
Optimizing Data Availability and Utilization in
Deep Learning Accelerator SoCs

Cagla Irmak RUMELILI KOKSAL1,2 Nihat Mert CICEK1,2 Ayse YILMAZER METIN2 Berna ORS2

1Aselsan Inc., Ankara, Turkiye
irumelili,nmcicek@aselsan.com.tr

2Istanbul Technical University, Istanbul, Türkiye
yilmazerayse,orssi@itu.edu.tr

Abstract—Deep learning accelerators are pivotal in acceler-
ating computation-intensive tasks in modern AI applications.
Optimizing the utilization of system resources, including shared
cache, on-chip SRAM, and data movement mechanisms, is crucial
for achieving superior performance and energy efficiency. In this
study, we propose an efficient system architecture specifically
tailored for deep learning workloads. Our architecture enables
to reconfigure the last level cache as a scratchpad with prefetch
capability, which eliminates cache misses and thereby offers
resource efficiency, improved performance, and energy efficiency.
By implementing a strategy to overlap accelerator execution with
data movement, we achieved remarkable results, including a
14x speedup and %5 reduction in energy consumption for the
ResNet50 benchmark when compared to the base system con-
figuration. These findings demonstrate the substantial benefits of
incorporating prefetch support and scratchpad reconfiguration in
the last level cache, leading to enhanced performance and energy
efficiency in real-world deep learning accelerator applications.

Index Terms—deep learning accelerators, cache hierarchy,
cache configuration, data availability, accelerator utilization,
latency, energy efficiency, cache design, prefetching mechanism.

I. INTRODUCTION

Deep learning accelerators are specialized hardware de-
signed to accelerate the computationally intensive tasks of
deep learning algorithms. They outperform CPUs and GPUs
in terms of performance per watt for specific deep learning
workloads [6], [3]. With optimized hardware components and
algorithms, deep learning accelerators deliver faster and more
efficient processing, making them ideal for AI applications
requiring real-time decision-making and large-scale neural
networks.

Deep learning accelerators can be categorized into stan-
dalone accelerators [3], which possess their own dedicated
memory hierarchy and computation units, and accelerators that
share resources within a system on chip (SoC) environment
[2]. In the latter case, where resources are shared, it is essential
to consider the entire system to achieve high energy efficiency
and throughput. Resource sharing introduces challenges, par-
ticularly in the areas of memory hierarchy and data movement.
Efficient management of the memory hierarchy is crucial
to minimize latency and optimize data access. Additionally,
effective data movement mechanisms are vital to facilitate
seamless communication between the accelerator and other
components. These considerations are of utmost importance

in shared-resource accelerators, as they directly impact system
performance and efficiency.

Fig. 1. Base architecture for a deep learning accelerator with SRAM, DMA,
and execution units.

In this paper, we propose a system solution for a deep
learning workload. In this system, we add prefetch capability
to the last level cache (LLC). In addition to that, dedicated
portion of the LLC can be reconfigured as scratchpad. This
way, we aim to reduce cache misses and improve overall
performance and energy efficiency of the system. Furthermore,
we propose a strategy to overlap accelerator execution with
data movement. Our contributions can be summarized as
follows:

• Reconfiguration of the system’s LLC as scratchpad with
prefetch capability provides us resource efficiency along
with improvement in performance and energy efficiency.

• We propose a strategy to overlap accelerator execution
with data movement, which maximizes utilization in the
accelerator.

• We obtain 14x speedup and %5 reduction in energy
consumption for ResNet50 benchmark compared the base
system described in Section II.

The remaining sections of the paper discuss the overview of
the base system, proposed architecture, experimental results,
related work and conclusion, respectively.

II. OVERVIEW

A typical deep learning accelerator system is depicted in
Figure 1. The base architecture consists of a shared LLC that
is accessible by both the core and the accelerator. Additionally,
the accelerator incorporates its own on-chip SRAM, which,
although smaller, offers faster access times compared to the

20
23

 3
0t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
IC

EC
S)

 |
97

9-
8-

35
03

-2
64

9-
9/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
EC

S5
86

34
.2

02
3.

10
38

27
97

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 10:58:17 UTC from IEEE Xplore. Restrictions apply.

LLC. Not only accessing the cache require more power, but
it is also slower compared to accessing data from the SRAM.
Therefore, there is a strong emphasis on reusing data stored in
the SRAM to minimize the number of requests to lower-level
memory. This approach aims to optimize data movement and
reduce both power consumption and latency in the system.

