
gSuite: A Flexible and Framework Independent Benchmark Suite
for Graph Neural Network Inference on GPUs

Taha Tekdoğan1,2 Serkan Göktaş1 Ayse Yilmazer-Metin1

1Department of Computer Engineering, Istanbul Technical University
2Radar and Electronic Warfare Intelligence Systems, ASELSAN Inc.

Abstract

As the interest to Graph Neural Networks (GNNs) is
growing, the importance of benchmarking and performance
characterization studies of GNNs is increasing. So far, we
have seen many studies that investigate and present the
performance and computational efficiency of GNNs. However,
the work done so far has been carried out using a few high-
level GNN frameworks. Although these frameworks provide
ease of use, they contain too many dependencies to other
existing libraries. The layers of implementation details and
the dependencies complicate the performance analysis of GNN
models that are built on top of these frameworks, especially
while using architectural simulators. Furthermore, different
approaches on GNN computation are generally overlooked
in prior characterization studies, and merely one of the
common computational models is evaluated. Based on these
shortcomings and needs that we observed, we developed a
benchmark suite that is framework independent, supporting
versatile computational models, easily configurable and can be
used with architectural simulators without additional effort.

Our benchmark suite, which we call gSuite, makes
use of only hardware vendor’s libraries and therefore it
is independent of any other frameworks. gSuite enables
performing detailed performance characterization studies on
GNN Inference using both contemporary GPU profilers and
architectural GPU simulators. To illustrate the benefits of our
new benchmark suite, we perform a detailed characterization
study with a set of well-known GNN models with various
datasets; running gSuite both on a real GPU card and a
timing-detailed GPU simulator. We also implicate the effect
of computational models on performance. We use several
evaluation metrics to rigorously measure the performance
of GNN computation. We make gSuite available to research
community and provide all the configuration settings which
we used for our evaluation so that all the experiments
mentioned in the paper are reproducible.

1. Introduction

Graph structured data are highly preferred in many real-
world applications due to their ability of expressing the
topology of irregular domains. For instance, graphs are used
for representing molecules in chemistry [20], relationships
among people in social sciences [51], and connections
between brain areas in computational neuroscience [42].
Real-world graph datasets have been scaled to enormous

amount of sizes in terms of number of nodes, edges,
and their feature lengths. Processing these huge-sized
data requires an intensive computation. Utilizing Graphics
Processing Units (GPUs) is the de facto method in order to
meet computation requirements of the graph operations.

Successful application of deep learning techniques in
many areas has triggered the idea of applying deep neural
network(DNN)-based techniques on the graph structured
data. Graph Neural Networks (GNNs) are deep learning
based methods that are capable of working on non-euclidean
data. GNNs provide a way of performing node level, edge
level, and graph level prediction for graph structured data.

There have been various approaches to carry out GNN
operations such as message passing (MP) [20, 21] and
sparse matrix multiplication (SpMM) [1]. Therefore, GNN
computation can be applied in various ways. The increasing
number of GNN research motivated developers to extend
commonly used deep learning frameworks to support GNN
operations using MP or SpMM computational models.

The most popular GNN frameworks are built on top of
the commonly used Python-based deep learning frameworks
(e.g., PyTorch Geometric (PyG) [18] is built on PyTorch;
Deep Graph Library (DGL) [61] gives end user a choice
to alternate among PyTorch, Tensorflow or MXNet). Even
though these frameworks provide ease of development, they
bring dependency to implementations within the base-lined
framework and the underlying development libraries.

The increasing number of studies in GNN area has led
the benchmarking studies to evaluate the performance of
GNN computations. In Table 3, we summarize the main
frameworks and benchmarking studies on GNNs. As the
table shows, all of the existing frameworks and benchmark-
ing studies utilize at least one of the existing DNN/GNN
frameworks and their libraries. The dependencies to the
existing frameworks rather complicates the performance
analysis and characterization of GNN computations. Most
of the computer architecture studies favor utilizing detailed
architectural simulators. However, the dependency chain
of the existing frameworks makes performance analysis of
the GNN applications inaccessible, especially while using
architectural simulators.

While the GNN frameworks are intended to be extend-
able, benchmarks and characterization studies have been
only on a limited number of well known GNN models and
datasets [4, 66, 72]. Additionally, most of these frameworks

146

2022 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-8798-6/22/$31.00 ©2022 IEEE
DOI 10.1109/IISWC55918.2022.00022

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
W

or
kl

oa
d

C
ha

ra
ct

er
iz

at
io

n
(I

IS
W

C
) |

 9
78

-1
-6

65
4-

87
98

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
II

SW
C

55
91

8.
20

22
.0

00
22

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

and benchmarks are based on a specific computational
model.

All of these limitations of the existing studies and efforts
motivated us to develop a configurable and framework
independent benchmark suite for GNN Inference. In this
paper, we introduce our GNN benchmark suite which we
call gSuite. gSuite is highly flexible, allows either using an
existing framework (such as PyG or DGL) or using our
GNN implementations that only make use of the hardware
vendor’s libraries. The parameters of the desired GNN
pipeline, such as the GNN model, the dataset, the number of
GNN layers, etc., can be easily configured by passing a few
parameters to the program. We built gSuite as the collection
of utilities (data import, transform, etc.) and core kernels
which are the most primitive operations of GNNs. Therefore,
it is extendable to create new GNN models and study their
performance on GPUs. gSuite is designed for efficiently
studying the performance of GNNs with either hardware
profilers or cycle accurate simulators. It does not require
additional effort to utilize an architectural simulator, which
makes GNN-related operations quite accessible in terms
of performance characterization. As a proof of concept, in
this work, we characterize the most popular GNN models
on varying datasets. We interpret the experimental results
in terms of the effect of input workload, GNN model and
computational model.

In summary, in this study, we make the following
contributions:

• We provide a flexible and user-friendly benchmark
suite for GNN inference, hence a desired GNN
pipeline can be easily built by passing only a few
parameters.

• We eliminate the dependency of GNN pipelines
to other frameworks (such as PyG and DGL) and
machine learning utilities (such as PyTorch and
Tensorflow).

• We characterize the computation of the most rep-
resentative GNN models at inference level by com-
paring two predominant computational models, i.e.,
message passing (MP) and sparse matrix multiplica-
tion (SpMM).

• We demonstrate the accessibility of GNN perfor-
mance on gSuite using both a hardware profiler and
an architectural simulator.

• We present and summarize our performance results
and make architectural suggestions based on our
findings.

Remaining of this paper is structured as follows: Section
2 introduces fundamentals of GNNs with their notations,
formulas, common data formats, prevalent datasets, and
popular GNN frameworks. In Section 3, we discuss the state-
of-the-art of benchmarking methodologies and characteriza-
tion studies for GNNs. Section 4 explains our architectural
model by declaring core kernels as the most primitive
GNN operations. And finally in Section 5, we deliver our
benchmarking methodology for evaluating the performance

of the GNN computation. Then we deliver our results and
discuss them in detail.

