire orderings are executed to guarantee that all shared data is
obtained from the selected scope’s synchronization level. It requires invalidating locally stored likely stale data.
Naively, a cache-invalidation operation invalidates all cache lines in a cache. For workgroup scoped atomic
operation with acquire ordering, there is no need for any invalidation. On the other hand, local caches must be
invalidated for a global scoped atomic operation with acquire ordering. Correspondingly, all data from L1 data
and L2 caches are expected to be invalidated for a system-level atomic operation with acquire ordering.8

Caches in GPU memory hierarchy are furnished with cache-flush operations for writing back all modified
cache lines at once. A FIFO structure —called synchronization-FIFO (sFIFO) [22], can be used to track all
modified cache lines on GPU caches. When updating a cache block, the block address is recorded into sFIFO.
When flushing a cache block, block addresses are removed inorder from sFIFO and each associated cache block
is flushed down to the next level in GPU memory hierarchy. To perform a scoped synchronization operation
with acquire ordering, first, all local modifications are propagated down using sFIFO, and next, a one cycle
cache-invalidation can be realized on the cache.

7Since our work targets memory system, we only focus on synchronization operations with local, global and system level scopes.
8Atomic operations themselves are performed at the selected scope’s synchronization level.
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5. Asymmetric sharing and remote-scope promotion

Use of local-scope limits the synchronization overhead since there is no need to flush or invalidate any local
caches. Unfortunately, using local-scope with synchronizations is not viable for asymmetric sharing and costly
global-scope must be used to contain all possible agents. RSP [3] allows guarding local-owner’s frequent accesses
to the shared data with local-scoped synchronization and puts off the costly synchronization operations to the
rare remote accesses. During remote accesses, previous and subsequent local synchronizations are promoted
to global-scope (typically with remote initiated cache-flush and cache-invalidation operations). Three new
synchronization primitives are introduced to implement RSP semantics:

Remote-acquire: Triggers two suboperations for remote agent: (1) promotion of last local synchro-
nization operation with release ordering to global-scope; (2) a synchronization with acquire ordering at global
scope. Promotion of local synchronization with release ordering facilitates sending down all prior modifications
to global scope’s synchronization level. Acquire ordering on remote-agent’s cache is performed for obtaining the
most recent data from global scope’s synchronization level.

Remote-release: Triggers two suboperations for remote agent: (1) a synchronization operation with
release ordering at global scope; (2) promotion of subsequent local synchronization with acquire ordering to
global scope. Synchronization operation with release ordering facilitates sending down all updates (remote-
agent’s local modifications) to global scope. Promoting the next local synchronization with acquire ordering
guarantees that the local-owner gathers the most recent data from global scope’s synchronization level.

Remote-acquire+release: Provides the remote-agent with two suboperations: (1) promotion of the
most recent local synchronization with acquire and/or release ordering(s) (that was implemented by local-owner);
(2) a global synchronization operation with acquire+release ordering.

First implementation of RSP extends basic GPU cache protocol to carry out RSP’s remote synchroniza-
tion operations. A broadcast mechanism is used to implement remote scope promotion. When performing
remote scope promotion, expensive cache-flush and/or cache-invalidation operations are initiated by remote
agent on all local data caches with a broadcast message. Unfortunately, flushing and invalidating local caches
heavily limits the scalability of RSP’s first implementation [19, 20].

6. nRSP: a static naming approach to implement RSP semantics

In this paper, we introduce a novel technique to realize RSP’s remote synchronization operations. This technique
is based on statically determining local-owner’s cache affinity (i.e. naming the local-owner’s cache). Using
this information, we flush and/or invalidate only the local-owner’s cache. Using Named-flush and Named-
invalidation operations, we eliminate flushing and invalidating local caches unnecessarily and minimize remote
synchronization overhead.

nRSP proposes modifications to programming model and run-time environment. The modifications
in programming model and run-time environment facilitate naming the local-owner’s cache using workgroup-
to-CU mapping. It also modifies L1 data and L2 cache cache protocols to realize remote synchronization
operations using named-flush and named-invalidation operations. nRSP provides support for RSP’s all three
remote synchronization operations. Below we explain our static naming mechanism, proposed programming
approach, and changes to the baseline GPU cache protocol.
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6.1. Proposed static naming mechanism

Our static naming approach makes use of following two inputs: (1) local-owner’s workgroup-id, and (2) selected
workgroup scheduling model. We propose to extend the GPU run-time to support and expose a predefined set of
workgroup scheduling (workgroup-CU mapping/assignment)9 models. Then, our work proposes to extend the
programming environment to allow programmers to choose from one of the supported workgroup scheduling
models at kernel launch time.

