
Implementations of the Needleman-Wunsch
Algorithm for GPU Architectures

Furkan Kurt
Department of Computer Engineering

Istanbul Technical University
Istanbul, Turkey
kurtfu@itu.edu.tr

Deniz Turgay Altilar
Department of Computer Engineering

Istanbul Technical University
Istanbul, Turkey
altilar@itu.edu.tr

Ayse Yilmazer Metin
Department of Computer Engineering

Istanbul Technical University
Istanbul, Turkey

yilmazerayse@itu.edu.tr

Abstract—Similarity search is a fundamental yet time-
consuming algorithm in bioinformatics. Many dynamic
programming-based and heuristic algorithms are proposed to
solve alignment problems. The Needleman-Wunsch algorithm
is a well-known dynamic programming-based algorithm for
global sequence alignments. The algorithm has O(n2) time and
space complexity. The quadratic complexity limits the use of the
algorithm with relatively smaller sequences. Various parallel and
distributed methods were proposed to overcome the quadratic
complexity of the algorithm.

In this paper, we describe a graphics processing unit(GPU)
kernel to parallelize and reduce the execution time of the algo-
rithm. We propose a new data partitioning method representation
to increase the data transfer throughput between the GPU and
the host. We implemented the serial approach of the algorithm
and various parallel CUDA methods. We also used CUDA
Cooperative Groups for the first time in Needleman-Wunsch
algorithm parallelization. The evaluation shows that the new
implementation is increased the performance of the algorithm
60 times for similarity score calculations, and 17 times for the
alignment calculations.

Index Terms—parallel computing, sequence alignment, bioin-
formatics

I. INTRODUCTION

Similarity search is a fundamental but time-consuming
algorithm in bioinformatics. It can be used in sequence
databases searches [1], sequence alignment [2], and mutation
identification [3]. The similarity between two sequences can
be obtained by using optimal alignment approaches. Various
methods have been proposed to overcome this problem. They
can be grouped under two categories: local alignment and
global alignment. Local alignment methods search the most
similar parts of sequences while global methods search the
total similarity between sequences.

The Smith-Waterman algorithm [4] for the local alignment
and the Needleman-Wunsch algorithm [5] for the global align-
ment are well-known algorithms that both are based on dy-
namic programming approaches. FASTA [6] and BLAST [7],
[8] are two common heuristic approaches. Their performance
is 40 times faster than the Central Processing Unit(CPU) based
serial implementations. Despite their speeds, the outputs are
approximations of the optimal solutions.

General-Purpose Computing on Graphics Processing
Units(GPGPU) allows solving complex computational

problems by using massively parallel architectures of
Graphics Processing Units(GPU). However, the parallel
implementations of sequence alignment algorithms face data
dependency problems.

In this research, data dependency and synchronization prob-
lems are examined for parallel implementation approach of
the Needleman-Wunsch algorithm on GPUs. The algorithm
is used for two purposes: the final score calculation for the
similarity comparison, and the alignment matrix generation for
the sequence alignment. The proposed approach calculates the
exact same results as the serial approaches. It first calculates
the similarity score then if the score is above a threshold value,
it generates the alignment matrix for sequence alignment.

II. RELATED WORK

In recent years, various methods have been proposed for im-
proving the Needleman-Wunsch global alignment algorithm.
The methods contain massively parallel GPU cards, FPGA
architectures, and distributed CPU/GPU implementations. All
of the methods divide the alignment matrix into parallelizable
elements and distribute the elements to computation units, then
process them simultaneously.

Rodinia [9] is one of the first parallel implementations of
the Needleman-Wunsch algorithm on GPU. The score matrix
is processed from the top-left cell to the bottom-right cell in
a diagonal strip manner. Rodinia-NW divides the alignment
matrix into square tiles and computes each tile in a different
thread block. The main limitation of the Rodinia-NW is that
it only supports sequences with the same length which can
be divided by 16. Li and Becchi [10] proposed a method to
overcome Rodina’s restrictions. Siriwardena and Ranasinghe
[11] examined the effects of different GPU memory types.

There are also distributed approaches for the Needleman-
Wunsch. Li et al. [12] proposed a distributed CPU-GPU imple-
mentation that is based on MPI-CUDA framework. Selvitopi
et al. [13] proposed a distributed CPU implementation that is
based on MPI and OpenMP frameworks.