2. A Brief Background on GNNs
GNNs were first introduced by Scarselli et al. [54], and

many new GNN models were proposed since then [10,
41, 59, 70]. A large set of domains leverage the capability
of GNNs [20, 42, 51]. Adopting GNNS to wide range of
domains gives rise to many new GNN models with various
characteristics. Below, we provide a brief background on
GNNs by introducing common notation, the computational
approaches and popular frameworks to implement the
required GNN operations, widely used graph datasets and
graph formats utilized to express them.

Graphs are widely used fundamental data structures
that are very successful at expressing real-world data that
includes relationships between its entities. A graph G =
(V , E) is defined by a set of nodes V , and a set of edges E.
Two nodes are neighbours if they are directly connected
to each other with an edge. The set of neighbour nodes
of a node v is represented as N(v). Nodes may carry a
list of features that are represented with a latent vector
which holds information, known as node embedding in GNN
literature. We represent the node embedding of a node v
as hv.

GNN pipelines generally consist of multiple GNN layers

L. We denote a specific node embedding for layer k as h(k)
v ,

where k ε [1, L] stands for current GNN layer. In some
cases, edges may carry information which is called an edge
embedding, and it is represented as ge. Most often, the task
of a GNN model is predicting or generating the node or
edge embeddings.

Furthermore, node and the edge embeddings can be
represented with matrices, instead of latent vectors. Feature
information of the vertices in a graph can be represented
with a feature matrix X in shape [|V|, f], where f stands
for the feature size. The connectivity information between
nodes in a graph can also be represented with an adjacency
matrix A in shape [|V|, |V|].

We will be using these notations for explaining the
mathematical expressions of a core set of GNN models that
are widely used and also implemented in our benchmark
suite. Table 1 summarizes this notation that we use during
our study.

2.1. Computation of GNNs
GNN computation can be evaluated under two major

GNN phases: inference and training. Inference phase refers
to updating each node embedding in a graph analogous to
corresponding GNN schema and pre-trained model coeffi-
cients. Training phase refers to optimizing the coefficients
of the model. Here in this work, we mainly focus on the
inference stage of GNNs. Therefore when we invoke the
GNN computation, we imply the computation of GNN
inference during the study.

A typical GNN includes two types of operations: aggre-
gation (or message in some cases [18, 20, 61]) and combina-
tion (or update in some cases [6, 18, 20, 43, 61]). Aggregation

147

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Notations for graph neural networks

Notation Description

G(V , E) Graph
V Set of nodes of the graph
|V| Number of nodes in the graph
E Set of edges of the graph
v A single node where v ε V
e A single edge where e ε E
k Current GNN layer where k ε [1, L]

h(k)
v Feature representation of node v at layer k

g(k)
e Feature representation of edge e at layer k

N(v) Neighbourhood nodes of the node v
A Adjacency matrix of the graph

X(k) Feature matrix of the graph at layer k

refers to capturing information from a node’s neighbour
nodes and accumulating them into its feature representation.
It is done by a predefined aggregator function such as
sum, mean, and max. Combination refers to updating a
node’s representation by using the output of aggregation
phase, which is mostly a multilayer perceptron (MLP)
[52]. Aggregation and combination operations are applied
analogous to definition of the corresponding GNN model.
Application of these operations forms the implementation
of the mathematical definitions of GNN models.

Aggregation and combination operations can be applied
to graph datasets based on two classes of computational
models: Message Passing (MP) [20, 21] and Sparse Matrix
Multiplication (SpMM) [61]. MP model is based on a
computation pattern where connected nodes scatter their
attributes through neighbourhood nodes (aggregation) and
each node updates its node-embedding by using such
neighborhood nodes’ features (combination). On the other
hand, SpMM model refers to applying aggregation and
combination schemes by reducing them into a sequence of
matrix multiplication operations.

2.2. GNN Frameworks

There are a number of frameworks to provide an
infrastructure to build and run GNNs pipelines such as
PyTorch Geometric [18], Deep Graph Library [61], Graph
Nets [5], and Spektral [24]. PyTorch Geometric (PyG) and
Deep Graph Library (DGL) are the most popular ones among
all these frameworks. PyG is built on top of PyTorch library,
and all the implemented GNN models are inherited from a
base class called MessagePassing. On the other hand, DGL
implements GNN models based on SpMM computational
model. It gives user a choice to alternate between three
frameworks (PyTorch, Tensorflow and MXNet).

We examined widely used GNN frameworks and their
model implementations. Then we imitated the MP kernels
from PyG and SpMM kernels from DGL to implement
core kernels of GNNs. We also purified these kernels from
dependencies to other libraries (such as PyTorch). Table 2
provides the list of identified core MP and SpMM kernels.

MP models generally consist of neighbour node calcu-
lation (indexSelect), scattering the node embedding through

TABLE 2: Core MP and SpMM kernels.

Kernel Computational Short Description
Name Model Form

indexSelect MP is Indexes the input along
specified dimension by
using index entries.

scatter MP sc Reduces given input
based-on index vector
using entries.

sgemm SpMM sg Generalized matrix
/GEMM multiplication of

two given matrices.

SpGEMM SpMM sp Matrix multiplication
/GEMM of two sparse matrices.

these connections (scatter), and updating self node embed-
ding with a linear function (sgemm). On the other hand,
SpMM models consist of a consecutive execution of matrix
multiplication operations (SpGEMM and sgemm). These
core kernels are organized to comply corresponding GNN
model’s computation formula.

2.3. GNN Models

While it is very easy to extend our benchmark suite
to include any type of GNN model, we have chosen
three widely-used GNN models to implement and base
our discussions in this paper. We demonstrate the imple-
mentation and detailed performance characterization of
these three GNN models using gSuite. These three GNN
models are Graph Convolutional Network (GCN) [38], Graph
Isomorphism Network (GIN) [64], and GraphSAGE (SAG) [27].
Using the notation that we presented above, we continue
providing implementation details of these three widely-
used GNN models. Then we explain the implementation of
the core kernels of GNNs by mapping the formulas with
computational models.

2.3.1. Graph Convolutional Networks. Graph Convo-
lutional Network (GCN) is a semi-supervised classification
method that is an efficient variant of convolutional neural
networks designed to operate on graphs [38]. It is motivated
by the idea of using layer-wise propagation on graph
structured data. GCN is capable of encoding both node
features and graph structure with their proposed graph
modeling approach. Therefore, it is quite popular in a wide
range of implementations from knowledge embedding [68]
to face clustering [56].

We can express the GCN computation using both MP
and SpMM computational model. The message passing
formula for updating each node embedding of a graph
in GCN is given by (1).

h(k+1)
v = Θ

(∑
uεN(v)∪{v}

1√
dudv

hu

)
(1)

In (1), hv
(k+1) is the feature representation of the

updated node v in (k + 1)th layer. hu is a neighbour node

148

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

embedding from the set uεN(v) ∪ {v}. dv represents the
node degree of node v, i.e. the number of edges connected
to node v. Θ is a linear activation function.