In Figure 1, we show the steps to get local-owner’s cache-affinity and to use this information when
performing remote-scope promotion.

Figure 1. Steps for calculating local-owner’s cache-affinity (left) and using the calculated affinity information when
performing remote-scope promotion (right).

6.1.1. Basic workgroup scheduling models

In OpenCL programming model, workgroups are created as 1, 2, or 3 dimensional arrays. So, we base our
workgroup scheduling models on array distribution schemes. We extend OpenCL runtime to support at least
three basic scheduling models. Programmers are allowed to query the supported models and select one of them.
We believe that this would be a very beneficial extension for locality management. These models are explained
below.

Block mapping: In this model, first, the number of workgroups that could be assigned to a CU is
calculated based on the amount of available resources. After that, all available workgroups are consecutively
distributed into scheduling-blocks.10 Next, each scheduling-block is sequentially mapped onto a CU. The number
of workgroups in a scheduling block is referred as SCHED_BLOCK_SIZE. Scheduling blocks could be formed
as 1, 2, or 3 dimensional. Since the workgroup scheduler first does a conversion to 1 dimension when the
workgroups are created with 2 or 3 dimensions, our mechanism would work for 2 or 3 dimensional workgroups
without requiring any change. This model will be exposed to programmers as BLOCK_MAPPING by programming
environment. An example of this model is illustrated in Figure 2a.

9In this paper, workgroup-CU mapping and workgroup scheduling terms are interchangeably used.
10Scheduling-block is a group of workgroups that is assigned to a CU.
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Block-cyclic mapping: Similar to Block mapping, this model first partitions workgroups into schedul-
ing blocks. However, this time, the block size is chosen such that more than one block can be accommodated
by a CU. So, the number of scheduling blocks will be larger than the number of CUs. Scheduling blocks will
be assigned to the CUs in a round-robin manner. An example of this model is illustrated in Figure 2b. This
model will be exposed to programmers as BLOCK_CYCLIC_MAPPING by programming environment.

Block-random mapping: Block-random mapping also starts with partitioning workgroups into schedul-
ing blocks. Then, each scheduling block is randomly assigned to a Compute Unit. The mapping between
scheduling blocks and CUs can be guided by the communication pattern between blocks. This model is illus-
trated in Figure 2c. This model will be exposed to programmers as BLOCK_RANDOM_MAPPING by programming
environment.

Figure 2. Three basic scheduling models: (a) Block mapping, (b) Block-cyclic mapping, and (c) Block-random mapping.
The blocks within the dashed frame represents a Scheduling-block.

Persistent threading is the preferred approach when implementing work-stealing for dynamic load bal-
ancing. Therefore, all workgroups will be assigned to a CU at kernel launch time. For persistent threading,
Block mapping or Block-cyclic mapping can be used. On the other hand, it is possible to have applications that
do not use persistent threading and they might have too many workgroups to be scheduled at kernel launch
time. In such a case, Block-random mapping can be used and run-time can utilize a table to hold workgroup-CU
mappings. Later, this table can be used for naming. Block-random mapping offers a more flexible scheduling
option.

Scheduling models can be exposed to programmers using an enumerated type shown in Figure 3. We pro-
pose extending OpenCL run-time to offer functions for querying and selecting scheduling capabilities/attributes
of the GPU device. To support static naming, we propose programming environment to support functions
shown in Figure 3. We also propose such a construct (i.e. SCHED_TBL_PTR) as shown in Figure 3 to be
provided by run-time for supporting Block-random mapping model.