Prior works focused on Multi-Alignment with a single
GPU or global alignment in a distributed environment. This
work focused on global sequence alignment for relatively long
sequences with a single GPU.



III. BACKGROUND INFORMATION

A. Needleman-Wunsch Algorithm

Needleman-Wunsch is a well-known, widely used dynamic
programming algorithm for global sequence alignment. The
algorithm’s main purpose is to find the most optimal alignment
between two amino-acid sequences. It consists of two steps:

• Initialize: In this step, each cell in the alignment matrix
is filled by calculating match/mismatch, insert and delete
scores.

• Traceback: After filling all cells, the recovery process
starts from the bottom-right cell and follows the align-
ment pointer until reaching the origin.

A two-dimensional matrix is used to represent the align-
ments. Each cell in the alignment matrix holds a pointer that
navigates the previous amino-acid in the alignment. The score
calculation of each cell depends on three predetermined values.
(1) The miss value that represents the score when two amino-
acids mismatched, (2) the match value that represents the score
when two amino-acids matched, and (3) the gap value that
represents an insertion or deletion in the alignment.

Three different scores are calculated to determine the score
of a cell. (1) The vertical reference score is the sum of the
score of the cell to the up and the gap value. (2) The horizontal
reference score that is the sum of the score of the cell to the left
and the gap value, and (3) the diagonal reference score that is
the sum of the score of the cells to the up-left and the miss or
the match value depending on amino-acids correspond to that
cell. After the calculation of all three references, the maximum
of them is chosen for the score of that cell. Horizontal and
vertical references are summed with the gap value, and the
diagonal reference is summed with the σ(i, j) that indicates
match/miss value. Eq. 1 shows the calculation of the score of
a cell.

M(i, j) = max


M(i− 1, j − 1) + σ(i, j)

M(i− 1, j) + gap

M(i, j − 1) + gap

(1)

With the help of the score matrix M , the alignment matrix
can be generated. The alignment matrix is used in the trace-
back step to calculate the aligned sequences. Each cell of the
alignment matrix is filled as in eq. 2.

H(i, j) =


diag if M(i, j) = M(i− 1, j − 1) + σ(i, j)

up if M(i, j) = M(i− 1, j) + gap

left if M(i, j) = M(i, j − 1) + gap
(2)

Fig. 1 shows the traceback step of the algorithm. D denotes
the diagonal movement on the matrix, U denotes the move to
the upper cell, and L represents the move to the left. Arrows
represent the best-aligned sequence movement on the matrix.

B. CUDA Execution Model

Compute Unified Device Architecture(CUDA) [14] allows
to use GPUs in general-purpose programming. Nvidia GPUs

Fig. 1. Traceback step in the alignment matrix.

include a set of Streaming Multiprocessors(SMs) and each one
of them has a set of cores. These cores execute instructions
in a Single Instruction Multiple Data (SIMD) manner. CUDA
executes threads in different types of groups. These groups are
blocks that have a set of threads, and grids that have a set of
blocks. Fig 2. shows the organization of CUDA threads.

Fig. 2. Hierarchical organization of CUDA threads.

Each CUDA kernel is launched with user-defined dimen-
sions of grid and block. The limits of these dimensions are
specific to each GPU device. It could be limited with thread
count or required memory per dimension. CUDA provides two
types of parallelism: fine-grained parallelism within a thread-
block and coarse-grained parallelism across multiple thread
blocks.

C. Cooperative Groups

Earlier versions of CUDA only provide a thread synchro-
nization mechanism for a block of thread. Synchronization
of a block of the grid could only be done implicitly at the
beginning or at the end of the kernel call. Fig 3. shows
the prior synchronization model of the CUDA application
that has multiple blocks. Each color represents the execution
timeline of different blocks and red rectangles represent the
synchronization calls.

Fig. 3. Synchronization model of the default CUDA blocks.

CUDA 9 introduces a new mechanism Cooperative Groups
for inter-block synchronization. With this new mechanism, any



device CUDA 9 compatible with Kepler or newer architecture
can explicitly synchronize thread blocks within the kernel. Fig
4. shows the synchronization model of Cooperative Groups.
Each color represents the execution timeline of different blocks
and the red rectangle represents the synchronization calls.

Fig. 4. Execution model of CUDA Cooperative Groups.