The formulation of GCN using SpMM model is given
in (2).

Xk+1 = D̂–1/2ÂD̂–1/2XkΘ (2)

In (2), X(k+1) represents the feature matrix of a graph
at layer (k + 1). Â is the adjacency matrix with self-loops
inserted, i.e.:

Â = A + I.

D̂ is Â’s diagonal matrix, i.e.:

D̂ii =
∑
j=0

Âij.

And finally, Θ is an activation function such as a Rectified
Linear Unit (ReLU) [22] or a Sigmoid function [50].

2.3.2. Graph Isomorphism Networks. Graph Isomor-
phism Networks (GINs) combine the discriminative power
of Weisfeiler-Lehman (WL) graph isomorphism test [63,
64] with GNN’s recursive neighbourhood aggregation by
making aggregation phase highly expressive and modeling
injective functions. GINs are mostly used for classification
and discrimination tasks on graphs [3]. Following formulas
explain how node embeddings are updated using MP and
SpMM computational approaches for implementing GINs.
(3) shows the MP formula of a single GIN layer, and (4)
shows the matrix multiplication version of a GIN layer
computation.

h(k)
v = Θ(k)

(
(1 + ε(k)) ∗ h(k–1)

v +
∑

uεN(v)

h(k–1)
u

)
(3)

In (3), h(k)
v represents the feature vector of the node

v at layer k. h(k–1)
u is the feature representation of a

neighbourhood node u at layer (k – 1). ε is a constant,
and Θ(k) is an activation function at layer k.

Xk+1 = Θ(k)
((

Ak + (1 + ε) · I
)
· Xk

)
(4)

In (4), Xk+1 represents the feature matrix of a graph.
A is an adjacency matrix, I is an identity matrix, ε is a
constant, and Θ(k) is an activation function at layer k.

2.3.3. GraphSAGE. GraphSAGE (SAG) is a general in-
ductive model which generates previously unseen nodes
in a graph by leveraging the current node information
[27]. SAG uses aggregating functions to aggregate feature
information from node’s local neighborhood, instead of
training a distinct embedding vector for each node. Even
though we could not find an available SpMM version of
SAG, we implemented it using only the MP computational
model due to its popularity with unsupervised learning on
graph structured data [11, 71].

Equation (5) shows the formula of MP-oriented SAG
model.

h(k)
v = W1h(k–1)

v + W2 ∗ meanjεN(v)∪{v}hu (5)

In (5), h(k)
v shows the feature representation of a node

v at layer k. W1 and W2 are scalar weights for self nodes
and neighbour nodes, respectively.

2.4. Datasets and Widely Used Graph Formats

In prior GNN studies, we often see datasets that con-
sist of two parts: connectivity information to represent
edges in graphs, and content information to embody node
embeddings. Frameworks construct graphs in terms of
their utilized graph formats by inferring information from
these datasets. The most popular graph datasets in GNN
studies are Cora, Citeseer [47], Pubmed [53], Reddit [28]
and LiveJournal [2, 39].

Graph datasets are generally transformed to one of
the following formats to be processed by graph libraries:
dense matrix, sparse matrix, coordinate format (COO) and
compressed sparse row (CSR).

Dense and sparse matrices are often used as input to
graph operations based on matrix multiplication, such as
SpMM. On the other hand, COO and CSR formats are
compressed formats of the graphs that represent attributes
and topology of the graph in low-dimensional vector. These
types of graph data formats are commonly used in MP-
based frameworks, such as PyG. We include all of these
formats in our work, and provide utilities to transform a
dataset from one format to another.

3. Limitations of Existing GNN Frameworks
and Benchmarking Efforts

As the GNNs are finding application in many areas;
several new frameworks, performance analysis and char-
acterization studies have emerged. We review the prior
GNN frameworks, benchmarks and characterization studies
in chronological order and evaluate them in terms of
configurability, framework dependency, model and dataset
versatility. A comparison table Table 3 is provided to show
existing studies’ capabilities in terms of measuring GNN
performance and ease of use.

As the Table 3 summarizes, prior works lack one or more
of the attributes that is desired for studying the performance
characteristics of GNN applications. All of these studies
utilize an existing DNN/GNN framework and have layers
of dependency chain. Such dependency may decrease the
accessibility of GNN performance, especially while utilizing
an architectural GPU simulator.

Furthermore, most of the frameworks, benchmarks and
characterization studies assume that there merely exists
a single computational approach. For instance, Pytorch
Geometric (PyG) [18] follows a MP schema as a base
class to whole GNN models. On the other hand, Deep
Graph Library (DGL) [61] considers GNN computation as an
SpMM problem. Benchmarks and characterizations studies

149

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: Summary of the prior GNN frameworks, benchmarks, characterization studies and gSuite with their
properties.

Study Name GNN Models Frameworks Datasets Extendibility GNN Scope

Pytorch Geometric [18] GCN, SAG, GIN, Pytorch Cora, CiteSeer, Yes Both
RGCN, ... Pubmed, MUTAG,

PROTEINS, ...

Deep Graph Library [61] GCN, GAT, SAG, Pytorch, MXNet, REDDIT, ARXIV, Yes Both
GIN, SGC, ... Tensorflow PROTEINS, ...

GCN-GPU GCN, GIN, SAG PyG Cora, CiteSeer, No Inference
Characterization [66] Pubmed, Reddit,

LiveJournal

GNN-GPU GCN, GAT, GGNN, PyG, DGL Cora, CiteSeer, No Inference
Characterization [72] Pubmed, AIFB,

MUTAG, BGS

GNNMark [4] PinSAGE, STGCN, PyG Cora, CiteSeer, No Training
DGCN, GW, KGNN, Pubmed, NWP,

ARGA, TLSTM MVL, LA, PEMS

HyGCN [67] GCN, SAG, GIN PyG IMDB, Cora, No Inference
Citeseer, Colab,
Pubmed, Reddit

GRIP [37] GCN, GIN, GReTa Pokec, YouTube No Inference
G-GCN, SAG LiveJournal, Reddit

gSuite GCN, GIN, SAG None Cora, Citeseer, Pubmed Yes Inference
Reddit, LiveJournal

generally utilize one of these frameworks to build GNN
pipelines. As a result, such assumption on computational
model may limit or lead to wrong conclusions when
studying performance characteristics of the workloads.

Moreover, except the GNN development frameworks,
the rest of the studies are not extendable. One cannot create
a new model or add a specific dataset.

With this study, we identify the need for a benchmark
suite that does not limit the users to perform a thorough
architectural performance analysis study.

4. gSuite and Our Design Approach

While developing our GNN benchmark suite, we consid-
ered three key features: (1) Flexibility, (2) Extendability, and
(3) Independence. These features are explained below to
point out the cornerstones of our benchmark suite’s design
approach.

