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Most existing graph frameworks for GPUs adopt a vertex-centric computing model where vertex to
thread mapping is applied. When run with irregular graphs, we observe significant load imbalance
within SIMD-groups using vertex to thread mapping. Uneven work distribution within SIMD-groups
leads to low utilization of SIMD units and inefficient use of memory bandwidth. We introduce Graph-
Waving (GW) architecture to improve support for many graph applications on GPUs. It uses vertex to
SIMD-group mapping and Scalar-Waving as a mechanism for efficient execution. It also favors a narrow
SIMD-group width with a clustered issue approach and reuse of instructions in the front-end. We
thoroughly evaluate GW architecture using timing detailed GPGPU-sim simulator with several graph
and non-graph benchmarks from a variety of benchmark suites. Our results show that GW architecture
provides an average of 4.4x and a maximum of 10x speedup with graph applications, while it obtains
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9% performance improvement with regular and 17% improvement with irregular benchmarks.
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1. Introduction

Graphs are used by a great number of real-world applications
from a wide range of domains. Many graph applications use
quite large graphs which makes them good candidates for ac-
celeration. GPUs provide immense power-performance efficiency
when executing data parallel applications. Yet, accelerating graph
algorithms on GPUs remains as a challenge.

GPU computing exploits data-parallelism and utilizes SIMD
execution for efficiency. Threads are bundled into groups known
as warps in CUDA terminology and wave-fronts in OpenCL termi-
nology.!2 Warps share a common PC and they execute the same
instructions in synchronization on a set of pipelined SIMD pro-
cessing elements (i.e. a SIMD unit). A common front-end is shared
across the SIMD processing elements. This execution model works
well for GPU-friendly applications having uniform control-flows
and regular memory access patterns. However, many applications
with arbitrary control-flows and irregular memory access pat-
terns suffer from low utilization of SIMD processing elements and
inefficient use of memory bandwidth [16]. Unfortunately, graph
applications fall under this category due to their data-dependent
(dynamic) characteristics [6,52].

Most of the existing graph frameworks for GPUs adopt a
vertex-centric computing model [35] where programmers express

E-mail address: yilmazer.ayse@gmail.com.

1 CUDA and OpenCL are two commonly used General Purpose GPU (GPGPU)
computing frameworks.

2 In this paper, we will be using term warp for bundled thread groups.
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the graph algorithms as a set of operations that are applied on
vertexes.? Typically, a vertex is mapped to a SIMD-thread. When
the amount of work associated with each vertex differs across
the vertexes, then we observe uneven work distribution within a
warp. That results in low-utilization of SIMD processing elements.
To deal with the intra-warp work imbalance, prior studies [6,22]
suggested using vertex to warp mapping. When vertex to warp
mapping is used, the work performed on the edges of a ver-
tex gets distributed over the threads within a warp.? Vertex to
warp mapping aids reducing intra-warp work imbalance. How-
ever, without adopting the GPU micro-architecture, it cannot help
much with low-utilization of SIMD processing elements.

In this work, we aim to improve the utilization of SIMD pro-
cessing elements when running graph applications on GPUs. To
do so, we leverage the idea of vertex to warp mapping and scalar-
ized vertex-centric parallel graph computing on GPUs and intro-
duce the Graph-Waving architecture to better support scalarized
vertex-centric graph computing while maintaining the efficiency
of SIMD execution for regular GPU applications.

When using vertex to warp mapping on existing GPU ar-
chitectures, some computations on a vertex become redundant
within a warp, resulting in inefficient use of SIMD processing
elements. To eliminate this redundant computations, we adopt
Scalar-Execution (SE) which we proposed in our prior work [56].

3 Because of their higher synchronization requirements, edge-centric graph
computing models are not preferred on GPUs.

4 This model offers higher concurrency similar to what the edge-centric graph
computing offers.
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We call this model as scalarized vertex-centric parallel graph
computing. In this model, programmers are allowed to annotate
the redundant computation as scalar operations to fully utilize the
Scalar-Execution.

When adopting the existing GPU architecture to scalarized
vertex-centric graph computing, we employ Scalar-Waving (SW)
that dynamically groups scalar operations possessing the same PC
and executes them together as a Scalar-wave on SIMD pipelines
for improved utilization of SIMD processing elements [56]. When
customizing Scalar-waving to scalarized vertex-centric graph
computing, we face several challenges. We observe that irreg-
ular applications favor a narrow SIMD-width and SIMD-units.
Therefore, our design employs narrow SIMD-units but with a
clustered issue logic to maintain the benefits of larger issue width
with regular applications. Narrow SIMD units help with under-
utilization of SIMD processing elements when the vertexes have
low degrees to fully utilize the lanes of SIMD-units. However,
narrow SIMD-unit widths may lead to reduced front-end effi-
ciency and increased pressure in the front-end (in the fetch and
decode stage). This could significantly harm the performance
of regular applications whose performance is tightly coupled
with front-end efficiency. To address this problem, our proposed
architecture leverages instruction re-use to eliminate redundant
fetching and decoding of instructions across the warps and the
iterations of loops. We call this new graph friendly architecture
as Graph-Waving (GW) architecture.

The contributions of this work can be outlined as follows.

e With an analytic approach, we show that vertex-centric
graph computing could benefit from vertex to warp mapping
to reduce unbalanced work distribution within a warp and
uncoalesced memory accesses, but at the same time, vertex
to warp mapping introduces redundant computation within
the warp.

e We suggest that we can eliminate this redundant com-
putation with scalarized vertex-centric graph computing
and Scalar-Waving architecture. Using scalarized vertex-
centric graph computing, programmers are allowed to take
advantage of Scalar-Execution and annotate the redundant
computation as scalar to fully utilize the Scalar-Waving ar-
chitecture. Scalar-Waving enables efficient use of hardware
resources when performing scalar execution.

e We show that while existing modern GPUs favor wide
SIMD-widths for front-end efficiency with highly regular ap-
plications, graph applications using scalarized vertex-centric
graph computing could benefit more from narrow SIMD-
widths. We argue that while having narrow SIMDs, we can
still reserve the benefits of wider issue. As a novel design,
we introduce our narrow SIMD-units with clustered issue
logic.

e We also show that having narrow SIMD-groups could create
pressure in the front-end and harm the performance. We
propose to overcome this issue by leveraging the re-use of
fetched and decoded instructions across the warps and iter-
ations of loop bodies. We introduce our new GPU front-end
design.