The main limitation of this new mechanism is maximum
possible grid size. In default launch method grid size is
determined by the device’s capabilities while the Cooperative
Groups only limited with the multiprocessor count of the de-
vice and the maximum number of threads per multiprocessor.

IV. PROPOSED METHOD

A. Serial Approach

In this approach, each cell is calculated sequentially. To
calculate a cell’s score, first, its three reference cells must be
calculated. Fig. 5 shows the data dependencies in calculating
the values of the matrix.

Fig. 5. Data dependency of the matrix.

The process starts from the very first row. The first row is
taken as the current row and cells are filled according to the
rule described in Section III Initialize step. Each value of that
row is filled iteratively. Filling the first row is done according
to the eq. 3. CURR denotes the very first row of the score
matrix and i denotes the column number.

CURR (i) = i ∗ gap (3)

After the calculation of the first row, the first row is taken
as the reference for its next row. The process continues until
the last cell of the last row as Values from the previous row
are taken as references for the current row. Filling the rest of
the rows is done according to the eq. 4. CURR denotes the
current row and the PREV denotes the previous row.

CURR (i) = MAX (PREV (i− 1) + ε, PREV (i) + gap, CURR (i− 1) + gap) (4)

The serial approach requires visiting each cell of the matrix
individually. For a matrix with a size of n rows and m columns,
it takes n ∗m iterations. That makes the time complexity of
the serial approach O(n2).

B. Parallel Approach

Each value of a cell in an anti-diagonal vector can be
calculated simultaneously. The calculation of the value in a
cell is dependent on the previous anti-diagonal vector for
horizontal and vertical references, and the previous vector
of that for the diagonal reference. Fig. 6 shows the data
dependencies of the anti-diagonal vectors of the score matrix.
Blue denotes the current anti-diagonal vector, red denotes
the anti-diagonal vector for horizontal-vertical references, and
green denotes the anti-diagonal vector for diagonal references.

Fig. 6. Data dependencies of the anti-diagonal vectors.

Two additional vectors are required for calculating an anti-
diagonal vector. One vector for storing horizontal-vertical
references, and one for storing diagonal references. The cal-
culation of the values in an anti-diagonal vector is done as
in eq. 5. CURR denotes the current anti-diagonal vector,
HV denotes the anti-diagonal vector for horizontal-vertical
references, and the DIAG denotes the anti-diagonal vector
for diagonal references.

CURR (i) = MAX (DIAG (i− 1) + ε,HV (i− 1) + gap,HV (i) + gap) (5)

After the calculation of the current vector, the current anti-
diagonal vector will be the horizontal-vertical reference of the
next anti-diagonal vector, and the horizontal-vertical reference
vector will be the diagonal reference vector. Fig. 7 shows the
vector transactions in fill step of the parallel approach. Blue
denotes the current anti-diagonal, red denotes the horizontal-
vertical reference, and green denotes the diagonal reference.
Dark grey cells are visited cells and light grey cells are to be
visited cells.

Fig. 7. Parallel approach of final score calculation.



1) Iterative Kernel Launch: This approach requires iterat-
ing over each anti-diagonal of the matrix individually. Because
of each value of a cell in an anti-diagonal will be calculated
simultaneously. The time complexity of this approach will be
equal to the iteration count. For a matrix with size of n rows
and m columns, the total iteration count n+m+1. That makes
the time complexity of the parallel approach O(n).

At the beginning of the each iteration, the host side aligns
the grid and the block dimensions for the kernel launch. The
kernel fills the anti-diagonal vector. After the kernel launch,
the host side rearrange the anti-diagonal vectors for the next
launch. Fig. 8 shows the iterative process for the kernel launch.

Fig. 8. Iterative kernel launch process.

2) Cooperative Kernel Launch: CUDA execution model
does not have a default inter-block synchronization mecha-
nism. Therefor, synchronization must be done explicitly. One
way to do that is calling the kernel iteratively. On each kernel
invocation, the dedicated grid fills the anti-diagonal vector.
Synchronization of threads and blocks is done by the device
implicitly and no extra effort is required in this method, yet
it costs kernel launch overhead. Cooperative Groups allows
synchronization of a group of threads in a CUDA program. By
launching the kernel with Cooperative Groups, it is possible
to synchronize blocks inside the CUDA program. By using
Cooperative Groups, it is possible to reduce the kernel launch
overheads.