• gSuite is a collection of utility functions (e.g. func-
tions to allow input/output, setting configuration,
etc.) and core kernels of MP and SpMM computa-
tional models. It is flexible to allow building GNN
pipelines by selecting the desired dataset, GNN
model, number of layers, computational model, and
framework (using either gSuite’s core kernels or
other framework’s implementations).

• gSuite allows researchers and engineers to extend
the suite in any direction. By utilizing MP and
SpMM core kernels, a new GNN model can be built
in a plug-and-play manner.

• gSuite’s core kernels do not have any dependency on
any GNN/DNN frameworks. However, we still give
a choice to the end user for alternating between
a GNN framework (PyG or DGL) and our GNN
implementations.

4.1. Software Architecture

gSuite provides an interface that enables researchers and
engineers to easily build a desired GNN pipeline in a plug-
and-play manner. We abstract the usage of our benchmark
suite from its code implementation to avoid the intervention
of end users from coding. The architecture of underlying
software is illustrated in Fig. 1.

When running gSuite, user parameters (e.g. number of
layers, GNN model, dataset) are passed to the User Interface.
These parameters are interpreted by the interface and then
passed to the Abstraction Module. Nevertheless, the interface
does not require the end user to pass all the parameters
to the suite. There is a configuration file that includes all
these settings as default parameters, where these default

150

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

User Parameters

User Interface

Abstraction
Module

Data Loader

Import GNN Models

from PyG

Build GNN models

using core MP/SpMM kernels

Import GNN Models

from DGL

Datasets

Framework: PyG Framework: DGL

No Framework Indicated

Figure 1: Software architecture of gSuite.

parameters take action when a parameter value is not
specified by the user.

The decision of which framework, GNN model and
dataset are going to be used is made by this abstraction
module. In case of no framework is indicated by the end
user; then our GNN implementations are utilized.

Data loader imports the chosen dataset and handles
pre-processing stage of GNN computation, i.e., loads edge
index vector and feature representation vector.

gSuite implements both of the computation models (MP
and SpMM) for each deployed GNN model. Iterative execu-
tion of these kernels with proper data manipulation results
in a GNN model. To illustrate the phenomenon, graph
convolutional network (GCN) inference is implemented
by adding indexSelect, scatter and linear kernels to satisfy
GCN’s MP computation scheme. On the other hand, the
SpMM computation of GCN refers to reducing all the above-
mentioned operations in a single matrix multiplication. We
implemented SpMM GCN by utilizing NVIDIA’s cuBlas
utilities. An illustration of these implementations are given
at Fig. 2.

All the implemented kernels are listed in Table 2 with
their brief description. These kernels are designed to be
generic and GNN-oriented so that any GNN model can be
built by utilizing these kernels.

5. Evaluation

In this section, we first explain the GNN models and
datasets that we deployed in our suite. Next, our experi-
mental setup is briefly described. Finally, we deliver the
results of our experiments and discuss our observations.

5.1. GNN Models

We implemented the most potent GNN models in
our benchmark suite: GCN, GIN and SAG. We made the
model implementations two-sided for computational model

edgeIndex
(COO)

scatter

nodeDegrees
[1 x n]

featureVector
[n x f]

sgemm

linearOutput
[n x o]

indexSelect

indexSelect
Output
[e x o]

scatter

edgeIndex
(COO)

featureVectorOutput
[n x o]

gSuite-MP

D(1/2)

[n x n]
A

[n x n]

SpGEMM

D(1/2) ∗ A
[n x n]

D(1/2)

[n x n]

SpGEMM

D(1/2) ∗ A ∗ D(1/2)

[n x n]
X

[n x f]

SpGEMM

D(1/2) ∗ A ∗ D(1/2) ∗ X
[n x f]

gSuite-SpMM

Figure 2: Computational schema of the GCN pipelines of
gSuite-MP and gSuite-SpMM. Yellow boxes represent data,
orange ones represent the core kernels.

TABLE 4: The Included Datasets in our Evaluation

Dataset Nodes Feature Edges Short
Length Form

Cora [47] 2,708 1,433 5,429 CR
CiteSeer [47] 3,327 3,703 4,732 CS
PubMed [53] 19,717 500 44,438 PB
Reddit [28] 232,965 602 11,606,919 RD
LiveJournal [2] 4,847,571 1 68,993,773 LJ

versatility, i.e., each model has distinct MP and SpMM
implementations (except SAG).

MP models consist of indexSelect, scatter, and sgemm
kernels; SpMM models incorporate SpMM and sgemm
kernels.

5.2. Datasets

In our evaluation, we used the most prevalent graph
datasets across varying domains: Cora, Citeseer [47],
Pubmed [53], Reddit [28], and LiveJournal [2, 39]. These
datasets vary greatly in terms of size, feature length,
number of nodes and edges. A table of datasets with their
information is given in Table 4.

Each of these datasets represents a particular feature
that aims to test the limitations of implemented GNN models
and underlying architectures. Each attribute of the datasets
makes them unique in terms of computation. For instance,
one may include a large amount of feature size; while other
may have a huge number of directed edges.

5.3. Experimental Setup

Our experiments were conducted on NVIDIA V100 GPU
32GB and Intel Xeon 2000 CPU. Each GNN model with

151

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

the specified input set is run three times; and the mean
values of the statistics of these runs were collected. Profiling
operations are done at the kernel level for all GNN pipelines.

NVIDIA’s nvprof [7] is used for collecting the results
on the GPU card. It is a profiling tool that tracks running
applications on GPUs and collects information about the
performance activity of the application. We use the version
10.2 of nvprof.

GPGPU-Sim [40] is utilized for collecting more detailed
performance statistics. GPGPU-Sim is a timing detailed
architectural simulator which is capable of running CUDA
and OpenCL kernels. We use the configuration file that
is provided by the simulator package and models a GPU
architecture similar to NVIDIA’s V100 GPU. We used the
version 4.0 of GPGPU-Sim.

5.4. Results

5.4.1. Execution Time. We start our evaluation by mea-
suring execution time of GNN pipelines; using their im-
plementations with PyG, DGL, gSuite-MP, and gSuite-
SpMM. We measure the execution time as wall clock time.
In general, execution times of PyG is longer than other
frameworks. This is mainly because of the initializations
that are performed as part of their implementation. Since
the gSuite eliminates high level library dependencies, its
implementations tend to run faster than other frameworks
in terms of end-to-end execution time. We compare these
durations in Fig. 3.

0

2

4

0

2

4

0

2

4

E
x
ec
u
ti
o
n
T
im

e
(s
ec
)

Datasets

C
R

C
S

P
B

PyG DGL gSuite-MP gSuite-SpMM

R
D L
J

C
C
R

C
C
S

P
P
B

R
R
D L
J

0

4 C
C
R

C
C
S

P
P
B

D
R
D

L
L
J

Figure 3: End-to-end execution time of frameworks with
different GNN models on varying datasets.