e We combine all these ideas and introduce GW architec-
ture which orchestrates an architecture combining Scalar-
Waving architecture, narrow SIMDs with clustered issue
logic, and a front-end with decoded instruction reuse. We
thoroughly evaluate the scalarized vertex-centric graph
computing with GW architecture and demonstrate that our
design significantly improves performance for graph appli-
cations while providing better or sustained performance for
regular applications.
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The remainder of this paper is organized as follows. First, in
Section 2, we briefly describe GPU execution model and our base-
line GPU micro-architecture. In Section 3, we explain the applica-
tion of vertex-centric data parallel graph computing on GPUs and
discuss its inefficiencies in Section 4. Next, we introduce scalar-
ized vertex-centric parallel graph computing in Section 5 and
we present Graph-Waving architecture combining three ideas in
Section 6. Finally, in Section 8, we provide the details of our
evaluation methodology and our benchmarks, present/discuss our
simulation results. In the end, we review the related work in
Section 9 and conclude in Section 10.

2. GPU execution model and baseline GPU microarchitecture

In this study, we baseline our work on a GPU model similar
to NVIDIA TeslaC2050 GPUs that are based on NVIDIA's Fermi
architecture [39].”

Our baseline GPU architecture is composed of an array of
multi-threaded SIMD processors. Each multi-threaded SIMD pro-
cessor accommodates a set of on-chip hardware execution con-
texts to execute a set of thread blocks. A thread block is divided
into warps. Threads in a warp share a common PC and execute
same instructions in lock-step until reaching to a conditional
branch. When the threads in a warp do not take the same path
from a conditional branch, then a branch divergence occurs. One
way of handling branch divergence in SIMD execution is serialized
execution of branches. Each path from a conditional branch is
executed serially by enabling/disabling the threads depending on
their branch outcome. During serialized execution, not all of the
SIMD processing elements are utilized due to disabled threads
following the alternative path. Each warp has an active mask
stack to support conditional execution. Fig. 1 shows the high-level
organization of a multi-threaded SIMD processor in our baseline
GPU architecture.

Each multi-threaded SIMD processor has a back-end that con-
sists of a set of fully-pipelined SIMD-units to execute warps in
an interleaved manner. A common front-end is shared by SIMD-
units and this front-end is responsible for supplying SIMD-units
with instructions to execute. At each cycle, the fetch unit issues
an instruction request for a selected warp. Once an instruction
is fetched, it is decoded and checked for dependencies in Score-
boarding unit. Decoded instructions are stored in Instruction Buffer
slots. There are dedicated instruction slots in instruction buffer
for each warp. Scoreboard entries are organized to be accessed
using the warp-id (wid). At each cycle, two schedulers select
and dispatch instructions for two warps. When an instruction is
dispatched for execution, an operand collector unit is assigned for
collecting input operands from a large multi-banked register file.
In the back-end, there exist 32 lane SP units and special function
units (SFUs). Load/store (LD/ST) units handle accesses to mem-
ory through an L1 data cache. Address coalescing is performed
to merge accesses from different SIMD-lanes. Shared memory
handles bank conflicts by processing them in a serialized manner.

3. Typical vertex-centric parallel graph computing on GPUs

In this paper, we use a well-known graph algorithm called
Pagerank as an example for our discussions.® This algorithm is
based on the idea of link popularity where the incoming links

5 We are aware that there have been many improvements in modern GPU
architecture since NVIDIA’s Fermi architecture, but the problems we focus on
this paper continues to uphold to newer GPU architectures. These problems
and the solutions we propose are not limited with NVIDIA’s GPUs, they also
applicable to GPUs from other vendors.

6 Pagerank is developed and used by Google [43].
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Fig. 1. High-level organization of our baseline GPU model and multi-threaded
SIMD processor.

for a document determines the document’s general importance.
Pagerank is an iterative algorithm where a document’s rank is
calculated recursively by the ranks of other documents linked to
it.

There are many possible implementation of Pagerank algo-
rithm. We use the one based on Pannotia’s [6] implementation.
It is implemented with three CUDA kernels. It makes use of a
widely used graph representation known as Compressed Sparse
Row (CSR) format [46]. The input graph is represented with an
array of vertexes, edges, and ranks. For each vertex, a pointer to
list of outgoing edges is stored in array vertexes. Destinations of
outgoing edges are stored in consecutive elements of array edges.
The last element in array vertexes is a dummy vertex to denote
the length of array edges. Initially, the rank for each vertex is
set with a value of 1 divided by the total number of vertexes
(1/number_of _vertexes()). The main computation part of the page
rank algorithm includes a main loop to execute two kernels.
These two kernels are called repeatedly until convergence hap-
pens or the loop count reaches to a predetermined number of
iterations.

In Listing 1, we show the kernel that performs the calculation
of new rank values for each vertex (implementation in CUDA). In
this code, each vertex sends its current rank to all of its neighbors.
To do so, each edge is visited in a for loop to push the updates.
After receiving the update values sent from neighbors, each ver-
tex sums them up to calculate its new rank. This implementation
uses the vertex-centric parallel computation where vertex to a
SIMD-thread mapping is applied.

1 | __device void update(float xaddr, const float upval);

2 | __global void ComputeRanks(int xvertexes, int kedges, float *
cranks, float *nranks, int N) {

3 // get the global thread id to identify the assigned vertex

id
4 int vid = blockldx.x * blockDim.x + threadldx.x;
5 if (vid <N) {
6 int start = vertexes[vid], end = vertexes[vid+1];
7 float upval = cranks[vid]/(end start);
8 //navigate the neighbor list
9 for (int e = start; e < end; e++)
10 update(&nranks[edges[e]], upval);
11 | }
12 |}
Listing 1: CUDA implementation of ComputeRanks kernel in

Pagerank algorithm
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While we use Pagerank algorithm in this paper as a work-
ing example, the discussions that we carry out here apply to
many other graph algorithms, too. We observe a common, funda-
mental computation pattern in these kernels: the computations
on vertexes are performed while expanding edge list and gath-
ering information from neighboring vertexes, such as pushing
updates to neighboring vertexes as seen in ComputeRanks kernel.
This pattern can be summarized with a pseudo code shown in
Fig. 2. We will be using this fundamental computation pattern for
our discussions as the representative of ComputeRanks kernel in
Pagerank algorithm and many other similar graph kernels. In this
paper, we refer to this computation pattern as edge-list-expanding
computation pattern.’

