
Lookupx: Next-Generation Quantization and
Lookup Techniques for Empowering Performance

and Energy Efficiency
Cagla Irmak RUMELILI KOKSAL1,2 Nihat Mert CICEK1,2 Ayse YILMAZER METIN2 Berna ORS2

1Aselsan Inc., Ankara, Turkiye
irumelili,nmcicek@aselsan.com.tr

2Istanbul Technical University, Istanbul, Türkiye
yilmazerayse,orssi@itu.edu.tr

Abstract—Long Short Term Memory (LSTM) networks as one
of the most used Recurrent Neural Networks (RNN) structures
offer high accuracy for sequence learning tasks. However, it
is challenging to offer low latency and high throughput while
satisfying the low power constraints at the same time for
computationally expensive LSTM operations. This work offers a
two-pronged approach to accelerate inference in RNN networks.
First, linear quantization technique is applied to reduce the com-
plexity of operations, power consumption and required memory
resources. Then, a new activation implementation method is pro-
posed, called lookupx, to accelerate sigmoid function computation
during inference. It is shown that lowering precision to 4-bit
integer numbers for inputs causes only 2% accuracy loss and
the lookupx activation methodology has 1.9x better performance
and 50x lower power consumption while decreasing the required
chip area 1.2x compared to integer domain activation functions
with the same accuracy result.

Index Terms—quantization, nonlinear activation functions,
RNN, LSTM, accelerator, low power

I. INTRODUCTION

In recent years, Recurrent Neural Networks (RNN) have
been remarkably successful in applications such as automatic
speech recognition [16], sentiment analysis [21], machine
translation [18] and so on. The computations of the network
are done both on cloud servers [6] and low power mobile
devices [7]. To reduce the total execution time and power
consumption of the computations, neural networks are usu-
ally processed in specialized hardware architectures, namely
accelerators.

Long Short Term Memory (LSTM) architecture [12] is a
widely preferred architecture for RNN implementation. A high
performance and low power RNN implementation is hard due
to time consuming matrix operations and complex nonlin-
ear operations. Quantization stands as an extremely effective
technique for enhancing matrix operations. It offers superior
performance and reduced power consumption by enabling
less hardware resources, minimizing operation complexity, and
facilitating faster memory access. Since quantization alters the
input set of the nonlinear function, piecewise linear approx-
imation and lookup table methods are commonly employed.
In this paper, we focus on quantization and nonlinear function
implementation. Our contributions are as follows:

• We investigate the impact of aggressive low-precision
representations of weights and inputs. Although the input
and weight values are quantized to 4-bit and 5-bit integer
values respectively, the accuracy changed only 2%.

• We propose a new algorithm-hardware co-design to
leverage sigmoid and tanh computation. Our evaluation
demonstrates that this method offers either better accu-
racy or better time, area, and energy efficient implemen-
tation compared to state of the art integer domain non
linear activation function approximation techniques [4].

The remainder of the paper is organized as follows. Section
II provides basic concepts of LSTM as well as a review of
prior work on LSTM accelerators. The proposed architecture
is presented in Section III. Section IV provides the details of
the experimental setup and results and finally, the paper is
concluded in Section V with final remarks.

II. OVERVIEW & RELATED WORK

Standard RNN cells, also known as vanilla RNNs, have
no choice but eventually to forget due to the vanishing
gradient problem [3]. LSTM is the RNN architecture offered to
overcome this problem [13]. In this section, first, the internal
structure of the LSTM network is described. Then, prior
work dealing with the LSTM implementations that focuses
on quantization algorithms and activation functions is briefly
reviewed.

A. Long Short Term Memory

An LSTM cell is composed of four units commonly called
gates. These four gates are named as forget gate, input
gate, cell gate and output gate [12]. Each of these gates is
responsible for the flow of information in the LSTM. In other
words, gates decide how much information will be forgotten
from the previous input and how much information will be
contributed from the new data.

The mathematical expressions for each gate and the output
of the LSTM cell (ht) can be seen in (1), (2), (4), (3), (5) and
(6). ft, it, ct, ot represent the output vectors of forget gate,
input gate, cell gate, and output gate at time t respectively.
xt is the input vector for the current step, whereas ht−1 is

20
23

 3
0t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
IC

EC
S)

 |
97

9-
8-

35
03

-2
64

9-
9/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
EC

S5
86

34
.2

02
3.