3) Anti-Diagonal Major Ordering: Multi-dimensional ar-
rays are represented in row-major or column-major order. That
makes traversing the score matrix row by row or column
by column easier for serial approach. However, the classical
ordering methods do not suit for parallel score matrix cal-
culation. In parallel calculation methods, every anti-diagonal
vector of the score matrix is filled in an iteration. Consecutive
elements of an anti-diagonal vector are not stored in contigu-
ous physical memory. Fig. 9 shows an anti-diagonal vector
representation in physical memory with row-major ordering.

Fig. 9. Memory representation of an anti-diagonal vector with row-major
ordering.

As it seen in the figure, two consecutive values for an
anti-diagonal vector, M(i, j) and M(i + 1, j - 1) can be
physically apart from each other. This might cause memory
faults. In addition to that, it is impossible to copy anti-diagonal
vector directly to the score matrix that stored on the host.
Every value in the anti-diagonal vector must be distributed to
corresponding physical memory locations. That brings extra
complexity to the implementation.

To overcome this problem the alignment matrix can be
represented on the memory in anti-diagonal order. In this
representation, consecutive physical addresses in the memory
correspond to consecutive values from an anti-diagonal vector.
Fig. 10 shows the anti-diagonal major ordering.

Fig. 10. Memory representation of an anti-diagonal major ordering.

That representation allows to direct copying an anti-diagonal
vector that calculated on the device to the host. Because of
reduce copying complexity, cache misses, and page faults, it
is expected to improve performance and reduce the execution
time.

4) Dividing Alignment Matrix: Executing the program with
single launch is impossible for the alignmet matrices that their
size is bigger than the GPU’s physical memory. Iterative kernel
launch method might not be wanted because of its kernel
launch and data transfer overheads. In that case, the score
matrix can be divided into submatrices and each submatrix
can be generated then transferred to the host after the kernel
execution.

By representing the score matrix in anti-diagonal major
order, it is possible to divide the score matrix in anti-diagonal
manner and transfer each submatrix directly from the host to
the device. The goal of method is dividing the score matrix
to submatrices with as equal amount of element as possible
that maximizes the data transfer throughput. With minimum
submatrix count, the kernel launch overhead can be minimized
by using Cooperative Groups. Fig. 11 shows the submatrices of
the score matrix. Each color represents different submatrices
that is filled in the device side then transferred back to the
host after the kernel execution.

Fig. 11. Dividing the score matrix into sub-matrices.



V. EXPERIMENTAL SETUP

We generated random genetic sequences that contain all
20 amino acids with the length started by 10 and gradually
incremented to 100,000 by a multiple of 10. Then another set
of sequences was generated with the length started by 10,000
and gradually incremented to 100,000 by step of 10,000 for the
detailed performance comparison of parallel implementations.

Each computation was repeated 10 times with different
sequences for the same length and the average of 10 executions
were taken as final execution time to statistically correct
results. All tests were run on a computer with a 2.60 GHz
Intel Core i7-9750H CPU, 2666 MHz 32 GB RAM, Nvidia
GTX 1650 with 4 GB DRAM, and 16 Multiprocessor.

VI. RESULTS

For the performance evaluation, calculating the final score
and generating the alignment matrix are executed separately.
For the final score calculation, data transfer from the GPU
to the host is not necessary. The bottom-right cell is taken
as the final score. Because of the absence of data transfer,
the submatrix approach is not necessary for the final score
calculation.

Implicit thread-block synchronization by launching the ker-
nel iteratively and explicit synchronization with Coopera-
tive Groups was tested for datasets between 10-100,000 and
10,000-100,000 separately. Table I shows the results of the
overall comparison and Table II shows the results of the
detailed comparison of the final score calculations.

TABLE I
THE FINAL SCORE CALCULATION TIMES.

Sequence Length Serial Iterative Cooperative Groups
(ms) (ms) (ms)

10 0 1 1
100 0 1 1

1,000 6 7 5
10,000 636 61 38

100,000 63698 1712 1194

TABLE II
DETAILED COMPARISON OF THE FINAL SCORE CALCULATION.