4. Inefficiencies of vertex-centric graph parallel computing on
GPUs

Typical implementation of vertex-centric parallel graph ker-
nels with edge-list-expanding computation pattern suffers from
serious performance penalties when the input graph is highly ir-
regular, having many vertexes with divergent degrees (i.e., when
the number of edges per vertex varies). We discuss two primary
sources of these performance penalties using a running example
shown in Fig. 2.

4.1. Intra-warp load imbalance and under-utilization of SIMD units

Intra-warp load imbalance will be observed when work is
distributed unevenly across the threads of a warp. Unfortunately,
uneven load distribution results in under-utilization of SIMD-
units and may severely hurt the performance. In vertex-centric
parallel graph computing, load imbalance could happen within
warps when the main computation of a kernel has to be per-
formed only for a subset of vertexes. It could also happen due
to fact that some vertexes could have higher degrees (i.e., the
number of edges) than others. For each vertex, edges are visited
in iteration while performing some computation on each edge.
The length of edge lists (i.e., the range of e in Line 9 of Listing 1)
may vary across different vertexes. Thus, the threads in a warp
with shorter edge lists have to wait for those SIMD-threads in
the same warp with longer edge lists to finish executing the for
loop.8 This case is illustrated in Fig. 2(e).

Unfortunately, most real world graphs are known to be pretty
irregular in terms of degrees. In Fig. 3(a), we show distribution
of vertexes based on their degrees for such a graph called coAu-
thors [13] which is used to run Pagerank. As seen from this
figure, most of the vertexes have a low degree (average degree
is 17) while there are some vertexes with very high degrees
(some have more than 300 degrees). With irregular graphs, most
of the time it is highly possible that only a limited number of
SIMD threads in a warp are active and only some of the SIMD
processing elements are utilized. To understand the significance
of load imbalance within the warps, we looked at the utilization
of the SIMD units with a set of well known graph algorithms.’
Fig. 4(a) shows a breakdown of execution cycles as a function
of active SIMD-threads in warps to illustrate the utilization of
the SIMD processing elements. Our evaluation results prove that
graph applications use SIMD pipelines inefficiently due to load
imbalance. We observe that SIMD units are not fully utilized for
45% or more of the execution cycles. Furthermore, for 30% or
more of the execution cycles, only 8 or less of the SIMD processing
elements happen to be active.

7 Since concurrency is at edge-level in edge-centric graph computing, we do
not observe this pattern in edge-centric computing.

8 Remember that, in a typical vertex-centric parallel graph algorithm, kernels
are structured such that each vertex is assigned to a SIMD-thread.

9 The details of our benchmarks and evaluation methodology for this study
are given in 8.1.
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4.2. Non-coalesced memory accesses

In typical vertex-centric parallel graph computing, additional
performance degradation comes from non-coalesced memory
accesses and memory divergence. A memory operation gener-
ates multiple memory transactions, when the accesses of SIMD-
threads in the same warp cannot be coalesced into a single
request. Memory divergence arises when the threads of a warp
encounter different memory access time due to data cache misses
or memory bank conflicts as a result of uncoalesced memory
accesses. For instance, the edge lists expanded by the threads
of a warp could be dispersed to several blocks of memory.
Fetching these data may take several memory transactions. When
performing memory operations, the entire warp waits until all
threads in the warp finish their memory accesses. As an example,

72

in Fig. 2, we show the memory requests that are generated to
access to the array edges by Warp#1 during the iterations of the
for loop.

To see if the amount of non-coalesced memory accesses is
significant in graph applications, we looked at average number
of memory requests per memory access in our graph bench-
marks. Fig. 4(b) shows the amount of average memory requests
per memory access for our graph benchmarks. Observing 2.85
memory requests per memory access on the average, we conclude
that non-coalesced memory accesses are quite significant for
graph applications. Indeed, non-coalesced memory accesses and
memory divergence are common problems with most data inten-
sive irregular applications like graph algorithms. Non-coalesced
memory accesses increase the memory bandwidth pressure, may
result in memory divergence and therefore result in performance
degradation and higher power consumption.
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Fig. 5. Mapping a vertex to a warp. (a) Transformed code to apply vertex-to-warp mapping and distributing computation on edges to SIMD-threads. (b) Example
mapping of vertexes to warps. (c) SIMD-lane utilization (d) and accesses to array edges while expanding edge list of a vertex.

5. Scalarized vertex-centric parallel graph computing

To overcome the shortcomings of typical vertex-centric par-
allel graph computing with edge-list expanding computation, we
leverage scalarized vertex-centric parallel graph computing.
Scalarized vertex-centric parallel graph computing combines two
ideas: (1) mapping a vertex to a warp and then, (2) utilizing Scalar-
execution (SE) [56]. Vertex-to-warp mapping aims to overcome
intra-warp load imbalance but it causes redundant computations
within the warps. Scalar execution eliminates redundant compu-
tation within a warp and it requires some minor modifications to
baseline GPU microarchitecture.

Scalarized vertex-centric parallel graph computing includes
these steps: (1) Programmer associates a vertex to a warp and
constructs the algorithm such that the work on edges gets dis-
tributed over the SIMD-threads of a warp, and (2) annotates
Scalar code when implementing the algorithm, (3) then, the com-
piler marks each scalar instruction based on programmer’s an-
notation and also using static scalarization analysis, (4) at the
execution time, hardware utilizes Scalar-execution(SE) [56] when
the instructions to execute are scalar instructions. '°

5.1. Vertex-to-warp mapping

Mapping a vertex to a warp has two main advantages. We can
improve (1) SIMD utilization and (2) memory access coalescing.
When a vertex is mapped to a warp, the work on edge list of a
vertex gets distributed over the SIMD-threads within the same
warp and therefore each SIMD-thread in a warp gets almost the
same amount of work. This improves the utilization of the SIMD-
units and more of the memory operations become coalescable.
We illustrate these two advantages of vertex to warp mapping
approach in Fig. 5 using our running example. The example
uses the same input graph, G, shown in Fig. 2. The computation
model using vertex to warp mapping is summarized in Fig. 5(a).
With this model, the utilization of SIMD-units and the memory
accesses in the for loop are illustrated in Fig. 5(b) and Fig. 5(c),
respectively. As seen in Fig. 5(c), we might still observe idle
SIMD processing elements with vertex to warp mapping, however,
under utilization of SIMD-units might happen only at the last
iteration of the for loop. With vertex to warp mapping, intra-warp
load imbalance (due to diverse degree distribution of vertexes)
becomes less significant.