Figure 3. Type and function definitions for workgroup scheduling models.
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6.2. Programming approach for naming
We explain necessary code modifications for obtaining local-owner’s cache-affinity with an example code frag-
ment. Our example uses Block-cyclic mapping and the SCHED_BLOCK_SIZE is selected as 2. Our example assumes
that there are 2 Compute Units on GPU device.

Figure 4 shows our sample code fragment. First, supported workgroup scheduling models are queried as
shown in the figure. After checking if the Block-cyclic mapping is available, it is set as the effective workgroup
scheduling model in our application’s host code.11 Next, possible maximum scheduling block size is queried
and scheduling block size is set to 2. After that, SCHED_MASK and SCHED_BLOCK_BITS are calculated
using number of CUs and SCHED_BLOCK_SIZE. These two parameters will be used later in kernel code for
local-owner’s affinity calculation. So, these two parameters are set as two kernel arguments.

Figure 4. Example code fragment illustrating code modifications for obtaining and using local-owner’s cache affinity.

In the kernel code, the SCHED_MASK, SCHED_BLOCK_BITS and local-owner’s Workgroup-Id are
used for calculating local-owner’s cache affinity. Then the calculated affinity is passed as an argument to the
remote-scope promotion operation. Our example in Figure 4 shows how to calculate local-modifier’s affinity
when Block mapping or Block-cyclic mapping is used. When Block-random mapping is used, the lookup table
that holds the Workgroup-CU mappings will be used. In the host code, first, a table in SCHED_TBL_STRUCT
type is created using CREATE_SCHED_TABLE() function. Next, this lookup table is passed as an argument
to the kernel code. During the kernel launch time, this table is expected to be filled by the OpenCL runtime.
Later, in the kernel code, the local-owner’s affinity will be looked up using this lookup table and the local-owner’s
Workgroup-id.

6.3. Implementing RSP’s remote synchronization operations with Named-flush and Named-invalidation
operations

We modified L1 data and L2 cache protocols to carry out RSP’s remote synchronization operations with Named-
flush and Named-invalidation operations. A remote-identifier (identified name for local-owner’s cache) must

11the application code that is running on cpu side is referred as host code.
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be passed to cache controller when making a synchronization request with remote-acquire, remote-release, or
remote-acquire+release orderings.

We explain our implementation of RSP’s remote synchronization operations with a running example.
This example depicts a critical section which is protected by a lock. The shared data in this critical section is
owned by wg0 (i.e. the local-owner). While this shared data is frequently accessed by the threads from wg0
and local to them, it is occasionally touched by remote agents (the threads from other workgroups, e.g. wg1).
wg0 is scheduled to run on CU0. Threads from wg0 accesses to the shared data in this critical section using
local-scoped synchronization operations with acquire and release orderings. Workgroup wg1 is the remote-agent
in our example and scheduled to run on CU1. Remote-agents use global-scoped synchronization operations
with remote-acquire and remote-release orderings when accessing to the shared data owned by wg0. Figures 5
and 6 represent the accesses to this critical section by remote-agent using synchronization operations with
remote-acquire and remote-release orderings.

6.3.1. Implementing local-scoped synchronizations operations in nRSP

For implementing a local-scoped synchronization with acquire and/or release ordering, nRSP does not require
any changes in baseline GPU cache protocol. When the cache-controller receives an atomic operation with
acquire, release, or acquire+release ordering, the atomic operation itself is implemented on local cache and the
synchronization completes. There is no need to invalidate or flush the local cache for ordering constraints.

6.3.2. Implementing synchronization operations with remote-acquire ordering in nRSP

As illustrated in Figure 5, a GPU thread from wg1 executes atomic_cas_rem_acq_cmp(L, 0 → 1, rem_id:
0) instruction to enter the critical section. $L1_1 sends a Named-flush request to local-owner’s cache $L1_0.
Upon receiving the Named-flush request, a cache-flush operation is started in $L1_0 and all modified lines are
flushed down using sFIFO. When the flushing $L1_0 completes, then, line (L) is set as Locked and $L1_1 is
replied with a positive acknowledgment. Line(L) is set as Locked on local-owner’s cache to prevent the local-
owner from performing any local synchronization on this line. $L1_1 is flushed and invalidated, while waiting
acknowledgement from local-owner’s cache ($L1_0). Next, $L_1 forwards atomic_cas to L2 cache to finish
the synchronization. When atomic_cas completes at $L2 and the result is returned to $L1_1, a Unlock-line(L)
message is sent to the $L1_0. In the end, the result of the atomic_cas is forwarded to the GPU thread executing
this instruction.12