To facilitate efficient data movement between the cache and
the accelerator’s SRAM, a Direct Memory Access (DMA)
mechanism is employed. This DMA mechanism enables direct
transfers of data between the cache and SRAM without
involving the CPU, minimizing latency for the accelerator.

One of the key challenges in this system architecture is
the minimization of cache misses. Cache misses happen when
the requested data is not found in the cache and needs to be
fetched from a lower-level memory, such as the main memory
or external DRAM.

In the context of a shared set-associative cache used by
both cores and accelerators, cache misses can occur due to
several reasons. One common cause is the conflict between
the memory access patterns of the cores and the accelerator.
If the cores and accelerator frequently access data that maps to
the same cache set, it can lead to increased cache conflicts and
subsequent cache misses. Another reason for cache misses is
the limited cache capacity. When the cache becomes saturated
and cannot accommodate all the required data, cache evictions
occur, resulting in cache misses for subsequent memory ac-
cesses. Additionally, cache misses can also be caused by data
dependencies and irregular memory access patterns inherent
in certain applications or algorithms.

Cache misses can significantly impact system performance
as they introduce additional latency due to the time required to
fetch the data from the slower memory hierarchy levels. These
cache misses result in stalls or delays in the execution of the
accelerator, reducing the overall efficiency and throughput of
the system. Minimizing cache misses is therefore crucial for
improving system performance and ensuring efficient utiliza-
tion of the available resources.

III. PROPOSED ARCHITECTURE

To minimize cache misses, we suggest implementing a
software prefetch mechanism [12] alongside a scratchpad
memory. We offer to use the configurable amount of the
LLC as scratchpad. The Prefetch unit retrieves data from the
main memory and writes it into the scratchpad region, effec-
tively eliminating cache misses. Prefetch mechanism adopts a
strategy of bringing in larger chunks of data from the main
memory compared to what the DMA transfers, optimizing
data availability for the accelerator. Software determines which
memory segments to prefetch into the scratchpad to enhance
performance. While the execution for the current chunk con-
tinues, we simultaneously prefetch the next chunk from the
main memory, ensuring a continuous flow of data without any
interruptions. Furthermore, the eviction of the data that will
be used in the near future is eliminated.

We are examining an accelerator comprising 32x32 process-
ing element (PE) units. For each row of the PE array, there is

a dedicated SRAM in a multi-bank fashion. DMA is used to
bring filters and inputs from the lower memory, and it writes
into the SRAM in small chunks. Chunk size is programmed
by software according to the layer size and available space in
SRAM. In order to maximize utilization in the accelerator, we
adopt decoupled access execute strategy. For this, when DMA
finishes its operation for the selected chunk size, accelerator
starts immediately. During execution, DMA continues to bring
next chunk and fills the SRAM in a circular manner.

32 channels of a filter is placed into a PE row while
each row has a different filter. We adopt a weight-stationary
dataflow where each input is broadcasted into each row. As we
obtain partial results, we store them in a accumulator SRAM.
When the whole convolution is calculated, it is written back
to memory.

Half of the LLC is configured as scratchpad. Our prefetch
unit is programmed by software to bring larger chunks than
DMA so that we can parallelize accelerator execution, DMA,
and prefetch operations. This approach provides us great
improvements in execution time since we avoid cache misses
thanks to prefetch unit and scratchpad configuration. In addi-
tion to that, energy consumption is minimized by optimizing
data movement between different memory levels.

IV. EVALUATION

A. Experimental Setup
In our evaluation, we employ convolutional layers based on

the ResNet50 [7] benchmark. We perform output calculations
on smaller matrices denoted as OXOXPErow . To ensure
efficiency, we set an upper limit for O to avoid exceeding the
capacity of the output buffer. The number of PE rows dictates
the number of outputs that can be computed simultaneously.
We further divide both the kernel and input into smaller units,
referred to as input partials (Ip) and weight partials (Wp),
respectively. The structure of the weight partials depends on
the kernel size (K) and channel size (Cin), with the number
of kernels (Cout) restricted to match the number of PE rows
(1). The size of the input partials is determined by the values
of O , the stride, padding and Cin of the input [5]. We define
the ratios of the total input size to Ip and weight size to Wp
as Ic and Wc, respectively. The number of Ip’s that fits into
SRAM are defined as Ipc.