5.2. Scalar execution (SE) to eliminate redundant computations

The redundant computations are not specific to vertex-centric
parallel graph computing with vertex to warp mapping. Indeed,

10 An instruction performing redundant computation within a warp is known
as scalar instruction in the literature [9,56].
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Fig. 6. Amount of redundant computation for various GPU benchmarks including
our graph benchmark set.

redundant computations exist in many GPU kernels. Former stud-
ies showed that the amount of redundant computations could
be significantly high for some applications [9,56]. We show the
amount of redundant computations present in various GPU
benchmarks in Fig. 6. We can see that 30% or more of the exe-
cuted instructions perform redundant computation in 12 (more
than half) of the benchmarks. On the average, approximately
34% of the computations are redundant across all of the bench-
marks. These scalar instructions are redundantly executed on
SIMD pipelines if there is no scalar hardware [1] present.

We would like to utilize Scalar-Execution to eliminate the
intra-warp redundant computations. SE requires static or dy-
namic identification of scalar instructions (described in
Section 5.2.2)." Once we identify scalar instructions, we mark
them as scalar with a flag in kernel binary. Then at the run-time,
the scalar flag triggers Scalar-Execution on SIMD-units.

In this work, we employ static identification of scalar oper-
ations using programmer annotation and compiler analysis. We
propose a few changes to Instruction Set Architecture (ISA) and
a number of modifications to our baseline multi-threaded SIMD
processor to support SE. Below we explain the techniques that we
use for scalar identification and SE for scalarized vertex-centric
parallel graph computing.

5.2.1. Programming for scalarized vertex-centric parallel graph com-
puting

Scalarized vertex-centric parallel graph computing exposes
warps (SIMD-groups) to programmers and warps become ex-
plicitly part of the programming model.!? To expose warps in

11 In this work we do not consider dynamic identification of scalar instruc-
tions since it increases the hardware complexity and the power consumption.
Extending this work with dynamic scalar identification can be considered as a
future work.

12 Programmers have already been using warp-aware programming for per-
formance optimization even though warps are not explicitly exposed to the
programmers.
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the programming model, we introduce two new intrinsic —
get_warp_id() and get_simd_width().get_warp_id allows
a SIMD-thread to query the ID of the warp that it belongs to and
get_simd_width can be used to get the supported SIMD width by
the GPU model being used.

1 | __device void update(float xaddr, const float upval);

2 | __global void ComputeRanks(int xvertexes, int xedges, float *
cranks, float #nranks, int N) {

3

4 | #pragma SCALAR

5

6 int vid = get_warp_id() ;

7 if (vid >= N) return;

8

9 int start = vertices[vid], end = vertices[vid+1];

10 float upval = cranks[vid]/(end start);

11 | #pragma SCALAR END

12

13 int toffset = get_warp_local_id();

14

15 | |

16

17 for (int e=start + toffset; e<end; e=e + get_simd_width())

18 update(&nranks[edges[e]], upval);

19 |}

Listing 2: CUDA implementation of ComputeRanks kernel with
scalarized vertex-centric parallel graph computing approach.

Programmers can use get_warp_id to get the vertex-to-
warp association. After having identified the associated vertex,
each SIMD-thread works on a different edge until all edges of
the vertex are processed. We provide modified code listing for
Pagerank’s ComputeRanks kernel as shown in Listing 2 to illustrate
the application of programming approach that we introduced
with scalarized vertex-centric parallel graph computing.13

5.2.2. Identification of scalar operations

In this work, we use compiler annotations and compiler anal-
ysis. Programmers can annotate scalar regions in their code to
have the compiler mark the instructions in that region as scalar
instructions. Compiler can be easily extended to support scalar
annotations and also marking scalar instructions with a bit flag
in the binary. In Listing 2, we illustrate the use of compiler
annotations to mark scalar regions. Our work also utilizes com-
piler analysis for extended identification of scalar operations. For
this purpose, we use a compiler analysis technique based on
divergence analysis [ 12]. We start with identifying an initial set of
identical input operand values. These variables can be constants
or the result of a value being broadcast to multiple instructions.
Each variable that is identified as identical is tagged accordingly.
Later, the analysis process traverses through the tags using data
dependence analysis. An output variable is marked as identical
if it is computed using only identical variables. Instructions pos-
sessing identical input operands generate identical results, and
are marked as scalar instructions. After performing this analysis,
we are left with a conservative set of identical variables and scalar
instructions.

13 \When using scalarized vertex-centric parallel graph computing, if any data
must be shared within a warp, the programmers can utilize the shared memory.
Shared memory would be sufficient to provide efficient communication across
the threads in a warp.
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5.2.3. Architectural support for scalar execution on SIMD units

We can either use an undefined bit in ISA or extend the ISA to
include an extra bit in each instruction’s machine code to trigger
Scalar-Execution. We also modify the Instruction Buffer so that
each entry includes a single bit flag that will identify a scalar
instruction at runtime.

6. Graph-waving architecture for scalarized vertex-centric
parallel graph computing

The performance improvements of the SE and the scalar-
ized vertex-centric parallel graph computing would be only lim-
ited without adapting existing GPU microarchitecture to it.!4
We propose modifications to baseline GPU architecture and in-
troduce Graph-Waving (GW) architecture. GW combines three
approaches: (1) it uses narrow SIMD-widths with clustered issue
approach, (2) it employs decoded-instruction re-use, and (3) it
extends and employs Scalar-Waving (SW) architecture [56]. In
the remaining of this section, we explain modifications to ISA
and changes to baseline GPU micro-architecture to implement
Graph-waving SIMD architecture.

6.1. Narrow SIMDs with clustered issue

When using scalarized vertex-centric parallel graph comput-
ing, the utilization of the SIMD pipelines will be low, if the input
graphs have large number of vertexes with low degrees. Fig. 3
shows the distributions of vertexes based on their degrees for five
graphs that we use in our experiments. We see that most of the
graphs have degrees less than 8 and this suggests that we employ
narrower SIMD-widths for better utilization of SIMD-pipelines
with graph applications.