10
38

27
87

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 11:09:25 UTC from IEEE Xplore. Restrictions apply.

the hidden layer output vector from the previous step. In other
words, xt is used for forward connections, while ht−1 includes
feedback information from the previous layers. In each gate,
W∗x, W∗h and b∗ terms represent the weight matrix for the
input, weight matrix for hidden layer output, and bias of the
gate, respectively (e.g. Wfx is the input weight matrix of
the forget gate). Hyperbolic tangent (tanh) and sigmoid (σ)
functions are the activation functions that are used in LSTM
cells for activation. ⊙ represents pair-wise multiplication [8].
The huge matrix multiplications and activation functions are
the main cause of the power consumption in LSTM cells.

it = σ (Wixxt +Wihht−1 + bi) (1)
ft = σ (Wfxxt +Wfhht−1 + bf) (2)

c̃t = tanh (Wcxxt +Wchht−1 + bc) (3)
ct = ft ⊙ ct−1 + it ⊙ c̃t (4)

ot = σ(Woxxt +Wohht−1 + bo) (5)
ht = ot ⊙ tanh(ct) (6)

B. Quantization

Reducing the precision during the inference is one of the
common methods simplifying LSTM operations to minimize
power consumption and cost of the hardware, while improving
the throughput and latency values [22], [17], [6], [15], [10],
[5]. 16-bit floating point, fixed point and integer quantization
are the common techniques for accelerating LSTM networks.
For example, when 8-bit fixed point representation is used
instead of 32-bit floating point, 3.3x less power is consumed
for addition operations while 15.5x less power is consumed
for multiplication operations [19]. Similarly, 8-bit integer
is sufficient for inference of several networks in terms of
accuracy and it offers 6x reduction of power consumption
compared to 16-bit floating-point multiplication [14].

Another important outcome of lowering the precision is
reducing the memory footprint, hence, total on-chip/off-chip
memory size and total number of accesses. This reduction is
significant since accessing on-chip and off-chip memory is
considered as the main actor for dynamic power consumption
[11], throughput and latency [17].

C. Activation Function

Sigmoid (7) and hyperbolic tangent (8) functions are used
as activation functions in LSTM cells. Both of these func-
tions are computationally expensive due to exponentiation
and division calculations. Further performance improvement
could be achieved via accelerating these functions in RNN
accelerators. There are two main approaches to reduce the
function complexity in artificial neural networks: Piecewise
linear approximation [5], [9], [20] and lookup table [10].

sigmoid(x) = 1/(1 + e−x) (7)
tanh(x) = (ex − e−x)/(ex + e−x) (8)

III. PROPOSED ARCHITECTURE

We conducted an experiment and found that an LSTM cell
on an Nvidia K80 GPU takes approximately one-third of the

time to calculate the sigmoid and tanh functions during infer-
ence. This indicates that accelerating the activation function
has a significant impact on LSTM inference time.

In this work, we offer a fast and compact implementation
called lookupx as it is formulated in (9). The proposed tech-
nique approximates the activation function, works in quantized
integer domain, and eliminates the extra hardware resources
for the dequantization/quantization process on the fly. In this
method, the summation of shifted input and an offset from
lookup table is used for activation function calculation. The
offset is calculated as the average of the difference between the
activation function and the shifted input for the input dataset,
and it is referred to as offsetx . The lookup table is addressed
via input bits. By using the input as a primary source of the
function the required lookup entry size is drastically reduced.
Fig. 1 shows the lookup table with 8 entries, lookupx table
with 8 entries and the scaled sigmoid functions for (-512, 512)
input domain. Note that, (-512, 512) input domain is observed
for the activation function after linear quantization as it is
explained in IV-B. The accuracy of lookupx method is closer
to scaled sigmoid compared to the same size lookup table as
it is seen in Fig. 1.

lookupx(x) = x/4 + offsetx (9)

Fig. 1. Lookup table, sigmoid function and proposed lookupx

IV. EVALUATION

A. Reference Model

Internet Movie Database (IMDb) sentiment dataset [2] is
used to evaluate the proposed quantization and activation
techniques. This dataset includes 50000 movie reviews taken
from IMDb website [1] and a sentiment label is attached to
each review.