Sequence Length Serial Iterative Cooperative Groups
(ms) (ms) (ms)

10,000 636 61 38
20,000 2542 127 75
30,000 5724 212 127
40,000 10182 315 194
50,000 15920 434 276
60,000 22913 595 384
70,000 31213 781 519
80,000 40472 1021 702
90,000 51577 1357 925

100,000 63698 1712 1194

The two comparisons show, for sequences with hundreds
of amino acids, the serial approach is as effective as parallel
approaches. For sequences with thousands of amino acids, the
quadratic complexity of the serial approach makes it slower

when compared with the parallel approaches. Fig. 12 shows
the graph of the serial and parallel execution times.

Fig. 12. The final score calculation.

Fig. 13 and Fig 14 show the NVIDIA Visual Profiler results
of the iterative approach and Cooperative Groups respectively.
In both approaches, data transfer times are nearly equal. The
overhead of launching Cooperative Groups is higher than
standard kernel launch overhead. However, using Cooperative
Groups reduces the total kernel calls. As a result, the total
execution time reduces.

Fig. 13. Profiler results of the final score calculation with iterative approach.

Fig. 14. Profiler results of the final score calculation with Cooperative Groups.

For the alignment matrix generation, each anti-diagonal
vector data must be transferred from the GPU to the host.
In this comparison, the iterative method by calling the kernel
for each anti-diagonal vector and transferring that vector at
the end of the kernel, dividing the matrix into submatrices
and calling the kernel by default, and calling by Cooperative
Groups methods were tested. Table III shows the results of
the overall comparison and Table IV shows the results of the
detailed comparison of the alignment matrix generations.

TABLE III
THE ALIGNMENT MATRIX GENERATION TIMES.

Submatrix
Sequence Length Serial Iterative Standard Cooperative Groups

(ms) (ms) (ms) (ms)
10 0 2 1 1

100 0 14 1 1
1,000 8 123 8 6

10,000 901 1243 105 79
100,000 89767 17614 5853 5404



TABLE IV
DETAILED COMPARISON OF THE ALIGNMENT MATRIX GENERATION.

Submatrix
Sequence Length Serial Iterative Standard Cooperative Groups

(ms) (ms) (ms) (ms)
10,000 901 1243 105 79
20,000 3599 2657 305 249
30,000 8096 3970 605 517
40,000 14415 5468 1013 890
50,000 22570 7044 1514 1347
60,000 32528 8782 2112 1896
70,000 44268 10706 2822 2566
80,000 57778 12935 3698 3401
90,000 72760 14867 4693 4342

100,000 89767 17164 5853 5404

The two comparisons show, for sequences with hundreds of
amino acids, the serial approach is as effective as submatrix
approaches and more effective than the classical iterative
kernel approach. For sequences with thousands of amino acids,
submatrix approaches are obviously more effective, and the
iterative approach becomes more effective as the sequence
length grows. Fig. 15 shows the graph of the serial and parallel
execution times.

Fig. 15. Detailed comparison of the alignment matrix generation.

Fig. 16, Fig. 17, and Fig. 18 show the NVIDIA Visual
Profiler results of the iterative approach, submatrix with stan-
dard kernel launch, and Cooperative Groups respectively. Par-
titioning the alignment matrix reduces the total cudaMemcpy
calls. That reduces the total execution time as well. By using
Cooperative Groups, further performance improvement was
obtained by reducing the total kernel calls.

Fig. 16. Profiler results of alignment matrix generation with iterative approach

VII. CONCLUSION AND FUTURE WORK

In this research, the massively parallel architecture of GPU
is used to increase global sequence alignment algorithm called
the Needleman-Wunsch. For the final score calculations, it is

Fig. 17. Profiler results of alignment matrix generation with partitioning and
standard kernel call.

Fig. 18. Profiler results of alignment matrix generation with partitioning and
Cooperative Groups.

observed that with the default kernel launching mechanism
the performance of the algorithm increased up to 40x, and
with Cooperative Groups, it is increased up to 60x Because of
reduced kernel launch overhead.

For the alignment matrix generations, it is observed that
the performance increased up to 5x for the iterative method,
up to 15x with default kernel launch, and up to 17x with
Cooperative Groups. There is a slight performance difference
between default method and Cooperative Groups, but because
of the data transfer overhead is much more than the kernel
launch overhead, the speed up can be negligible for the matrix
generation.

From the results of this work, it is observed that the
main actor of the execution time of the Needleman-Wunsch
algorithm is data transfer overhead. The possible limiter for
aligning relatively long sequences can be the data size of
the alignment matrix. Scaling the growing data size with
distributed architecture can be considered as a part of our
future work.
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