Our proposed GW architecture supports 8-wide warps. We
organize the available SIMD processing elements into 4 groups
(i.e a SIMD-unit). Each group is 16-wide and executes a pair of an
odd and an even numbered warp together. There is a dedicated
scheduler for each of these four groups. Each scheduler tries to
find a pair of odd-even warps with same PC to issue on 16-wide
SIMD units. During the issue time we cluster odd and even warps
with the same PC. However, when the control flow or memory
divergence occurs, a warp in a pair is allowed to diverge and
complete without waiting for other warp in the pair. As a result,
a pair may go out of synchronization and a scheduler may not
find a pair with same PC. In that case a ready odd or even warp
will be selected to get scheduled alone. When that is the case,
the idle part of the SIMD-units can be put into inactive mode for
power savings. The four schedulers and 16-wide SIMD-units with
aggregated issue logic can be seen in Fig. 7(a). At each cycle, 4
scalar/regular warp instructions get issued on SIMD-units.

6.2. Instruction re-use in front-end

While narrower SIMD-widths and scaled issue logic helps with
under-utilization of SIMD-units under control flow divergence,
the increased number of warps is likely to create pressure in the
front-end. Pressure in the front-end could severely harm the per-
formance of highly regular applications since their performance is
tightly coupled with the front-end efficiency. To understand the
impact of front-end pressure on performance, we performed a set
of experiments with our benchmarks. In these experiments, we
varied the SIMD-width and scaled the issue logic and SIMD-units
in the back-end and looked how the performance changes. Fig. 8
shows the performance results from our experiments. Our results
clearly show that the front-end pressure will cause a performance
degradation for many of the benchmarks.

14 The reader can refer to [56] for a more detailed study on performance
improvements of SE.
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pressure on performance due

To overcome the pressure in the front-end, we exploit the
redundancy in instruction fetch and decode and aim to reuse
decoded instructions. In SIMD-execution, at any cycle it is highly
likely to happen that many instructions across warps and across
loop iterations are the same. As a result, most of the fetch and
decode operations are redundant. We can take advantage of this
redundancy in the front-end and re-use the already fetched and
decoded instructions.!® This requires modifications to fetch unit
and re-organization of instruction buffer. In the new organiza-
tion, instruction storage must be decoupled from warps. Fig. 7(b)
illustrates the new Instruction Storage organization. Instruction
Storage is organized in set associative way like a cache. Each
entry in Instruction Storage includes a tag to identify the entry,
a Valid bit, a Reference Counter and a Scalar bit indicating if the
instruction is scalar. Each entry also includes details (opcode,
operands, etc.) for two decoded instruction (Instruction #1 and
Instruction #2 as shown in the figure). At a scheduling cycle, when
a warp instruction is issued, the next PC is calculated for the
issued warp. Then the Instruction Storage is checked to see if the
next instruction already exists as fetched and decoded. If found,
then the reference counter for this instruction is incremented
and a pointer for this entry is inserted for the next PC pointer
in the Warp Status Table (WST). If not found, then ReadyToFetch
flag is set in WST to indicate that the warp needs instruction
fetch. The Fetch Unit arbitrates over only the warps that have
their ReadyToFetch flags are set. As far as there are available fetch
buffers, a new instruction will be fetched at each cycle.

6.3. Efficient execution of scalar instructions

SE on SIMD pipelines utilizes (as explained in Section 5.2)
only a single SIMD lane,'6 leaving all other lanes unused. These

15 Warps usually progress in synchronization and when they go out of
synchronization the benefits of the reuse will be limited.

16 SIMD lane is interchangeable used with SIMD processing element.
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available lanes could be used if we can group a number of scalar
instructions together into a batch and execute them in SIMD
fashion. During the execution of a kernel, it is likely to have
multiple warps ready to execute the same scalar instruction. Mul-
tiple warps executing the same scalar instruction (possessing the
same PC) can be grouped into a Scalar-wave to execute together
in SIMD fashion on the SIMD-pipelines. In our prior work [56],
we introduced Scalar-Waving (SW) to dynamically form groups of
scalar instructions to execute together for improved utilization of
SIMD lanes.

It is possible to store the results from scalar operations as a
single value —a scalar value, stored in one location for all threads
in the warp, eliminating redundant storage of the same scalar
value. We also describe how to store scalar values in a modified
register file in Section 6.3.3.

To enable SW execution, the main modifications to our base-
line multi-threaded SIMD processor consist of three main parts:
(1) modification to the instruction buffer to differentiate scalar
instructions, (2) adding a Scalar-Wave Formation Unit (SWFU) —a
new unit that includes a Scalar-Wave Status Table (SWST) and
manages the formation of scalar waves, and (3) modifications
to the register file to provide efficient storage of scalar values.
In Fig. 7, we see one bit Scalar flag indicating if the instruction
is scalar. In Fig. 9, we show the newly added SWF Unit. In the
following subsections we describe the formation and scheduling
of Scalar-waves, as well as storage of scalar values in detail.

6.3.1. Scalar wave formation

When a SIMD instruction is decoded, it is inserted into buffers
in Instruction Storage. If it is a scalar instruction, then the scalar
flag (see 7(b)) in the buffer entry is set. Once register depen-
dencies for the instruction are resolved, the Scalar-Wave Status
(SWST) Table (shown in Fig. 9) is updated for it. The SWST is also
checked to see if there is an existing Scalar-Wave Entry (SWE)
with the same PC in SWST. If there is no match, but there is avail-
able room for a new entry, then an SWE is allocated for the scalar
instruction. When an SWE exists with a matching PC, then there
is no need to create a new SWE. Once an SWE is created or an
existing SWE is found, then the corresponding bit in Scalar-Wave
Mask (SWM) of SWE is set for associated warp. In the Instruction
buffer, the SW-Valid flag is set to show that the instruction is
associated with a Scalar-wave. A pending scoreboard entry is
created to indicate dependencies associated with this instruction
for the warp. If there is no matching entry found and a new entry
cannot be allocated in SWST, then this scalar instruction waits
until space becomes available in SWST.

6.3.2. Scheduling scalar-waves

At each cycle, each scheduler tries to find a ready warp pair
to schedule next. If both warps in a pair are ready then they
get scheduled together. If only odd or even part of any pair is
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Fig. 9. Warp Status Table, Scalar-Wave Formation Unit including its Scalar-Wave Status Table and Scoreboards in GW architecture.

ready, pair gets scheduled to run only the active part. When the
scheduler cannot find any ready warp pair to schedule, then the
SWST is interrogated to find the oldest Scalar-Wave available
to schedule next. When the selected Scalar-Wave is scheduled,
the Issued flag in the SWST is set to 1. Scalar-Wave ID (SWID)
and Scalar-Wave Mask are passed to scoreboarding unit so that a
scoreboard entry is created in Scalar-Wave Scoreboard. When an
issued Scalar-Wave finishes its execution, the entry for the Scalar-
Wave in the SWST is released. The SWID is also passed to the
scoreboard unit for clearing the register statuses in Scalar-Wave
Scoreboard.