The execution process initiates when at least one input
partial and one weight partial are loaded into the accelerator’s
SRAM. The execution cycles are calculated as described in
(2). Subsequently, the transfer of weight and input chunks
occurs concurrently with the execution cycles. However, the
accelerator cannot execute under the following conditions:

• When either the input partial or weight partial is not
available in the SRAM.

• When weight or input data is being broadcast to PEs.
• When output data is prepared and being written to the

LLC
These waiting periods are collectively referred to as wait
cycles. The performance metric is determined by the sum of
execution cycles and wait cycles.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 10:58:17 UTC from IEEE Xplore. Restrictions apply.

To quantify dynamic energy consumption resulting from
data movement, we calculate the sizes of data read from and
written to the accelerator’s SRAM and LLC, and then divide
them by the bus data width, which is 128 bits per accelerator
cycle. The total weight read from SRAM, input read from
SRAM, input/weight read from LLC, and output written to
LLC are quantified using equations (3), (4), (5), and (7),
respectively.

Wp = PErow ∗K ∗K ∗ Cin (1)

ExeCycle = OxOxCout/PEcol ∗K ∗K ∗Wc ∗ Ic (2)

SramWR = Cout ∗ Cin ∗K ∗K ∗ Ic (3)

SramIR = Ip ∗ Ic ∗K ∗K ∗Wc (4)

LLCRead = (Wp ∗Wc+ Ip ∗ iloop) (5)

iloop =

{
Ic if Ipc > Ip*Ic + Wp
Ic+ (Wc− 1) ∗ (Ic− Ipc) otherwise

(6)
LLCWrite = O ∗O ∗ Cout ∗ Ic (7)

For energy consumption analysis, we consider that DRAM
accesses consume 1.8 nJ, while accessing the LLC requires
150 pJ and accessing the accelerator SRAM consumes 60 pJ
[9].

For evaluation, we compare the following schemes:

• Case 1: We assume an ideal scenario where both the
SRAM and cache have infinite capacity. To ensure data
availability, we access the DRAM to bring the required
data into the system cache while the DMA concurrently
fetches data from the cache. Given the infinite SRAM ca-
pacity, data availability for the accelerator is guaranteed,
eliminating any potential bottlenecks.

• Case 2: We consider a scenario where the SRAM has
a finite capacity, while the cache remains ideal. The
proposed DMA engine works in a circular manner to
provide data to SRAM and manage data availability for
the accelerator.

• Case 3: We examine the scenario, described in Section II,
where both the SRAM and cache have finite capacities.
When accessing the system cache, cache misses occur
due to the limited cache size. In our setup, we consider
the cache block as 64KB and cache misses take 350
cycles on average [4].

• Case 4: Our proposed solution, as explained in Section
III, involves the integration of a prefetch feature into the
LLC and the flexible use of cache as loosely integrated
memory to eliminate cache misses experienced in case 3.
The size of the scratchpad is chosen as 1.5 megabytes.
The initial input is transferred from memory to the
scratchpad. The calculated outputs, which serve as the
input for the next layer, overwrite the input values since
they are no longer required for further calculations. The
remaining space in the scratchpad is allocated for storing
weight chunks. When a weight chunk is no longer in use
another one is fetched from SRAM.

Note that case 1 and case 2 are idealized scenarios to
observe the theoretical bandwidth, while case 3 and case 4
represent a more practical and realistic setup.

B. Results and Discussion

Figure 2 shows the performance and energy consumption in
terms of accelerator cycles and uj, respectively. Our proposed
solution (case 4), using prefetch mechanism in a shared system
cache for deep learning workloads, gives much faster execu-
tion and lower energy consumption. Specifically, our proposed
architecture is 14X times faster than the realistic scenario
described in case 3 and 5% times more energy efficient.
Besides, overall performance is too close to the almost ideal
scenario described in case 2.

Fig. 2. Performance and Energy consumption analysis for four scenarios
described above.

Fig. 3. Design space exploration for accelerator SRAM size.

C. Design Space Exploration

The size of on-chip memory, specifically the accelerator
SRAM, is a critical factor affecting the overall performance
of deep learning accelerators. Achieving high performance

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 10:58:17 UTC from IEEE Xplore. Restrictions apply.

requires a larger SRAM size to enable faster access for the
accelerator. However, this comes at the cost of increased chip
area utilization. Balancing the desire for a larger SRAM for
improved performance with the need to minimize area over-
head poses a design challenge. To address this, we conducted
a comprehensive analysis, varying the sizes of the accelerator
SRAM for case 4, and examined their impact on performance.
The results, as depicted in Figure 3, indicate that there is a
clear threshold in terms of performance improvement. Specif-
ically, we observe that increasing the SRAM size up to 512
KB led to significant performance enhancements. However,
beyond this threshold, there is a limited enhancement in
performance since the majority of the input and weight values
are already accommodated within the 512 KB SRAM.