6.3.3. Implementing synchronization operations with remote-release ordering in nRSP

After successfully synchronizing using atomic_cas operation with remote-acquire ordering, the remote-agent
from wg1 continues with critical section. After the critical section, the atomic_st_rem_rel_cmp(L, 0) in-
struction is run by the remote agent. This is illustrated in Figure 6. Atomic_st with remote-release ordering,
first, triggers a cache-flush on $L1_1. After finishing the cache-flush on $L1_1, the atomic_st is performed on
$L2. In the end, to enforce scope promotion for a subsequent local-scoped synchronization by local-owner, a
Named-invalidation request is directed to the local-owner’s cache $L1_0. Once receiving the Named-invalidation

12When implementing a synchronization operation with remote ordering, it is possible to have the local-owner and remote agent
on the same Compute Unit. In such a case, scope promotion is not necessary. The cache controller in nRSP is modified to detect
if the remote-agent and the local-owner shares the same L1 data cache and to avoid unnecessary remote scope promotion.
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Figure 5. Illustrating steps in a global-scoped synchronization with remote-acquire ordering in nRSP. wg1 on CU1 runs
atomic_cas_rem_acq_cmp(L, 0 → 1) to touch to the data in critical section. Synchronizing atomic_cas operation with
remote-acquire ordering is performed using remote-id 0.

request with address (L), $L1_0 flushes down all dirty lines and performs a single cycle invalidation with flash-
invalidation.

Figure 6. Illustrating steps in a global-scoped synchronization with remote-release ordering in nRSP. wg1 runs
atomic_st_rem_rel_cmp(L, 0) instruction following the critical section.

7. Evaluation
7.1. Methodology

For evaluation, we used Gem5 [23] APU simulator13. It supports emulation of OpenCL14 run-time and execution
of OpenCL kernels that are compiled into HSAIL15 instructions. We simulate GPU devices that are configured
using parameters listed in Table . On our simulated GPU devices, there exists a local L1 data cache for each
CU. An L1 instruction cache is shared by 4 CUs. All CUs share a common L2 cache. At the lower level,
L2 cache is connected to the System Memory. Depending on selected scope, a synchronization operation with

13AMD. (2015). The AMD gem5 APU simulator: modeling heterogeneous systems in gem5 [online]. Website
http://www.m5sim.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2015_final.pptx [accessed 00 September 2021].

14The Khronos Group Inc. (2018). Khronos OpenCL registry [online]. https://www.khronos.org/registry/OpenCL/. [accessed
00 January 2021].

15HSA Foundation. (2018). HSA programmer’s reference manual: HSAIL virtual ISA and programming model, compiler writer,
and object format (BRIG) [online]. Website http://www.hsafoundation.com/standards/ [accessed 00 September 2021].
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release ordering may trigger flushing local cache and acquire ordering may trigger 1 cycle cache-invalidation on
local data and L2 caches. These caches are equipped with sFIFO structures to flush a cache efficiently. There
are 16 sFIFO entries on every local cache and 24 sFIFO entries on shared L2 cache.

Table . Configuration parameters of simulated GPU devices.

Number of Compute Units 64/128
SIMDs 4 SIMDs per CU, 1GHz
Wavefronts per Compute Unit 40
Data cache 16kB (16-way) set-associative with 64B block size, 4 cycle access latency
L2 Cache 512kB (16-way) set-associative with 64B block size, 24 cycle access latency
Instruction cache 32kB (8-way) set-associative with 64B block size, 4 cycle access latency
DRAM DDR3, 8 Channels, 500 MHz
Protocol write-no-allocate with write-combining policy

For nRSP, we modified OpenCL runtime environment and local L1 data and L2 cache protocols to
implement RSP’s remote synchronization operations using Named-flush and Named-invalidation operation which
is explained in Section 6.