6.3.3. Scalar values and register storage for scalar-waves

While grouping scalar operations, the results from scalar op-
erations can also be organized as a group in the register file. In
our GW architecture, each SIMD-unit has 16-issue SIMD-units.
Therefore, a register entry can provide scalar operand values for
16 warps (one scalar value per warp). GW architecture reserves
a unique static id, Scalar-Wave ID (SWID), for each Scalar-wave.
Similarly, we tag the grouped scalar register entries with a tag to
differentiate them from non-scalar register entries. When a scalar
register entry is accessed with an SWID, it provides operand
values for all warps of corresponding Scalar-wave.

7. Hardware cost and power consumption

GW architecture modifies the scoreboard, instruction buffer/s-
torage, scheduler, issue unit and adds Scalar-wave Formation Unit
in baseline GPU architecture. We modify the accesses and man-
agement of Instruction Storage/Buffer but we do not increase the
available storage for instructions in the Instruction Buffer/Storage.
We believe that GW architecture does not increase the area
significantly. GW helps with dynamic power consumption with
reduced execution time, instruction fetch and decode. However,
we should also consider increased static power consumption due
to newly added hardware in the GW architecture.

In this work, we specifically focused on performance aspect
of GW architecture and we consider the detailed study of area
estimation and power consumption for GW architecture as a
future work.

8. Evaluation
8.1. Experimental setup

We model our proposed hardware schemes for GW archi-
tecture modifying version 3.x of GPGPU-Sim [2]. We build the
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simulator using gcc version 4.4. GPGPU-Sim is capable of run-
ning CUDA [40] and OpenCL [29] applications. We used var-
ious non-graph CUDA benchmarks and graph benchmarks for
our work. Our benchmarks are compiled using NVIDIA’s tool
nvcc version 4.2. When compiling with nvcc, we used the option
—nvcc-arch=sm_20. In the following subsections, we provide more
details on our benchmarks and configuration parameters of our
simulations.

8.1.1. Benchmarks

The non-graph benchmarks that we used for this study are col-
lected from Rodinia [7], Parboil [25,47] Benchmark Suites, NVIDIA
CUDA SDK [41] and the set of benchmarks used by Bakhoda
et al. [2]. We used graph benchmarks from Pannotia [6] and
Rodinia [7] Benchmark Suites. We classified non-graph bench-
marks into two categories depending on their utilization of SIMD
lanes. The benchmarks that fail to utilize all SIMD lanes during
25% or more of their execution time are classified as IRREGULAR
benchmarks. The remaining benchmarks are classified as REGU-
LAR benchmarks. We provide the list of non-graph benchmarks
and graph benchmarks in Table 1.

8.1.2. Simulation configurations

We use GPGPU-Sim to model a baseline GPU similar to
NVIDIA's Fermi GPU architecture [39]. We performed our exper-
iments with the following simulation configuration parameters,
modeling our baseline GPU architecture (B32) and a Graph-
Waving architecture (GW8).

Our baseline GPU architecture (B32) and GW8 architecture
include 14 multithreaded SIMD processors with a clock rate of
1.15 GHz. Each multithreaded SIMD processor has a 48 KB L1
cache with 128 Byte line-size and 6-way associativity and a 16
KB shared memory. A 786 KB L2 cache with 128 Byte line size
and 8-way associativity is shared between the multi-threaded
SIMD processors. There are 6 memory partitions and each par-
tition includes an L2 bank and a DRAM channel. Memory system
is modeled to run at 1.5 GHz clock rate. Multi-threaded SIMD
processors and device memory are connected through a crossbar
with 1.15 GHz clock rate. Each multi-threaded SIMD proces-
sor employs two schedulers in baseline B32 architecture and 4
schedulers in GW8 architecture. A round-robin model is used for
the scheduling of 32-wide warps in baseline B32 architecture.
GWS8 architecture employs a modified version of round-robin
scheduling as explained in Section 6.3.1. In GW architecture, each
scheduler selects a pair of 8-wide warps or 16-wide Scalar-Waves
ready to execute.
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Table 1
List of REGULAR and IRREGULAR benchmarks evaluated and characterized in this paper.
REGULAR IRREGULAR GRAPH Input set
benchmarks benchmarks benchmarks
AES Encrypt. HotSpots Betweenness Cent. 1k-128k
(AES) [2] (HOTS) [7] (BC.1k) [5,6]
Backpropagation 3D Laplace Solver Betweenness Cent. 2k-1M
(BPR) [41] (LPS) [7] (BC.2k)
Coulombic MUMmerGPU Breadth-First 4096
Potential (CP) [25] (MUM) [2] Search
(BFS.4k) [7,11]
1D Discrete Haar Needleman- Breadth-First 65536
Wavelet Decomp. Wunsch Search (BFS.64k)
(DHWD) [41] (NDL) [7]
Fast Fourier NN Digit Recogn. Graph Coloring ecologil
Transform (NN) [4] (CLR.eco) [6,11]
(FFT) [41]
LIBOR Monte Carlo N-Queens Solver Graph Coloring G3_circuit
(LB) [2] (NUQ) [2] (CLR.cir)
Path Finder Pagerank coAuthors
(PF) [7] (PRK.coA) [6,43]
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Fig. 10. Performance of GW8 and B32 architectures relative to B32 architecture for REGULAR, IRREGULAR and GRAPH applications.

8.2. Performance of graph-waving architecture

We start with presenting performance results of GW architec-
ture. Fig. 10 shows the performance of GW8 architecture normal-
ized to B32 architecture.

Using REGULAR benchmark set, we observe a 9% performance
improvement on the average (geometric mean) with GW8 ar-
chitecture. At the highest, CP and PATH obtain 25% and 21%
speedups, respectively. DHWD obtains a smaller speedup (12%)
and there is insignificant performance improvements for LIB, FFT.
We see insignificant performance degradation for BPR.!” We ob-
serve even higher performance improvements using IRREGULAR
benchmarks with GW8 architecture, since irregular benchmarks
can get more benefits from narrow SIMD-widths. The perfor-
mance improvement of GW8 is 17% on the average for IRREGULAR
benchmark set. NUQ, HOTS, NN, and LPS obtain speedups of
31%, 22%, 19% and 17%, respectively. We do not observe any
performance improvement for MUM.