V. RELATED WORK

Memory latency is a critical factor that significantly im-
pacts computational throughput. To mitigate this issue, sev-
eral proposals have been introduced, focusing on enhancing
execution and data access parallelism. One such proposal
is hardware (HW) prefetching [2] [11], which demonstrates
improved LLC miss rates. In our design, we propose utilizing
a scratchpad memory along with software (SW) prefetching
to ensure efficient data access. Unlike HW prefetching, which
relies on predictions, SW prefetching offers a more organized
approach suitable for static applications such as neural network
inference.

For addressing dynamic memory requirements such as
branches and dependencies, various implementations of
hardware-assisted scheduling have been put forth [8] [10] [1].
However, in the case of static applications, such solutions are
unnecessary.

Another enhancement involves organizing the accelerator
SRAM into multibank partitions, allowing access to these sub-
memories without encountering bank conflicts [13] [14]. We
modeled our accelerator SRAM in a similar manner.

VI. CONCLUSION

In conclusion, our study highlights the crucial role of
effective utilization of the LLC in deep learning accelerator
systems, particularly evident with the inclusion of a prefetch
unit and reconfiguration as a scratchpad. By leveraging the
capabilities of the LLC, we observed significant improvements
in both performance and energy efficiency. The prefetching
mechanism, coupled with optimized data movement strategies,
resulted in cache miss elimination and improved overall sys-
tem performance. This enhanced performance translated into
higher throughput and faster execution of deep learning work-
loads. Furthermore, the efficient use of the LLC contributed
to reduced energy consumption by minimizing the need for
frequent accesses to the main memory and energy-intensive
operations. Our findings underscore the critical importance
of maximizing the potential of the LLC in deep learning
accelerator systems, emphasizing its role in achieving superior
performance and energy efficiency.

REFERENCES

[1] Saehyun Ahn, Jung-Woo Chang, and Suk-Ju Kang. An efficient
accelerator design methodology for deformable convolutional networks.
In 2020 IEEE International Conference on Image Processing (ICIP),
pages 3075–3079, 2020.

[2] Tao Chen and G. Edward Suh. Efficient data supply for hardware
accelerators with prefetching and access/execute decoupling. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–12, 2016.

[3] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss
v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 9(2):292–308, 2019.

[4] Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson. New
cross-core cache-agnostic and prefetcher-based side-channels and covert-
channels, 2023.

[5] PyTorch Contributors. Pytorch documentation conv2d.
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html, 2023.
Accessed: 2023.

[6] NVIDIA Corporation. Nvdla: A free and open-source deep learning
accelerator. GitHub repository, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[8] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. Effi-
cient execution of memory access phases using dataflow specialization.
SIGARCH Comput. Archit. News, 43(3S):118–130, jun 2015.

[9] Mark Horowitz. 1.1 computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10–14, 2014.

[10] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. From c/c++ code to
high-performance dataflow circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 41(7):2142–2155,
2022.

[11] Pavlos Malakonakis, Andreas Brokalakis, Nikolaos Alachiotis, Evripides
Sotiriades, and Apostolos Dollas. Exploring modern fpga platforms
for faster phylogeny reconstruction with raxml. In 2020 IEEE 20th
International Conference on Bioinformatics and Bioengineering (BIBE),
pages 97–104, 2020.

[12] David A. Patterson and John L. Hennessy. Computer Organization and
Design RISC-V Edition: The Hardware Software Interface. 2nd edition,
December 11 2020.

[13] Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj
Pathania, and Tulika Mitra. Cascade: High throughput data streaming
via decoupled access-execute cgra. ACM Trans. Embed. Comput. Syst.,
18(5s), oct 2019.

[14] Chen Yin, Naifeng Jing, Jianfei Jiang, Qin Wang, and Zhigang Mao.
A reschedulable dataflow-simd execution for increased utilization in
cgra cross-domain acceleration. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 42(3):874–886, 2023.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on May 29,2024 at 10:58:17 UTC from IEEE Xplore. Restrictions apply.