7.1.1. Workloads
Our benchmarks are chosen from Pannotia Benchmark Suite [24]. We modified our selected graph benchmarks to
benefit from dynamic load-balancing. We utilized a lock-free implementation of work-stealing that is described
in [25]. In our implementation, each workgroup owns a task queue. Initially, the total number of graph nodes
are distributed to task queues. Each workgroup starts working on its own local task queue. When a workgroup
runs out of work, it tries to steal from other queues. Once all task queues are empty, kernel exits. Workgroups
dequeue from their local queues’ tail and steal from other task queue’s head. Collision is possible when dequeing
and stealing and synchronization must be used when accessing to the task queues. We run our benchmarks with
various input graphs selected from 9th and 10th DIMACS Implementation Challenge16 and from Sommer17.

Our benchmarks and their inputs are as follows: MIS.1 and MIS.2 implement Maximal Independent Set al-
gorithm and use itdk0304_rlinks_undirected_MAX and caidaRouterLevel as input, respectively. PRK.1 and
PRK.2 implement Page Rank algorithm and use graphs coAuthorsDBLP and smallWorld, respectively. SSSP.1
and SSP.2 implement Single Source Shortest Path (SSSP) and use graphs USA-road-BAY and USA-road-COL,
respectively.

7.1.2. Evaluation scenarios
We use five execution scenarios for evaluation. In Baseline scenario, dynamic load-balancing is not imple-
mented, but accesses to task queues are guarded with synchronization using global-scope. Baseline scenario
provides a baseline for us. Steal-only implements work-stealing using global-scoped synchronization. It
only gains performance benefits from dynamic load-balancing. Scope-only does not implement dynamic load
balancing. So it can utilize local-scoped synchronization and gains performance improvement coming from low-
cost local-scoped synchronization. bRSP uses first implementation of RSP’s remote synchronization operations

16DIMACS. (2017). DIMACS Implementation challenges [online]. Website http://archive.dimacs.rutgers.edu/Challenges/ [ac-
cessed 00 September 2021].

17Sommer C. (2010). Graphs [online]. Website http://www.sommer.jp/graphs/ [accessed 00 September 2021].
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that make use of broadcast cache-flush and broadcast cache-invalidation operations. bRSP gains performance
improvements from dynamic load-balancing and local-scoped synchronization with local-owner’s frequent ac-
cesses. nRSP uses our new implementation of RSP’s remote synchronization operations utilizing Named-flush
and Named-invalidation operations. nRSP gains performance improvements from dynamic load-balancing,
local-scoped synchronization with local-owner’s frequent accesses, and Named-flush/invalidation operations.

7.2. Results
7.2.1. Speedup

Figure 7 shows a comparison of performance improvements of Steal-only, Scope-only, bRSP, and nRSP scenarios
relative to Baseline scenario for 64 CU and 128 CU GPU devices. We observe similar performance trends for
64-CU GPU device and 128-CU GPU device.

Figure 7. Speedups with our benchmarks (MIS.1, MIS.2, PRK.1, PRK.2, SSSP.1, and SSSP.2) using Baseline, Steal-
only, Scope-only, bRSP, and nRSP scenarios on 64CU and 128CU GPU devices.

We observe good performance improvements with Scope-only scenario for all benchmarks both on 64 and
128 CU GPU devices. Use of lightweight local-scoped synchronization helps with synchronization overhead and
retaining locality in local caches. Depending on amount of locality that exists in benchmarks, the performance
benefits of using local-scoped synchronization vary. Scope-only scenario shows 14% and 13% performance im-
provements on the average on a 64 and 128 CU GPU devices, respectively. SSSP.1 gets the highest performance
improvement with Scope-only scenario.

The performance improvement that we could get with Steal-only scenario depends on how much load
imbalance that the application faces with its input. It could provide significant performance improvement for
some benchmarks. We observe upto 50% and 52% performance improvements with PRK.1 benchmark running
on 64 CU and 128 CU GPU devices, respectively. It provides 11% and 14% performance improvements on the
average on 64 CU and 128 CU GPU devices, respectively.