We also show the execution time distribution of the
kernels in Fig. 4. gSuite shows a similar distribution to
that of PyG and DGL. We observed that the GNN model is
the main determinative factor for the distribution of kernel
execution times.

5.4.2. Instruction Breakdown. Each core kernel consists
of different types of instructions to accomplish its task
during the execution. We have found that each core kernel
has a characteristic distribution of instructions that does not

vary even though when GNN model or dataset is adjusted.
Fig 5 shows the instruction breakdown of kernels on
different models and datasets, implying that the distribution
is not affected by the adjustment of GNN model and dataset.

From our instruction breakdown analysis (Fig. 5), we
observe that scatter and indexSelect kernels are dominated
with integer operations. Because, these two kernels mainly
perform address calculations for data accesses. On the
other hand, sgemm kernel is highly dominated by floating
operations. Based on these observations, we can suggest
researchers to investigate co-scheduling of kernels and also
focus on warp scheduling studies for better utilization of
the functional units.

5.4.3. Issue Stall Distribution. We evaluate and analyze
the issue stall distribution of core GNN kernels. Issue
stalls explain why an active warp is not eligible during
its execution. Prior studies showed that the change in the
characteristics of input workload has a strong effect on GNN
computation [66, 72]. We observe a similar behaviour in our
experiments. As the size of the dataset gets larger, all the
core kernels except sgemm develop memory dependency.
Fig. 6 illustrates the issue stall cycle distribution of core
kernels in MP and SpMM based implementations of GCN,
GIN SAG models, running with our five datasets.

We found that memory dependency is the dominant
stall in both MP- and SpMM-based implementations, with
46.3% on average. This is due to irregular memory access
pattern of GNN Inference tasks.

5.4.4. Warp Occupancy Distribution. This metric stands
for the ratio of active warps to maximum number of
supported active warps, from GPGPU-Sim. We use this
metric to measure the utilization of functional units. In
this analysis, stall state shows that pipeline is stalled and
therefore cannot issue any instructions. Idle state means the
warps were issued but not ready to execute next instruction.
Finally, WX refers to X active threads were scheduled into
pipeline.

During the experiments, we observed that the type of
GNN model plays a crucial role in pipeline utilization. MP-
based kernels (scatter and indexSelect) of GCN tend to stay
idle during the execution, unlike GIN and SAG kernels.
However, sgemm kernel is immune to these GNN model
adjustments. Fig. 7 shows how the utilization levels change
across GNN models and our datasets.

Figures 6 and 7 also highlights the inefficiency of front-
end when running indexSelect and scatter kernels in GCN
MP model (we observe high instruction fetch in Fig. 6 and
high idle time in Fig. 7 for these kernels in GCN MP model,
especially with small sized datasets (CR and CS)).

5.4.5. L1/L2 Cache Hit Rate. As GNN operations draw
an irregular access pattern on memory; we expect high
miss rates consistent with prior characterization studies [4,
55]. We aim to show how input workload characteristics
affect the cache miss rates during GNN computation.

Moreover, we point out resemblance and differences of
a hardware profiler statistics and architectural simulator

152

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

E
x
ec
u
ti
o
n
T
im

e
D
is
tr
ib
u
ti
o
n
(%
)

PyG

Datasets

C
R

C
S

P
B

R
D L
J

0

25

50

75

100

GCN

C
R

C
S

P
B

R
D L
J

GIN

C
R

C
S

P
B

R
D L
J

SAG

gSuite-MP

Datasets

C
R

C
S

P
B

R
D L
J

0

25

50

75

100

GCN

C
R

C
S

P
B

R
D L
J

GIN

C
R

C
S

P
B

R
D L
J

SAG

DGL

Datasets

C
R

C
S

P
B

R
D L
J

0

25

50

75

100

GCN

C
R

C
S

P
B

R
D L
J

GIN

C
R

C
S

P
B

R
D L
J

SAG

gSuite-SpMM

Datasets

C
R

C
S

P
B

R
D L
J

0

25

50

75

100

GCN

C
R

C
S

P
B

R
D L
J

GIN

sgemm scatter indexSelect SpMM other

Figure 4: Execution time distribution of the kernels with different GNN frameworks.

gSuite-MP gSuite-SpMM

In
st
ru
ct
io
n
B
re
ak
d
o
w
n
(%
)

Core Kernels

sg sc is

0
25
50
75

100

GCN-CR

sg sc is

GIN-LJ

sp sg

GCN-CR

sp sg

GIN-LJ

FP32 INT Load/Store Control other

Figure 5: Instruction breakdown of the kernels during the
execution.

results for this metric. We collected the cache utilization
statistics by using both nvprof and GPGPU-Sim. Fig. 8
depicts the results of experiments and compares nvprof
results with GPGPU-Sim outcomes.

We observe that L1 cache hit ratio values for profiler
and simulator are more aligned than L2 cache hit values.
Specifically, for some workloads (CR and CS), the simulator-
indicated memory performance is not well matching with
the hardware-based memory performance. This shows us
that more validation study is required on GPGPU-Sim’s
memory model.

From our detailed analysis on L1/L2 cache accesses/hits,
we observe that the GCN workloads have some or limited
locality. This suggests that architects should study GNN
friendly caching and prefetching options. Specifically, in-
dexSelect kernel cannot utilize memory efficiently. Average
memory utilization of 34.6% combined with the high L1D
cache miss rates we observed, we suggest researchers
to investigate other caching techniques to be applied
particularly on indexSelect kernel.

We also notice that larger input workloads result in less
L1/L2 cache hit ratios. These extremely low L1D cache hit
rates points out that caching may not be a good technique
for GNN-Inference. Therefore using L1 cache bypassing
techniques can be considered as an alternative to alleviate
such a problem.

From issue stall distribution (Fig. 6) and L1/L2 cache
hit rates (Fig. 8), we observe that indexSelect and scatter
kernels suffer from memory dependency. This suggests
that considering the implementations of functionalities of
these kernels on memory side would be good option in
terms of energy consumption, utilization and performance.
The atomic reduce operation in scatter kernel affects the
performance of this kernel. Therefore, this kernel could
benefit from the architectural support for more efficient
synchronization operations. Architects may also investigate
the prefetching options.

5.4.6. Compute/Memory Utilization. We examine the
performance limiter for each core kernel during the exe-
cution. Low compute and memory utilization values point
that a kernel’s performance is bounded by instruction and
memory latency. We observe that scatter kernel utilizes
memory more efficiently than other kernels, especially
when employed in GIN and SAG. Compute and memory
utilization of sgemm kernel scales up as the input workload
is bigger (e.g. with LiveJournal dataset). These utilization
levels are presented in Fig. 9.