Graph applications are also characterized as irregular. Like ir-
regular benchmarks, graph benchmarks also favor narrow SIMDs.
Adding the benefits of scalarized graph computing model, GW8
architecture obtains good amount of performance improvements
with GRAPH benchmarks. We observe around 4.41x performance
improvement on the average with GW8 architecture. At most,
we observe 10x and 6.5x speedups using BFS.4k and BFS.64k
benchmarks, respectively.

8.3. In-depth analysis of graph-waving architecture performance

The performance of the GW architecture depends on several
factors. In this section, we discuss these factors in detail.

17 we will discuss the reasons for these performance results later in 8.3.

77

8.3.1. Performance benefits of scalarization and scalar-waving

Besides the number of scalar operations present in the code,
there are other factors that affect the performance benefits of
Scalar-Waving. At each cycle, a multi-threaded SIMD processor
can issue an instruction or experience stalls due to downstream
pipeline stages, memory dependencies or control dependencies.
The number of issuable warps at a cycle depends on the occu-
pancy of the SIMD processors and the dependencies that exist in
the application. When scalar operations are issued as a wave, in
the next few cycles the scheduler should be able to find warps
to schedule (versus remaining idle). Otherwise, issuing the scalar
operations as a group (wave) would not benefit performance
since the processing units will be idle in later cycles. For our de-
tailed performance analysis, we collected statistics to determine
the number of issuable warps for each scheduling cycle. A warp
is said to be issuable if the warp has a valid next instruction (no
unresolved control dependency) and the next instruction has all
its input operands ready (no data dependency).

The availability of issuable warps with scalar operations —is-
suable scalars, also affects the benefits of scalar waving. For this
reason, we need to take a closer look at the number of issuable
scalars during each cycle. In our detailed analysis study, we
collected statistics to determine the number of issuable scalars
for each scheduling cycle. A scalar instruction is considered to be
issuable if the instruction is a valid scalar instruction and it has
all its input operands ready (no data dependency).

Besides the number of issuable warps and issuable scalars, we
also need to consider the number of scalars in each issued Scalar-
Wave —the packing factor of scalar waves. In Fig. 12, we show
the distribution of processor cycles where the number of issuable
warps is 0 (w0), 1 (w1), 2-3 (w2-3), 5-8 (w5-8), 9-16 (w9-16), or
more than 16 (>w16) and in Fig. 11, we show the distribution
of processor cycles, where the number of issuable scalars is: 0
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(s0), 1 (s1), 2-3 (s2-3), 5-8 (s5-8), or 9-16 (s9-16) for REGULAR,
IRREGULAR, and GRAPH applications.

The number of instances where the scheduler finds two or
more issuable —multi-issuable, warps is comparably higher in PF,
FFT, CP, and BPR benchmarks from the REGULAR benchmark set.
We also see higher amount of issuable scalars in PH, FFT, and BPR
benchmarks from the REGULAR benchmark set.

Fig. 13 shows the distribution of Scalar-Waves, where the
number of scalars is 1 (swi1), 2-3 (sw2-3), 5-8 (sw5-8), or 9-16
(sw9-16) for regular, irregular, and graph benchmark sets.

In Fig. 13, we observe that packing rate of scalars in PF bench-
mark is significantly high. Higher availability of issuable warps
and issuable scalars combined with higher scalar packing rate, the
performance of PF improves the most from REGULAR benchmark
set. For FFT and BPR benchmarks we also observe higher amount
of scalar packing rate. However, FFT and BPR do not benefit form
higher availability of issuable warps and issuable scalars as much
as PF benchmark does. The amount of multi-issuable scalars is
very small and the packing of scalar instructions to form a wave
is not very effective for LIB. Most of the issued scalar-waves are
formed with only one scalar. If we take a closer look at the
LIB benchmark to better understand its behavior, we see that a
significant number of executed scalars instructions due to a set of
scalar global memory accesses occurring in a tight loop. The scalar
instructions in this loop are data dependent on one another. This
negatively impacts our ability to pack scalars in LIB.

In the IRREGULAR benchmarks, HOTS and LPS call for attention
for their higher availability of issuable scalars and issuable warps.
They also exhibit high scalar packing rate. These altogether affect
the performances of these applications positively. Despite its high
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rates of issuable warps, MUM does not have high amount of
issuable scalars and high scalar packing rate, and therefore it does
not benefit much from Scalar-Waving.

For GRAPH applications, in general we observe higher rates
of issuable warps, good scalar packing rate and good amount
of issuable scalars for BFS.4k, CLR.eco, and CLR.cir benchmarks.
We think that besides other factors, GRAPH benchmarks get good
benefits of good occupancy rate and scalarization.

8.3.2. Instruction re-use in front-end

As part of this work, we also evaluated the effectiveness of our
GWS8 design for reusing the instructions and reducing the number
of fetch and decode operations in the front-end.

In Fig. 14, we present the relative number of fetch and decode
operations performed in the front-end. In general, GW8 archi-
tecture has high rate of instruction reuse in fetch-decode. Only
exceptions are observed for benchmarks LIB, MUM, NUQ, and
BFS.4k. Instruction reuse is not very effective for these bench-
marks. We observe increased rate of instruction fetch and decode
with the narrow SIMD-width. Despite the fact that it has good
amount of scalar instruction to benefit from scalarization, the
pressure in the front-end affects the performance of LIB due to
higher rate of warps issued alone instead of issuing in pair.

8.3.3. Utilization of SIMD-units on graph-waving architecture

Fig. 15 shows a breakdown of execution cycles as a function
of active SIMD-threads in warps to illustrate the utilization of the
SIMD lanes. Please remember that, GW8 architecture has a SIMD
width of 8 and 16 with aggregated issue. Therefore, we observe
up to 16 lane utilization on GW8 architecture.
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GWS8 architecture favors a narrow SIMD-width and employs
a clustered issue to schedule an odd and even SIMD-group/warp
at each scheduling cycle. However, when the scheduler cannot
find a pair of odd and even warps to schedule together, then
a single odd or even warp gets scheduled. When that happens,
only the half of the SIMD-lanes gets utilized. In Fig. 15, we see
decrease in SIMD utilization. Decreased utilization is mostly from
scheduling of a single warp instead of a pair and from Scalar-
wave execution with low packing rate. Thankfully, the benefits of
scalar-waving overcome its limitations. However, issuing a single
warp instead of a pair may harm the performance. Specifically,
we notice that BPR and LIB have increased execution cycles with
low SIMD utilization. As a future work, we would like to look
into scheduling techniques for improved pair scheduling and
increasing scalar packing rate.