This dataset is trained with 8 cell LSTM network and the
training results are collected in terms of precision, recall, F1-
score and accuracy. These results are shown in Table I. For
the rest of the paper, these results are used as a reference point
and further discussions are made accordingly.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 11:09:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TEST RESULTS

Accuracy Presicion Recall F1-score # of reviews
Negative 0.86 0.89 0.88 12500
Positive 0.89 0.86 0.87 12500

All 0.88 25000

B. Linear Quantization

In this work, we used uniform quantization [19] to represent
32-bit floating numbers as integer numbers and investigate the
impact of aggressive low-precision representations of weights
and inputs. Both input and weight are quantized with scale
while the bias parameter is quantized with scale2 .

We calculate the prediction results for several scale values
for IMDb dataset and the results are illustrated in Fig. 2. Note
that ”p ” and ”n ” prefixes are used for positive and negative
sentiment reviews, respectively. When the scale equals 16, the
input, weight and bias in the IMDb dataset are represented
with 4-bit, 5-bit and 10-bit integers, respectively, resulting in
an accuracy of 86%. By utilizing lower precision, the memory
footprint is reduced by up to 8 times compared to the floating-
point representation, with only a 2% loss in accuracy.

Fig. 2. Inference prediction accuracy vs quantization scale parameter

C. Hardware Implementation

Lookup table and piecewise linear approximation techniques
that accelerate activation functions are implemented and ex-
perimented with FPGA [10], [5], [9] and with ASIC [20] under
TSMC 90nm technology node. However, the experimental
results for the aforementioned accelerators are not given
specifically for the activation layer. In this work, we also
implemented these techniques in hardware to compare with
the lookupx method.

1) Piecewise Linear Approximation: The method in [4] is
modified for our network and IMDb dataset as follows: The
gradient of the lines is selected such that the implementation of
the function can be represented via shift operations. Although

PLAN [4] offers a piecewise linear approximation method for
only the sigmoid function, we approximate the hyperbolic
tangent function in a similar way to reduce the hardware
complexity. The resulting equations are illustrated in Table II
and Table III and these functions are implemented via simple
logic operations and comparators.

TABLE II
SIGMOID PIECEWISE LINEAR FUNCTION

Condition Function
x < -2 0

-2 < x < -0.94 x/8 + 0.62
-0.94 < x < 0.94 x/4 + 0.5

0.94 < x < 2 x/8 + 0.38
2 < x 1

TABLE III
HYPERBOLIC TANGENT PIECEWISE LINEAR FUNCTIONS

Condition Function
x < -2 -1

-2 < x < 2 x
x > 2 1

2) Lookup Table: When dealing with a quantized dataset,
the size of the input set determines the sizes of the table
entries. In this study, both the input and weights are scaled
using a factor of 16, which means the input of the activation
functions is scaled by a factor of 256. For the IMDb dataset,
the floating-point input range of [-2, 2] is transformed into
a quantized range of [-512, 512], resulting in a table size of
1024. Hence, an SRAM with 1024 entries is implemented to
achieve full accuracy. Additionally, a lookup table with the
same size as the lookupx method (8 entries) is implemented
by averaging every 128 items from the larger table of 1024 en-
tries, enabling a comparison of accuracy between the proposed
lookupx method and lookup table method.

3) Lookupx: The division in (9) is implemented via shift
operation. 8 different offset values are stored in registers.
These registers are addressed via the most significant bits of
the x.

D. Results

1) Accuracy Results: Our 8-entry lookupx method is com-
pared with the piecewise linear approximation method, 8-
entry averaged lookup table, and 1024-entry lookup table. All
these techniques use the IMDb dataset and linear quantization
(scale=24) for inference. As it is seen in the results listed
in Table IV, the lookupx technique has the same accuracy as
the original activation function and offers 3% better accuracy
compared to state-of-the-art approximation methods, namely
the piecewise linear approximation and the same-sized lookup
table. Lookupx method achieves the same level of accuracy as
a 1024 entry lookup table.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 11:09:25 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
LINEAR ACTIVATION FUNCTION ACCURACY EVALUATION

Method Accuracy
piecewise linear approximation 0.83

lookup (8 entries) 0.83
lookup (1024 entries) 0.86

lookupx (8 entries) 0.86

2) Synthesis Results: We synthesized piecewise linear ap-
proximation, lookup table and the proposed lookupx logic
using Synopsys’ Design Compiler under TSMC 28nm technol-
ogy. For lookup table method, TSMC 28nm memory compiler
is used to generate 1024-entry SRAM macros. Since lookupx
method is sufficient with a smaller number of entries, registers
are used for hardware implementation. Table V lists the time,
area, and power results for each method.