6. Related Work

The continuous growth of real-world graph data has
led to the development of new methods to process such
data effectively [23, 44, 46, 73]. With their ability to handle
high memory access bandwidth and massive parallelism,
GPUs gained the attention of researchers and engineers,
especially for graph processing tasks [1, 30, 49]. While
GPUs offer significant performance improvements for graph
applications, they come with several challenges to deal with.
There are many studies on efficient implementation and
performance evaluation of graph applications on GPUs [17,
25, 29, 35, 45, 49, 60, 69]. These studies mainly focus on data
layout optimizations, memory access patterns optimizations,
and workload mapping for load balancing. There are also
several graph frameworks, benchmarks and characterization
studies on graph algorithms running on GPUs [8, 31, 36,
62, 65].

Most DNN applications and frameworks also utilize
the GPUs’ computing capability. We have seen many

153

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

gSuite-MP

GCN GIN SAG

Core Kernels

St
al
l
D
is
tr
ib
u
ti
o
n
(%
)

sg sc is

0

25

50

75

CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

sg sc is

CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

sg sc is

CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

gSuite-SpMM

GCN GIN

Core Kernels

St
al
l
D
is
tr
ib
u
ti
o
n
(%
)

sp sg

0

25

50

75

CR

sp sg

CS

sp sg
PB

sp sg

RD

sp sg

LJ

sp sg

CR

sp sg

CS

sp sg

PB

sp sg

RD

sp sg

LJ

MemoryDependency ExecutionDependency InstructionIssued

InstructionFetch Synchronization NotSelected

Figure 6: Issue stall distribution of the kernels during the execution, comparing MP and SpMM kernels across different
GNN models and datasets.

GCN GIN SAG

Core Kernels

sg sc is

0

50

100

W
ar
p
O
cc
u
p
an
cy

(%
) CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

sg sc is

CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

sg sc is
CR

sg sc is

CS

sg sc is

PB

sg sc is

RD

sg sc is

LJ

Stall Idle W8 W20 W32

Figure 7: Warp occupancy distribution of the gSuite-MP kernels on varying GNN models and datasets.

DNN frameworks [34, 57] and studies that measure the
performance of DNN applications on GPUs [9, 12–14, 26,
32, 33, 74].

Increasing interest in GNNs has led the model bench-
marking [15, 16, 19, 48] and architectural performance
analysis studies for GNNs [4, 66, 72]. There are also efforts
towards providing datasets for benchmarking GNNs [48].

The most relevant work to ours are [4, 18, 37, 61, 66,
67, 72].

PyTorch Geometric (PyG) is a GNN framework based
on PyTorch, which provides an infrastructure to build GNN
pipelines with implemented GNN models and datasets.

GNN models in PyG are inherited from a base class
called MessagePassing. Another common GNN framework
is Deep Graph Library (DGL), which gives user a choice to
alternate among three DNN libraries: PyTorch, Tensorflow,
and MXNet. DGL follows the SpMM schema in its GNN
implementations.

Yan et al. [66] characterize GCNs at Inference level with
varying workloads, using PyG. Zhang et al. [72] characterize
GNN Inference on GPUs by taking two popular frameworks
into consideration: PyG and DGL. They consider the most
common GNN models in a stage level analysis manner,

154

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

C
R

C
S

P
B

R
D

L
J

Core Kernels

0

50

100

H
it
R
at
e
(%
)

0

50

100

H
it
R
at
e
(%
)

0

50

100

H
it
R
at
e
(%
)

0

50

100

H
it
R
at
e
(%
)

0

50

100

H
it
R
at
e
(%
)

0

00

sg is

GCN

sc

0

00

sg is sc

0

00

sg is sc

sg is

GIN

sc

sg is sc

sg is sc

sg is

SAG

sc

sg is sc

sg is sc

0

00

sg is sc sg is sc sg is sc

0

00

sg is sc sg is sc sg is sc

L1 Hit Rate (NVProf) L2 Hit Rate (NVProf)

L1 Hit Rate (Sim) L2 Hit Rate (Sim)

Figure 8: L1 and L2 cache hit rates of the MP-gSuite kernels,
comparing NVIDIA Profiler and GPGPU-Sim outcomes.

and make implications for hardware accelerators. However,
this work is not open-source and cannot be extended by
research community.

GNNMark [4] is a benchmark suite that is designed
to understand system-level and architectural implications
of GNNs, specifically during the training phase. A range
number of GNN models are covered, and many datasets are
used. They examine the scalability of GNN training across
a multi-GPU system. However, unlike our study, GNNMark
is not intended to be configurable. Workloads are tend to be
treated as applications of model-dataset couples. GNNMark
is also using PyG and DGL to build GNN pipelines.

7. Conclusion and Future Work

In this paper, we present gSuite, a flexible and
framework-independent benchmark suite for GNNs. By
providing this suite, we aim to fill the absence of a GNN-
oriented benchmark utility which is not dependent to any
other framework such as PyG and DGL. As a proof of
concept, we characterize and profile the computation of
GNN Inference by using our proposed benchmark suite.

G
C
N

G
IN

SA
G

Core Kernels

0

50

100

0

50

100

U
ti
li
za
ti
o
n
L
ev
el

(%
)

0

50

100

0

100

sg is

CR

sc sg is

CS

sc sg is

PB

sc sg is

RD

sc sg is

LJ

sc

0

100

sg is sc sg is sc sg is sc sg is sc sg is sc

0

100

sg is sc

Compute Memory

sg is sc sg is sc sg is sc sg is sc

Figure 9: Compute and memory utilization levels of MP-
gSuite kernels on varying GNN models and datasets.

We utilize both a hardware profiler and a cycle accurate
simulator to measure the performance of GNN computation.

We provide gSuite as an open-source project, hence all
the experiments are reproducible with proper configurations
[58]. We also welcome any contribution and suggestion to
the benchmark suite.

As a future work, we plan to extend our benchmark suite
by adding support for GNN-Training, which includes the
implementation of training-related aspects such as neuron
layers, propagations, weights, etc.

We also plan to support different architectures such as
FPGAs and AMD GPUs by implementing our core kernels
with OpenCL.

References

[1] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sadayap-
pan, “Fast sparse matrix-vector multiplication on gpus for graph
applications,” in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 781–792.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group for-
mation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 44–54.

[3] S. Bandyopadhyay, M. Aggarwal, and M. N. Murty, “A deep
hybrid pooling architecture for graph classification with hierarchical
attention,” in Advances in Knowledge Discovery and Data
Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event,
May 11–14, 2021, Proceedings, Part I. Berlin, Heidelberg:
Springer-Verlag, 2021, p. 554–565. [Online]. Available: https:
//doi.org/10.1007/978-3-030-75762-5_44

[4] T. Baruah, K. Shivdikar, S. Dong, Y. Sun, S. A. Mojumder, K. Jung,
J. L. Abellán, Y. Ukidave, A. Joshi, J. Kim, and D. Kaeli, “Gnnmark:
A benchmark suite to characterize graph neural network training on
gpus,” in 2021 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2021, pp. 13–23.