Despite bRSP uses local-scoped synchronization, it cannot benefit as much from locality since local caches
are flushed and invalidated heavily. Synchronization overhead becomes very significant with increased number
of CUs. bRSP shows 5% performance improvement and 1% performance slowdown on the average on 64 CU
and 128 CU GPU devices respectively. At the most, it exhibits 20% and 17% speedup with PRK.1 benchmark
on 64 CU and 128 CU GPU devices, respectively. It shows up to 17% slowdown for PRK.2 benchmark.

While flushing and/or invalidating only participating agents’ local caches, nRSP greatly reduces the
remote synchronization overhead and manages to limit the effect of remote synchronization on locality. As a
result, nRSP sustains the performance improvement on large scale GPUs. On the average, it demonstrates
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27% and 28% speedups on the average on 64 CU and 128 CU GPU devices, respectively. It shows up to 56%
performance improvement with PRK.1 benchmark on a 128 CU GPU device.

7.2.2. L2 cache accesses
In Figure 8, on the left, we present L2 accesses for five scenarios relative to Baseline while running our
benchmarks on a 128 CU GPU device. Use of local-scoped synchronization leads to reduction in L2 accesses and
that contributes to performance improvements. While we observe significant reduction in bandwidth use for
Scope-only and nRSP scenarios, we observe mixed results for bRSP scenario. This is due to fact that excessive
use of cache-invalidation operations harms the locality in L1 data caches. Scope-only and nRSP scenarios show
up to 25% and 24% reduction in L2 accesses on a 128 GPU device, respectively.18
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Figure 8. Illustrating Bandwidth usage (Left) and remote synchronization overhead (Right) using Baseline, Steal-only,
Scope-only, bRSP, and nRSP scenarios running our benchmarks (MIS.1, MIS.2, PRK.1, PRK.2, SSSP.1, and SSSP.2)
on a 128CU GPU device. While L2 accesses are represented relative to Baseline scenario, remote synchronization cycles
are represented relative to bRSP scenario.

7.2.3. Overhead of remote synchronization operations

On the right of Figure 8, we demonstrate the overhead of remote synchronization operations for bRSP and
nRSP scenarios on a 128 CU GPU device. nRSP scenario greatly lowers the overhead of remote synchronization
operations. nRSP shows 43% reduction in overhead when compared to bRSP scenario. It shows up to 59%
improvement when running PRK.1 benchmark.19

8. Hardware cost and limitations of nRSP
We modify the L1 data and L2 cache protocols to realize the remote synchronization operations with Named-flush
and Named-invalidation operations. While nRSP’s implementation increases the complexity of cache protocol,
we believe it is much less compared to RSP’s first implementation, sRSP and hLRC. Our implementation does
not add any hardware. nRSP’s static naming approach is based on the idea of owner computes model. nRSP
cannot be used for any applications that is constructed with a more dynamic and irregular computing model.
This limits the applicability of nRSP.

18While we illustrate and discuss results for 128 CU GPU device for brevity, we observe the similar trends on a 64 Compute Unit
GPU.

19While we illustrate and discuss results for 128 CU GPU device for brevity, we observe the similar trends on a 64 Compute Unit
GPU.
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9. Conclusion
GPUs utilize synchronization for preserving data consistency. Unfortunately, synchronization becomes quite
costly for large number of threads. High synchronization overhead can be avoided with use of local-scoped
synchronization [1] within a subset of threads. Asymmetric sharing cannot benefit from scoped-synchronization
due to its dynamic characteristic. RSP [3] introduces remote scope promotion to support use of local-scope in
asymmetric sharing. Unfortunately, first realization of RSP semantics employs quite costly broadcast cache-flush
and cache-invalidation operations that do not scale for large scale GPUs.

In this paper, we presented a novel mechanism to identify local-owner’s cache affinity in asymmetric
sharing and apply Named-invalidation and Named-flush operations when performing a remote synchronization.
nRSP tries to minimize remote synchronization overhead, obtains significant speedup for applications that use
asymmetric sharing and scales for big GPU devices. When running on 128 CU GPUs, with nRSP 28% speed
up (on the average) is obtained.
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