8.3.4. Memory accesses

Narrowed issue width could lead to increased number of
memory requests and that could create pressure in first level
of caches. Therefore, in our detailed analysis, we looked at the
average number of memory requests per memory operation, and
L2 cache accesses and misses.

In Fig. 16, we show the number of memory requests in GW8
architecture normalized to B32 architecture when running regu-
lar, irregular, and graph applications. We observe that for most
of the regular applications the number of memory requests in-
creases. Even for a few benchmarks, we observe the amount
of increase is more than twice. This is again because of single
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warp issue. Benchmarks LIB and DHWD show increased L2 cache
accesses besides their increased number of memory request and
their performance get effected from increased L2 accesses.

With irregular and graph benchmarks we observe mix results.
For most of the regular and irregular benchmarks L2 cache access
and miss rates do not change much as shown in Fig. 17. For most
of the graph benchmarks (except BC.1k), we observe lowered L2
cache accesses and miss rate.

9. Related work

There are many studies on efficient implementations of graph
algorithms on GPUs. However, none of them proposes archi-
tectural solutions to better support graph algorithms on GPUs.
Harish and Narayanan [20] showed potential of using GPUs for
acceleration of graph algorithms using large graphs. Many works
[14,18,21,26,34,37,42,48,57] presented efficient implementation
and performance evaluation of widely used graph algorithms for
GPU and multi-GPU systems focusing on algorithmic changes for
GPU architecture and use of scalable primitives. Che et al. [6]
developed Pannotia Benchmark Suite for GPUs using OpenCL and
characterized their performance on AMD GPUs. Xu et al. [53]
also studied performance of graph applications and they per-
formed detailed analysis using simulations. Similar to our find-
ings, both studies showed that performance of graph algorithms
are limited with their irregular data accesses, low utilization and
data-dependent work distribution.
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Fig. 17. Normalized L2 Cache accesses and misses for GW8 architecture when running REGULAR, IRREGULAR and GRAPH applications.

Hong et al. [23] proposed virtual warp-centric programming
model for acceleration of graph algorithms on GPUs. Similar
to our scalarized vertex-centric graph computing, virtual warp-
centric graph computing maps a vertex to a warp. Khorasani
et al. [27] proposed Warp Segmentation to further enhance the
GPU device utilization by dynamically assigning the suitable
number of SIMD-threads to a vertex. Virtual warp mapping and
Warp Segmentation help with low utilization of SIMD units. How-
ever, these two studies are programming approaches at software
level and do not eliminate redundant computation. They only
work for applications where you can apply Virtual Warp-Centric
computing or Warp Segmentation. On the other hand, our work
is at the architectural level, combines techniques from software
and hardware level. GW architecture targets a larger set of GPU
applications.

There are two main approaches known as vertex-centric
[28,33,36] and edge-centric [17,45] in graph processing. There
are also frameworks [49,58] that combine both vertex-centric
and edge-centric graph processing. Besides vertex-centric graph
computing, edge-centric graph computing applications can ben-
efit from our Graph-waving architecture. Such as, they can still
benefit from the instruction re-use in the front-end, narrow
SIMD-width, and scalar-waving. Even though there is no scalar
annotation to target vertex specific calculations, the compiler can
identify scalars for other calculations if there exist any. There
are also other work that target optimizations using different data
representations to improve memory accesses or SIMD-utilization
on GPUs [3,24,28,51,54]. [19,31] and [55] present models for
predicting the performance of SpMV on GPUs with different data
storage types. Our analysis on graph algorithms using CSR agrees
with the results presented from these studies.

In the context of scalar execution, researchers have proposed
dynamic [10] and static analysis techniques [9,30] to identify
scalar operations in GPU applications. Xiang et al. [50] proposed
a new design for redundancy elimination in computation, energy
efficiency and reliability enhancement. Chen and Kaeli explored a
scalar-vector architecture in [8]. GScalar [32] work extends scalar
execution to include divergent scalar instructions and also utilizes
register compression for reduced power consumption. However,
none of these prior works attempted to group scalar instructions
for efficiency and none of them employs instruction re-use in
front-end for elimination of redundant fetches and decodes. In
our previous work [56], we proposed Scalar-waving architecture
to eliminate redundant computation and vectorized storage of
scalar results for efficiency. In this work, we extend and adopt
the Scalar-waving, to use scalarized graph computing approach,
integrated with narrow warps and instruction re-use in front-end.

There have been several proposals to address the low utiliza-
tion of the SIMD lanes. In Dynamic Warp Formation (DWF) [16],
Thread Block Compaction (TBC) [15], CAPRI [44], and Large Warp
Micro-architecture (LWM) [38], researchers developed methods
to dynamically form warps from warp splits under divergence.
The general observation with thread regrouping is that the thread
regrouping process impacts the number of coalesced memory
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accesses and creates shared memory bank conflicts. While each
of the previous studies has positively impacted performance and
addressed issues with SIMD efficiency and divergence, there has
been no single approach that addresses these problems com-
pletely. None of the previous studies targeted the elimination
of redundant computation, instruction reuse in the front in GPU
computing.

10. Conclusions and future work

GPUs provide impressive speedups for GPU-friendly data par-
allel applications. On the other hand, graph and many other
irregular applications suffer from low utilization of SIMD-units
due to varied amount of computations across the vertexes. Low
utilization of SIMD-units leads to significant performance degra-
dation.

Our work introduces GW architecture to improve architectural
support for irregular, data-dependent applications like graph ap-
plications. GW uses a narrow SIMD-width with a clustered issue
approach, introduces extensions to the baseline GPU architecture
to reuse instructions in the front-end and eliminates redundant
computations using Scalar-waving. Combination of these three
techniques helps with low utilization of SIMD-lanes, redundant
computations, and inefficient use of SIMD front-end. With GW
architecture, we can improve performance for many graph appli-
cations as much as 4.4x on the average, 17% and 9% for different
regular and irregular GPU applications, respectively.

As a future work, scheduling optimizations can be studied
to further improve the benefits of Graph-waving architecture.
Extending GW architecture with dynamic identification of scalar
instruction is another future work that we consider.
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