155

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

[5] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational inductive biases, deep learning, and graph networks,”
2018. [Online]. Available: https://arxiv.org/abs/1806.01261

[6] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E.
Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and
graph networks,” CoRR, vol. abs/1806.01261, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01261

[7] T. Bradley, “Gpu analysis and optimisation - people.maths.ox.ac.uk,”
2012. [Online]. Available: https://people.maths.ox.ac.uk/~gilesm/cuda/
lecs/NV_Profiling_lowres.pdf

[8] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in 2013 IEEE
International Symposium on Workload Characterization (IISWC), 2013,
pp. 185–195.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54.

[10] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph
convolutional networks via importance sampling,” CoRR, vol.
abs/1801.10247, 2018. [Online]. Available: http://arxiv.org/abs/1801.
10247

[11] Y. Chen, Y. Hu, K. Li, C. K. Yeo, and K. Li, “Approximate personalized
propagation for unsupervised embedding in heterogeneous graphs,”
Inf. Sci., vol. 600, no. C, p. 287–300, jul 2022. [Online]. Available:
https://doi.org/10.1016/j.ins.2022.04.002

[12] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2017.

[13] C. A. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. D. Bailis, K. Olukotun, C. Ré, and M. A. Zaharia, “Dawnbench :
An end-to-end deep learning benchmark and competition,” 2017.

[14] S. Dong and D. Kaeli, “Dnnmark: A deep neural network
benchmark suite for gpus,” in Proceedings of the General
Purpose GPUs, ser. GPGPU-10. New York, NY, USA: Association
for Computing Machinery, 2017, p. 63–72. [Online]. Available:
https://doi.org/10.1145/3038228.3038239

[15] V. Dwivedi, C. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Bench-
marking graph neural networks,” 03 2020.

[16] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of
graph neural networks for graph classification,” in Proceedings of the
8th International Conference on Learning Representations (ICLR), 2020.

[17] B. O. Fagginger Auer and R. H. Bisseling, A GPU Algorithm for
Greedy Graph Matching. Berlin, Heidelberg: Springer-Verlag, 2012,
p. 108–119.

[18] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[19] V. Fung, J. Zhang, E. Juarez, and B. Sumpter, “Benchmarking graph
neural networks for materials chemistry,” ChemRxiv, 2021.

[20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of
the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17. JMLR.org, 2017, p. 1263–1272.

[21] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Message Passing Neural Networks,” in Lecture Notes in Physics,
Berlin Springer Verlag, K. T. Schütt, S. Chmiela, O. A. von Lilienfeld,
A. Tkatchenko, K. Tsuda, and K.-R. Müller, Eds., 2020, vol. 968, pp.
199–214.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15.
Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.
[Online]. Available: https://proceedings.mlr.press/v15/glorot11a.html

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,”
in Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. USA: USENIX Association,
2012, p. 17–30.

[24] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow
and keras with spektral [application notes],” Comp. Intell.
Mag., vol. 16, no. 1, p. 99–106, feb 2021. [Online]. Available:
https://doi.org/10.1109/MCI.2020.3039072

[25] A. V. P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and
M. Hall, “Evaluating graph coloring on gpus,” in Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 297–298. [Online]. Available:
https://doi.org/10.1145/1941553.1941597

[26] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim, “Char-
acterizing the deployment of deep neural networks on commercial
edge devices,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 35–48.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[28] W. L. Hamilton, J. Zhang, C. Danescu-Niculescu-Mizil, D. Jurafsky,
and J. Leskovec, “Loyalty in online communities,” 2017. [Online].
Available: https://arxiv.org/abs/1703.03386

[29] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms
on the gpu using cuda,” in Proceedings of the 14th International
Conference on High Performance Computing, ser. HiPC’07. Berlin,
Heidelberg: Springer-Verlag, 2007, p. 197–208.

[30] G. He, H. Feng, C. Li, and H. Chen, “Parallel simrank computation
on large graphs with iterative aggregation,” in Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 543–552. [Online]. Available:
https://doi.org/10.1145/1835804.1835874

[31] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan, “Multi-
graph: Efficient graph processing on gpus,” in 2017 26th International
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2017, pp. 27–40.

[32] T. Horikawa, S. C. Aoki, M. Tsukamoto, and Y. Kamitani, “Character-
ization of deep neural network features by decodability from human
brain activity,” Scientific data, vol. 6, no. 1, pp. 1–12, 2019.

[33] S. Huang, W. Peng, Z. Jia, and Z. Tu, “One-pixel signature:
Characterizing cnn models for backdoor detection,” in Computer
Vision – ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXVII. Berlin, Heidelberg:
Springer-Verlag, 2020, p. 326–341. [Online]. Available: https:
//doi.org/10.1007/978-3-030-58583-9_20

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, ser. MM ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 675–678. [Online].
Available: https://doi.org/10.1145/2647868.2654889

156

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

[35] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2d grid using cuda,” Journal of Parallel
and Distributed Computing, vol. 71, no. 4, pp. 615–620, 2011.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0743731510002108

[36] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cusha:
Vertex-centric graph processing on gpus,” in Proceedings of the
23rd International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 239–252. [Online].
Available: https://doi.org/10.1145/2600212.2600227

[37] K. Kiningham, P. Levis, and C. Ré, “Grip: A graph neural network
accelerator architecture,” IEEE Transactions on Computers, pp. 1–12,
2022.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[39] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp.
29–123, 2009.

[40] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, and T. M. Aamodt, “Analyzing
machine learning workloads using a detailed gpu simulator,” in 2019
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2019, pp. 151–152.

[41] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph con-
volutional neural networks,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence, ser.
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[42] X. Li, Y. Zhou, N. C. Dvornek, M. Zhang, J. Zhuang, P. Ventola,
and J. S. Duncan, “Pooling regularized graph neural network
for fmri biomarker analysis,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2020: 23rd International
Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII.
Berlin, Heidelberg: Springer-Verlag, 2020, p. 625–635. [Online].
Available: https://doi.org/10.1007/978-3-030-59728-3_61

[43] R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt, R. Urtasun, and
R. Zemel, “Graph partition neural networks for semi-supervised
classification,” 2018. [Online]. Available: https://arxiv.org/abs/1803.
06272

[44] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Heller-
stein, “Graphlab: A new framework for parallel machine learning,” in
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, ser. UAI’10. Arlington, Virginia, USA: AUAI Press, 2010,
p. 340–349.

[45] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation
of breadth-first search,” in Proceedings of the 47th Design Automation
Conference, ser. DAC ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 52–55. [Online]. Available:
https://doi.org/10.1145/1837274.1837289

[46] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 135–146.
[Online]. Available: https://doi.org/10.1145/1807167.1807184

[47] A. Mccallum, K. Nigam, and J. Rennie, “Automating the construction
of internet portals,” 03 2000.

[48] P. Mernyei and C. Cangea, “Wiki-cs: A wikipedia-based benchmark
for graph neural networks,” arXiv preprint arXiv:2007.02901, 2020.