As it is seen in Table V and Table IV the lookupx activation
methodology has 1.9x better performance and 50x lower
power consumption while decreasing the required chip area
1.2x compared to integer domain activation functions with the
same accuracy result.

TABLE V
LINEAR ACTIVATION FUNCTION SYNTHESIS RESULTS

Method Period (ns) Area (um2) Power (mW)
piecewise linear app. 0.75 90 0.026

lookup 0.58 220 2,9
lookupx 0.3 180 0.058

V. CONCLUSION

The LSTM accelerator aims to reduce power consumption
by utilizing low-precision representations of numbers and
employing simplified hardware. In this paper, to the best of
our knowledge, we present the first 4-bit integer representation
for the LSTM cell while having an accuracy loss smaller than
2% without any post-training optimization. Additionally, our
proposed lookupx method enables the development of power,
area, and time-optimized hardware for activation functions,
while maintaining high accuracy levels. It is important to
note that the algorithm we propose can be extended to other
neural network architectures that utilize non-linear activation
functions.

REFERENCES

[1] IMDb. https://www.imdb.com/. Accessed: 2021-06-17.
[2] IMDb sentiment classification. https://github.com/tensorflow/models/tree/

master/research/adversarial text. Accessed: 2021-06-17.
[3] Lecture10: Recurrent neural networks.

http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture10.pdf.
Accessed: 2021-07-17.

[4] H. Amin, K. Mervyn Curtis, and Barrie R Hayes-Gill. Piecewise linear
approximation applied to nonlinear function of a neural network. In
Circuits, Devices and Systems, IEE Proceedings, December 1997.

[5] E. Azari and S. Vrudhula. An energy-efficient reconfigurable lstm
accelerator for natural language processing. In 2019 IEEE International
Conference on Big Data (Big Data), pages 4450–4459, 2019.

[6] Jeremy Fowers et al. A configurable cloud-scale dnn processor for real-
time ai. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 1–14, 2018.

[7] Chang Gao, Antonio Rios-Navarro, Xi Chen, Shih-Chii Liu, and Tobi
Delbruck. Edgedrnn: Recurrent neural network accelerator for edge
inference. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 10(4):419–432, 2020.

[8] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, Cambridge, MA, USA, 2016.
http://www.deeplearningbook.org.

[9] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. Fpga-based
accelerator for long short-term memory recurrent neural networks. In
2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 629–634, 2017.

[10] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and
William J. Dally. Ese: Efficient speech recognition engine with sparse
lstm on fpga, 2017.

[11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 11 1997.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[14] N. Jouppi et al. In-datacenter performance analysis of a tensor process-
ing unit. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 1–12, 2017.

[15] Liu Liu et al. Duet: Boosting deep neural network efficiency on dual-
module architecture. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 738–750, 2020.

[16] Yajie Miao, Mohammad Gowayyed, and Florian Metze. EESEN: end-
to-end speech recognition using deep RNN models and wfst-based
decoding. CoRR, abs/1507.08240, 2015.

[17] Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzàlez.
E-pur. Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, Nov 2018.

[18] Shashi Pal Singh, Ajai Kumar, Hemant Darbari, Lenali Singh, Anshika
Rastogi, and Shikha Jain. Machine translation using deep learning: An
overview. In 2017 International Conference on Computer, Communica-
tions and Electronics (Comptelix), pages 162–167, 2017.

[19] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12):2295–2329, 2017.

[20] Zhisheng Wang, Jun Lin, and Zhongfeng Wang. Accelerating recurrent
neural networks: A memory-efficient approach. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(10):2763–2775, 2017.

[21] Guixian Xu, Yueting Meng, Xiaoyu Qiu, Ziheng Yu, and Xu Wu.
Sentiment analysis of comment texts based on bilstm. IEEE Access,
7:51522–51532, 2019.

[22] Reza Yazdani, Olatunji Ruwase, Minjia Zhang, Yuxiong He, Jose-Maria
Arnau, and Antonio Gonzalez. Lstm-sharp: An adaptable, energy-
efficient hardware accelerator for long short-term memory, 2019.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 11:09:25 UTC from IEEE Xplore. Restrictions apply.