[49] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph
traversal,” SIGPLAN Not., vol. 47, no. 8, p. 117–128, feb 2012.
[Online]. Available: https://doi.org/10.1145/2370036.2145832

[50] S. Narayan, “The generalized sigmoid activation func-
tion: Competitive supervised learning,” Information Sciences,
vol. 99, no. 1, pp. 69–82, 1997. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020025596002009

[51] D. Nettleton, “Data mining of social networks represented as graphs,”
Computer Science Review, vol. 7, pp. 1–34, 02 2013.

[52] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer perceptron and neural networks,” WSEAS Trans. Cir. and
Sys., vol. 8, no. 7, p. 579–588, jul 2009.

[53] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAI’15.
AAAI Press, 2015, p. 4292–4293.

[54] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[55] A. Subramaniyan, Y. Gu, T. Dunn, S. Paul, M. Vasimuddin, S. Misra,
D. Blaauw, S. Narayanasamy, and R. Das, “Genomicsbench: A
benchmark suite for genomics,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2021, pp.
1–12.

[56] D. Sun, K. Yang, and Z. Ding, “Confidence-based simple graph
convolutional networks for face clustering,” IEEE Access, vol. 10,
pp. 6459–6469, 2022.

[57] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,
D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov et al.,
“Theano: A python framework for fast computation of mathematical
expressions,” arXiv preprint arXiv:1605.02688, may 2016. [Online].
Available: https://arxiv.org/pdf/1605.02688

[58] T. Tekdogan, “gsuite,” Sep. 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.7071370

[59] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017. [Online]. Available:
https://arxiv.org/abs/1710.10903

[60] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan, “Fast minimum
spanning tree for large graphs on the gpu,” in Proceedings of the
Conference on High Performance Graphics 2009, ser. HPG ’09. New
York, NY, USA: Association for Computing Machinery, 2009, p.
167–171. [Online]. Available: https://doi.org/10.1145/1572769.1572796

[61] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[62] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2851141.2851145

[63] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical
form and the algebra which appears therein,” NTI, Series, vol. 2, no. 9,
pp. 12–16, 1968.

[64] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[65] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus:
Where are the bottlenecks?” in 2014 IEEE International Symposium
on Workload Characterization (IISWC), 2014, pp. 140–149.

[66] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
“Characterizing and understanding gcns on gpu,” IEEE Computer
Architecture Letters, vol. 19, no. 1, pp. 22–25, 2020.

157

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

[67] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 15–29.

[68] S. Yao, D. Pi, and J. Chen, “Knowledge embedding via hyperbolic
skipped graph convolutional networks,” Neurocomputing, vol. 480,
pp. 119–130, 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231222000546

[69] K. Yonehara and K. Aizawa, “A line-based connected component
labeling algorithm using gpus,” in 2015 Third International Symposium
on Computing and Networking (CANDAR), 2015, pp. 341–345.

[70] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence,
ser. AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[71] T. Zhang, H.-R. Shan, and M. A. Little, “Causal graphsage: A
robust graph method for classification based on causal sampling,”
Pattern Recogn., vol. 128, no. C, aug 2022. [Online]. Available:
https://doi.org/10.1016/j.patcog.2022.108696

[72] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implications of graph neural networks,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 59–62, 2020.

[73] J. Zhou, C. Xu, X. Chen, C. Wang, and X. Zhou, “Mermaid: Integrating
vertex-centric with edge-centric for real-world graph processing,” in
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), 2017, pp. 780–783.

[74] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phan-
ishayee, B. Schroeder, and G. Pekhimenko, “Benchmarking and
analyzing deep neural network training,” in 2018 IEEE International
Symposium on Workload Characterization (IISWC), 2018, pp. 88–100.

158

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

Appendix

1. Abstract

This Artifact Appendix introduces the experimental
setup of gSuite by guiding how to access, install, compile
and execute the experiments described in the paper.

2. Artifact check-list (meta-information)

• Algorithm: graph neural network (GNN) inference
• Compilation: make (4.1 or higher), nvcc (8.0 or higher)
• Model: GCN, GIN, SAG
• Data set: Cora, CiteSeer, Pubmed, Reddit, LiveJournal
• Hardware: NVIDIA GPU
• Execution: python3 main.py –config "conf.json"
• Metrics:

– Execution Time
– LD/ST Instructions
– Warp Occupancy
– Issue Stall Distribution
– L1/L2 Cache Hit Rate

• Output: profiler and simulator outputs if used
• Experiments: 1-layer GNN pipelines
• How much disk space required (approximately)?:

2.6 GB
• How much time is needed to prepare workflow

(approximately)?: around 5 mins
• How much time is needed to complete experiments

(approximately)?: 30 mins
• Publicly available?: Yes
• Code licenses (if publicly available)?: CCA 4.0 Inter-

national
• Data licenses (if publicly available)?: referenced
• Workflow framework used?: No
• Archived (provide DOI)?: 10.5281/zenodo.7071370

3. Description

3.1. How to access. Download the sta-
ble and up-to-date version of gSuite from
https://zenodo.org/record/7071370 .

3.4. Data sets. Data sets are included in the ‘cuda‘ folder as
pairs: ‘content‘ and ‘cites‘. Content incorporates the feature
information of nodes of the corresponding graph. Cites
incorporates the connectivity information among nodes, i.e.
edges. One can easily import a custom dataset into gSuite
by following the above-described data set format. Data sets
included in gSuite are Cora, Citeseer, PubMed, Reddit, and
LiveJournal.

3.2. Hardware dependencies. Any NVIDIA GPU with
NVIDIA toolkit version higher than 8.0 is sufficient for
executing GNN pipelines on GPUs.

There is no restriction for running experiments on
CPUs.

3.3. Software dependencies. CUDA Toolkit 8.0 or higher
for GPU kernels. make 4.1 or higher to compile source
codes.
3.5. Models. GNN models included in gSuite are Graph
Convolutional Network (GCN), Graph Isomorphism Net-
work (GIN), and GraphSAGE (SAG). All of these models are
implemented as two-sided in terms of computational model:
Message Passing (MP) and Sparse Matrix Multiplication
(SpMM).

4. Installation

Download the repository (see Section A.3.1). Extract the
material from “gSuite.rar". Add the following environment
variables:
$ export PATH=CUDA_PATH/bin:$PATH
$ export CPATH=CUDA_PATH/include:$CPATH
$ export LD_LIBRARY_PATH=CUDA_PATH/lib64:$LD_LIBRARY_PATH

Then navigate to cuda folder and execute make
command. Executables will be generated in the same folder
complying with your current architecture.

5. Experiment workflow

Executing the main script by passing one mandatory
(config file) and a few optional parameters (model, dataset,
etc.).

python3 main . py −− c on f i g " con f . j s on "
−−model " gcn " −− d a t a s e t " co ra "

159

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on January 06,2023 at 09:11:31 UTC from IEEE Xplore. Restrictions apply.

